Optimizing AMI Control Centres through Machine Learning: A Review

Authors

  • Farhana Abdul Hadi Institute of Power Enginering (IPE), Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia
  • Nurul Asyikin Mohamed Radzi Institute of Power Enginering (IPE), Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia
  • Yanti Erana Jalil Institute of Power Enginering (IPE), Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia
  • Siti Barirah Ahmad Anas Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • Syed Ahmad Fu'ad Syed Abdul Hamid AMI Project, Distribution Network, Tenaga Nasional Berhad, 46200 Petaling Jaya, Selangor, Malaysia
  • Loo Wei Wern Digital Innovation, ICT, Tenaga Nasional Berhad, Bangsar, 59100 Kuala Lumpur, Malaysia
  • Faris Syahmi Samidi Faculty of Engineering and Technology (FET), Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
  • Nayli Adriana azhar Electrical and Electronics Department, College of Engineering, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia
  • Fahd Younes Daghrir Business Line Unit - Sagemcom Energy and Telecom,4 allée des Messageries, 92270 Bois-Colombes, France

DOI:

https://doi.org/10.37934/ard.136.1.4465

Keywords:

AMI, machine learning, smart meter, operation centres, energy transitions

Abstract

Modernizing electrical grids requires advanced metering infrastructure (AMI), which gives users and suppliers energy usage data and boosts grid efficiency. Utility smart meter operation centres monitor and analyse these benefits to maintain them. However, the massive data quantities make manual data management impractical. This paper discusses how data analytics and machine learning (ML) can automate and optimize this process to improve control centre decision-making. Our research examines global smart meter implementation and how ML helps operators with identifying problems, preventive maintenance, network selection and cybersecurity. These applications decrease manual labour, enhance accuracy and boost productivity. We also discuss recent AMI trends to help utilities, governments and regulators plan energy. This article shows ML's disruptive potential in smart meter management by focusing on network dependability, operational safety, maintenance optimization and cybersecurity. Our findings show how ML permits utilities to provide a seamless, robust and customer-centred experience, bolstering AMI as a modern electric grid basis.

Downloads

Download data is not yet available.

Author Biographies

Farhana Abdul Hadi, Institute of Power Enginering (IPE), Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia

farhana.abdul.hadi@gmail.com

Nurul Asyikin Mohamed Radzi, Institute of Power Enginering (IPE), Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia

asyikin@uniten.edu.my

Yanti Erana Jalil, Institute of Power Enginering (IPE), Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia

yantierana@uniten.edu.my

Siti Barirah Ahmad Anas, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

barirah@upm.edu.my

Syed Ahmad Fu'ad Syed Abdul Hamid, AMI Project, Distribution Network, Tenaga Nasional Berhad, 46200 Petaling Jaya, Selangor, Malaysia

Safuad@tnb.com.my

Loo Wei Wern, Digital Innovation, ICT, Tenaga Nasional Berhad, Bangsar, 59100 Kuala Lumpur, Malaysia

wei.wern@tnb.com.my

Faris Syahmi Samidi, Faculty of Engineering and Technology (FET), Sunway University, 47500 Bandar Sunway, Selangor, Malaysia

faris.syahmi@uniten.edu.my

Nayli Adriana azhar, Electrical and Electronics Department, College of Engineering, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia

nayli.adriana@uniten.edu.my

Downloads

Published

2025-07-10

How to Cite

Abdul Hadi, F., Mohamed Radzi, N. A. ., Jalil, Y. E., Ahmad Anas, S. B., Syed Abdul Hamid, S. A. F. ., Loo, W. W., Samidi, F. S., azhar, N. A., & Daghrir, F. Y. (2025). Optimizing AMI Control Centres through Machine Learning: A Review. Journal of Advanced Research Design, 136(1), 44–65. https://doi.org/10.37934/ard.136.1.4465
سرور مجازی ایران Decentralized Exchange

Issue

Section

Articles
فروشگاه اینترنتی