Synthesis of Ag/ZnO Photocatalysts for the Photodegradation of Methyl Orange Dye
DOI:
https://doi.org/10.37934/jrnn.2.1.6169Keywords:
Dye, Methyl Orange, Precipitation-irradiation method, PhotocatalysisAbstract
ZnO and a series of Ag/ZnO photocatalysts were prepared by a precipitation- irradiation method and their photocatalytic performance in photodegradation of methyl orange dye was evaluated. The physicochemical properties of the catalysts were characterized by various characterization techniques. The photocatalysts have a hexagonal phase and were highly agglomerated. TEM images showed a change in morphology of ZnO from rod to nearly spherical with the addition of Ag. Ag/ZnO catalysts exhibited better photocatalytic activity in the degradation of methyl orange compared to pure ZnO. Ag/ZnO contains 2% silver shows the best performance as photocatalyst.
Downloads
References
Bouasla, C.; Samar, M.E.H.; Ismail, F. Degradation of methyl violet 6B dye by the Fenton process. Desalination. 2010, 254, pp. 35-41. doi: 10.1016/j.desal.2009.12.017
Monteagudo, J.M.; Durán, A.; Martín, I.S.; Aguirre, M. Catalytic degradation of Orange II in a ferrioxalate-assisted photo-Fenton process using a combined UV-A/C–solar pilot-plant system. Appl. Catal. B: Environ. 2010. 95, pp. 120-129. doi: 10.1016/j.apcatb.2009.12.018
Fassi, S.; Djebbar, K.; Bousnoubra, I.; Chenini, H.; Sehili, T. Oxidation of bromocresol green by different advanced oxidation processes: Fenton, fenton-like, photo-fenton, photo-fenton-like and solar light: Comparative Study. Desalin. Water Treat. 2014. 52, pp. 4982-4989. doi: 10.1080/19443994.2013.809971
Guo, X.; Tang, Y.; Wei, Z.; Hou, H.; Yang, X.; Wang, Z. Ozonation of some dyes in aqueous solution and toxicological assessment of their oxidation products. Fresenius Environ. Bull. 2013. 22, pp. 1689-1696.
Karunya, A.; Rose C.; Valli Nachiar, C. Biodegradation of the textile dye Mordant Black 17 (Calcon) by moreaxella osloensis isolated from textile effluent contaminated site. World J. Microbiol. Biotechnol. 2014. 30, pp. 915-924. doi: 10.1007/s11274-013-1509-8
Prasad, S.S.; Aikat, K.; Study of biodegradation and biodecolourization of azo dye by Enterobacter sp SXCR. Environ. Technol. 2014. 35, pp. 956-965. doi: 10.1080/09593330.2013.856957
Vignesh, K., Rajarajan, M., Suganthi, A. Visible light assisted photocatalytic performance of Ni and Th codoped ZnO nanoparticle for the degradation of methylene blue dye. J. Ind. Eng. Chem. 2014, 20, pp. 3826-3833. doi: 10.1016/j.jiec.2013.12.086
Habibi, M.H.; Habibi, A.H.; Photocatalytic degradation of Brilliant Red M5B using four different nanocomposites (ZnFe2O4, porous ZnFe2O4, ZnFe2O4-TiO2, FeTiO3) coated on glass. J. Ind. Eng. Chem. 2014. 20, pp. 2964-2968. doi: 10.1016/j.jiec.2013.10.066
Salleh, M.A.M.; Mahmoud, D.K.; Karim, W.A.W.A.; Idris, A. Cationic and anionic dye adsorption on agricultrural solid wastes: A comprehensive review. Desalination. 2011. 280, 1-13. doi: /10.1016/j.desal.2011.07.019
Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014. 209, pp. 172-184. doi: 10.1016/j.cis.2014.04.002
Chatterjee, D.; Dasgupta, S. Visible light induced photocatalytic degradation of organic pollutants. J. Photochem. Photobio. C: Photochem. Rev. 2005. 6, pp. 186-205. doi: 10.1016/j.jphotochemrev.2005.09.001
Kansal S.K.; Singh, M.; Sud, D. Studies on TiO2/ZnO photocatalysed degradation of lignin. J. Hazard. Mater. 2008. 153, pp. 412-417. doi: 10.1016/j.jhazmat.2007.08.091
Behnajady, M.A.; Modirshahla, N.; Hamzavi, R.; Kinetic study on photocatalytic degradation of C.I.Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. 2006. 133, pp. 226-232. doi: 10.1016/j.jhazmat.2005.10.022.
Lu, W.; Gao, S.; Wang, J. One-pot synthesis of Ag/ZnO self-assembled 3D hollow microspheres with enhanced photocatalytic performance. J. Phys. Chem. C. 2008. 112, pp. doi: 10.1021/jp803654k
Zheng, Y.; Zheng, L.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K. Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorg. Chem. 2007. 46, pp. 6980-6986. doi: 10.1021/ic700688f
Wu, C.; Shen, L.; Cai Zhang, Y.; Huang, Q. Solvothermal synthesis of Ag/ZnO nanocomposite with enhanced photocatalytic activity. Mater. Lett. 2013. 106, pp. 104-106. doi: 10.1016/j.matlet.2013.05.004
Lin, D.; Wu, H.; Zhang, R.; Pan, W. Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers. Chem. Mat. 2009. 21, pp. 3479-3484. doi: 10.1021/cm900225p
Jang, Y.H.; Kochuveedu, S.T.; Cha, M.A.; Jang, Y.J.; Lee, J.Y.; Lee, J.; Lee, J.; Kim, J.; Ryu, D.Y.; Kim, D.H. Synthesis and photocatalytic properties of hierarchical metal nanoparticles/ZnO thin films hetero nanostructures assisted by diblock copolymer inverse micellar nanotemplates. J. Colloid Interface Sci. 2010. 345, pp. 125-130. doi: 10.1016/j.jcis.2010.01.040
Height, M.J.; Pratsinis, S.E.; Mekasuwandumrong, O.; Praserthdam, P. Ag-ZnO catalysts for UV-photodegradation of methylene blue. Appl. Catal. B: Environ. 2006. 63, pp. 305-312. doi: 10.1016/j.apcatb.2005.10.018
Tan, T.; Li, Y.; Liu, Y.; Wang, B.; Song, X.; Li, E.; Wang, H.; Yan, H. Two-step preparation of Ag/tetrapod-like ZnO with photocatalytic activity by thermal evaporation and sputtering. Mater. Chem. Phys. 2008. 111, pp. 305-308. doi: 10.1016/j.matchemphys.2008.04.013
Lee, K. X.; Shameli, K.; Yew, Y. P.; Teow, S-Y.; Jahangirian, H.; Rafiee-Moghaddam, and R.; Webster, T. J. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int. J. Nanomedicine 2020; 15, pp. 275–300. doi: 10.2147/IJN.S233789
Lin, C.F.; Wu, C.H.; Onn, Z.N. Degradation of 4-Chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 system. J. Hazard. Mater. 2008. 154, pp. 1033–1039. doi: 10.1016/j.jhazmat.2007.11.010
Linsebigler, A.L.; Lu, G.; Yates Jr, J.T. Photocatalysis on TiO2 surfaces: Principles, mechanisms and selected results. Chem. Rev. 1995. 95, pp. 735-758. 10.1021/cr00035a013
Sawai, J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods. 2003. 54, pp. 177-182. 10.1016/s0167-7012(03)00037-x
Balavandy, S. K.; Shameli, K.; Abidin, Z. Z. Rapid and green synthesis of silver nanoparticles via sodium alginate media. Int. J. Electrochem. Sci. 2015.10(1), pp. 486-497.
Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M.F.; Fiévet, F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 2006. 6, pp. 866-870. doi: 10.1021/nl052326h
Yamamoto, O.; Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 2001. 3, pp. 643-646. doi: 10.1016/S1466-6049(01)00197-0
Zhang, L., Jiang, Y.; Ding, Y.; Daskalakis, N.; Jeuken, Lars.; Povey, Malcolm.; O’Neill, A.J.; York, D.W. Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J. Nanopart. Res. 2010. 12, pp. 1625-1636. doi: 10.1007/s11051-009-9711-1
Li, M., Zhu, L.; Lin, D. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 2011. 45, pp. 1977-1983. doi: 10.1021/es102624t
Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 2011. 27, pp. 4020-4028. doi: 10.1021/la104825u
Song, W., Zhang, J.; Guo, J.; Zhang, J.; Ding, F.; Li, L.; Sun, Z. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett. 2010. 199, pp. 389-397. doi: 10.1016/j.toxlet.2010.10.003.
De Berardis, B.; Civitelli, G.; Condello, M.; Lista, P.; Pozzi, R.; Arancia, G.; Meschini, S. Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol Appl Pharmacol. 2010. 246, pp. 116-127. doi: 10.1016/j.taap.2010.04.012.
Ma, H.; Williams, P.L.; Diamond, S.A. Ecotoxicity of manufactured ZnO nanoparticles–a review. Environ. Pollut. 2013. 172, pp. 6-85. doi: 10.1016/j.envpol.2012.08.011.
Ma, H.; Wallis, L.K.; Diamond, S.; Li, S.; Canas-Carrell, J.; Parra, A. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution. Environ. Pollut. 2014. 193, pp. 165-172. doi: 10.1016/j.envpol.2014.06.027.
Heinlaan, M., Ivask, A.; Blinova, I.; Dubourguier, H.C.; Kahru, A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 2008. 71, pp. 1308-1316. doi: 10.1016/j.chemosphere.2007.11.047.
Kavitha, T., et al., Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon, 2012. 50, pp. 2994-3000. doi: 10.1016/j.carbon.2012.02.082
Kim, J.S.; Kuk, E.; Yu, K. N.; Kim J.H, Park, S.J.; Hu, J.L.; Kim, S.H.; Park, Y.K.; Park, Y. H.; Hwang, Shameli, K.; Ahmad, M.; Al-Mulla, E. A. J.; Shabanzadeh, P.; Bagheri, S. Antibacterial effect of silver nanoparticles on talc composites. Res. Chem. Intermed., 2015. 41(1), pp. 251-263. doi: 10.1007/s10534-010-9381-6.
Shabanzadeh, P.; Yusof, R.; Shameli, K. Artificial neural network for modeling the size of silver nanoparticles’ prepared in montmorillonite/starch bionanocomposites. J. Ind. Eng. Chem. 2015. 24, pp. 42-50. doi: 10.1016/j.jiec.2014.09.007