Adaptive Quantum Behaved Flower Pollination and Tabu Search Algorithm for Energy Efficient Task Management in Edge-Cloud Continuum

Authors

  • Nasiru Muhammad Dankolo Kebbi State University of Science and Technology, Aliero, Nigeria
  • Nor Haizan Mohamed Radzi Faculty of Computing, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
  • Noorfa Haszlinna Mustaffa Faculty of Computing, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
  • Farkhana Muchtar Faculty of Computing, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
  • Muhammad Zafran Muhammad Zaly Shah Faculty of Computing, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
  • Aryati Bakri Faculty of Computing, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
  • Mohd Kufaisal Mohd Sidik Faculty of Computing, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
  • Carolyn Salimun@Jackson Faculty of Computing and Informatics, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

DOI:

https://doi.org/10.37934/ard.135.1.218337

Keywords:

Edge-cloud , energy consumption, flower pollination

Abstract

Efficient task management in a dynamic and resource-constrained edge-cloud environments is essential for minimizing execution delays and reducing energy consumption. This paper presents a novel hybrid optimization algorithm, integrating an Adaptive Flower Pollination Algorithm (FPA) with Tabu Search, to address these challenges. The proposed approach introduces a diversity-based adaptive mechanism for global and local search and leverages Tabu Search to refine solutions and prevent convergence to suboptimal points. Extensive simulations demonstrate that the proposed algorithm outperforms state-of-the-art models in reducing delays and energy usage while balancing resource utilization in both edge and cloud environments. These results highlight the significant improvements achieved over baseline algorithms, providing an effective solution for task scheduling in edge-cloud systems.

Downloads

Download data is not yet available.

Author Biography

Farkhana Muchtar, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia

farkhana@utm.my

Downloads

Published

2025-08-18

How to Cite

Dankolo, N. M. ., Mohamed Radzi, N. H. ., Mustaffa, N. H. ., Farkhana Muchtar, Muhammad Zaly Shah, M. Z. ., Bakri, A. ., Mohd Sidik, M. K. ., & Salimun@Jackson, C. . (2025). Adaptive Quantum Behaved Flower Pollination and Tabu Search Algorithm for Energy Efficient Task Management in Edge-Cloud Continuum. Journal of Advanced Research Design, 135(1), 218–237. https://doi.org/10.37934/ard.135.1.218337
سرور مجازی ایران Decentralized Exchange

Issue

Section

Articles

Most read articles by the same author(s)

فروشگاه اینترنتی