Hybrid Feature Selection Method using Novel Pasi-Luukka and Genetic Algorithm Method for Microarray Cancer Classification

Authors

  • Cham Rui Hong Fakulti Teknologi dan Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia
  • Nursabillilah Mohd Ali Fakulti Teknologi dan Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia
  • Johar Akbar Mohamat Gani Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia
  • Nurul Fatiha Johan Fakulti Teknologi dan Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia
  • Ezreen Farina Shair Fakulti Teknologi dan Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia
  • Nur Hazahsha Shamsudin Fakulti Teknologi dan Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia
  • Mohd Safirin Karis Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia
  • Hairol Nizam Mohd Shah Fakulti Teknologi dan Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia
  • Amar Faiz Zainal Abidin Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia
  • Muhammad Zaid Aihsan Faculty of Electrical Engineering and Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia

DOI:

https://doi.org/10.37934/ard.136.1.121

Keywords:

Pasi luukka, genetic algorithm, machine leaning, optimization, feature selection

Abstract

Deoxyribonucleic acid (DNA) microarray technology enables the simultaneous measurement of the expression level of numerous genes, thus enabling the identification of patterns in gene expression that may cause a disease or a particular biological process. The DNA microarray technology can identify cancer cells by analysing the gene expression difference between normal cells and cancer cells. However, due to the vast number of features in the DNA microarray, the feature selection method is required to identify the most relevant subset of microarray features for subsequent analysis. In this research paper, a novel hybrid feature selection method called Pasi Luukka-Genetic Algorithm + Support Vector Machine is introduced. This approach combines the strengths of filter and wrapper methods to effectively select features from eight (8) cancer datasets. The Pasi Luukka algorithm filters irrelevant features and reduces dimensionality. A metaheuristic-based feature selection, which is the Genetic Algorithm (GA), selects the optimum features from the filtered features. This paper evaluates the performance of the proposed method, and a comparison work is conducted against other existing hybrid feature selection methods in the literature. The evaluation considers accuracy metrics and the number of selected features using the same microarray datasets.

Downloads

Download data is not yet available.

Author Biographies

Cham Rui Hong, Fakulti Teknologi dan Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia

chamruihong@gmail.com

Nursabillilah Mohd Ali, Fakulti Teknologi dan Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia

nursabillilah@utem.edu.my

Johar Akbar Mohamat Gani, Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia

johar.akbar@utem.edu.my

Nurul Fatiha Johan, Fakulti Teknologi dan Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia

nfatiha@utem.edu.my

Ezreen Farina Shair, Fakulti Teknologi dan Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia

ezreen@utem.edu.my

Nur Hazahsha Shamsudin, Fakulti Teknologi dan Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia

nurhazahsha@utem.edu.my

Mohd Safirin Karis, Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia

safirin@utem.edu.my

Hairol Nizam Mohd Shah, Fakulti Teknologi dan Kejuruteraan Elektrik, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia

hnizam@utem.edu.my

Amar Faiz Zainal Abidin, Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia

amarfaiz@utem.edu.my

Muhammad Zaid Aihsan, Faculty of Electrical Engineering and Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia

zaid@unimap.edu.my

Downloads

Published

2025-07-10

How to Cite

Cham, R. H., Mohd Ali, N., Mohamat Gani, J. A., Johan, N. F., Shair, E. F., Shamsudin, N. H., Karis, M. S., Mohd Shah, H. N., Zainal Abidin, A. F., & Aihsan, M. Z. (2025). Hybrid Feature Selection Method using Novel Pasi-Luukka and Genetic Algorithm Method for Microarray Cancer Classification. Journal of Advanced Research Design, 136(1), 1–21. https://doi.org/10.37934/ard.136.1.121
سرور مجازی ایران Decentralized Exchange

Issue

Section

Articles

Most read articles by the same author(s)

فروشگاه اینترنتی