Comparison of Conventional CNN Sequential API and Functional API for Microalgae Identification

Authors

  • Sri Dewi Hisham Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Shaza Eva Mohamad Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Mohd Ibrahim Shapiai Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Koji Iwamoto Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Aimi Alina Hussin Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Norhayati Abdullah Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Fazrena Nadia Md Akhir Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.37934/armne.17.1.96104

Keywords:

Deep learning, microalgae, identification, convolutional neural network, artificial intelligence

Abstract

Microalgae is widely known for its application in producing biodiesel and other health supplements. However, microalgae are also the leading cause of harmful algae blooms that may affect consumers and sea wildlife. The current microalgae identification method requires professionals, resources, budgets, technologies, and time. Therefore, a novel approach to identifying microalgae has been produced by implementing deep learning, specifically the Convolutional Neural Network (CNN). Due to the blooming of research in the deep learning field for microalgae identification, this research aims to compare application programming interface (API) use and study its effects on the accuracy and loss of a model. Using a light microscope, the microalgae images' datasets are self-collected from the AlBio laboratory at the Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia. The microalgae species were Acutodesmus obliquus, Monoraphidium sp, Spirullina sp, Tetradesmus deserticola, and Desmodesmus perforatus. The architecture used to identify the microalgae in this research was the conventional CNN with different APIs, functional and sequential. The functional API resulted in 0.85 accuracies and a loss score of 3.77. On the other hand, the sequential scored 0.89 and a loss of 0.32. This study concluded that the sequential API was better than the functional API for a linear convolutional neural network. However, further improvement to the model could be applied by applying better hyperparameters and parameters to prevent underfitting and improve the model’s accuracy.

Author Biographies

Sri Dewi Hisham, Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

nursridewihisham@gmail.com

Shaza Eva Mohamad, Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

shaza@utm.my

Mohd Ibrahim Shapiai, Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

md_ibrahim83@utm.my

Koji Iwamoto, Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

k.iwamoto@utm.my

Aimi Alina Hussin, Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

aimialinahussin@gmail.com

Norhayati Abdullah, Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

norhayati@utm.my

Fazrena Nadia Md Akhir, Malaysia–Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

fazrena@utm.my

Downloads

Published

2024-03-30

How to Cite

Sri Dewi Hisham, Shaza Eva Mohamad, Mohd Ibrahim Shapiai, Koji Iwamoto, Aimi Alina Hussin, Norhayati Abdullah, and Fazrena Nadia Md Akhir. 2024. “Comparison of Conventional CNN Sequential API and Functional API for Microalgae Identification”. Journal of Advanced Research in Micro and Nano Engineering 17 (1):96-104. https://doi.org/10.37934/armne.17.1.96104.
سرور مجازی ایران Decentralized Exchange

Issue

Section

Articles
فروشگاه اینترنتی