Gold Nanoparticles from Plant Materials: Green Extraction, Biological Synthesis and Its Beneficials Properties for Cosmeceutical Applications

Authors

  • Siti Nur Khairunisa binti Mohd Amir Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, 54100, Kuala Lumpur, Malaysia
  • Mariam Firdhaus binti Mad Nordin Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, 54100, Kuala Lumpur, Malaysia
  • Kamyar Shameli Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, 54100, Kuala Lumpur, Malaysia
  • Mariani Abdul Hamid Fakulti Kejuruteraan Kimia & Kejuruteraan Sumber Asli, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.37934/jrnn.2.1.1229

Keywords:

Green technologies, green extraction, gold nanoparticles, cosmeceutical

Abstract

Green technologies have become trends among researchers and it is developing as the current demand is increased towards products that are processed through green technologies. In this regard, green extraction and green synthesis of gold nanoparticles (GNPs) from plants are presented and discussed. Rapid development in green extraction makes the researchers are competing in providing the best extraction techniques which will use safe extracting solvent, low energy consumption, and did not release hazardous materials as residues of the processes. The same thing goes for the green synthesis of GNPs, plant extracts are used as reducing agent and it does not release any hazardous residues as compared to chemical synthesized GNPs. The application of the GNPs in this paper is reviewed on their properties that are beneficial for cosmeceutical applications. Even though the application of GNPs in the cosmeceutical application in research papers is relatively unexplored, but it has a high potential to be studied since there is existing research that recognizes the properties played by GNPs. The properties that are mostly studied by researchers are an antioxidant, anti-inflammatory, and antibacterial activity that is found to be advantageous in the production of cosmeceutical products.

Downloads

Download data is not yet available.

References

F. Chemat, M. A. Vian, and G. Cravotto, “Green extraction of natural products: Concept and principles,” Int. J. Mol. Sci., vol. 13, no. 7, pp. 8615–8627, 2012, doi: 10.3390/ijms13078615.

S. Armenta, S. Garrigues, and M. de la Guardia, “The role of green extraction techniques in Green Analytical Chemistry,” TrAC - Trends Anal. Chem., vol. 71, pp. 2–8, 2015, doi: 10.1016/j.trac.2014.12.011.

J. Azmir et al., “Techniques for extraction of bioactive compounds from plant materials: A review,” J. Food Eng., vol. 117, no. 4, pp. 426–436, 2013, doi: 10.1016/j.jfoodeng.2013.01.014.

N. N. Azwanida, “A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation,” Med. Aromat. Plants, vol. 04, no. 03, pp. 3–8, 2015, doi: 10.4172/2167-0412.1000196.

K. A. Shams, N. S. Abdel-Azim, I. A. Saleh, M.-E. F. Hegazy, M. M. El-Missiry, and F. M. Hammouda, “Green technology: Economically and environmentally innovative methods for extraction of medicinal & aromatic plants (MAP) in Egypt,” J. Chem. Pharm. Res., vol. 7, no. 5, pp. 1050–1074, 2015.

A. Guaadaoui, S. Benaicha, N. Elmajdoub, M. Bellaoui, and A. Hamal, “What is a bioactive compound?? A combined definition for a preliminary consensus,” Int. J. Nutr. Food Sci., vol. 3, no. 3, pp. 174–179, 2014, doi: 10.11648/j.ijnfs.20140303.16.

B. S. Paulsen, Highlights through the history of plant medicine, vol. 50, no. November 2008. 2010.

D. P. Xu, J. Zheng, Y. Zhou, Y. Li, S. Li, and H. Bin Li, “Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods,” Food Chem., vol. 217, pp. 552–559, 2017, doi: 10.1016/j.foodchem.2016.09.013.

T. Dhanani, R. Singh, S. Shah, and P. Kumari, “Green Chemistry Letters and Reviews Comparison of green extraction methods with conventional extraction method for extract yield , L-DOPA concentration and antioxidant activity of Mucuna pruriens seed,” Taylor Fr., vol. 8253, no. November 2016, 2015, doi: 10.1080/17518253.2015.1075070.

M. N. Azian, A. N. I. Anisa, and Y. Iwai, “Mechanisms of Ginger Bioactive Compounds Extract Using Soxhlet and Accelerated Water Extraction,” Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., vol. 8, no. 5, pp. 444–448, 2014.

A. Singh, S. Ahmad, and A. Ahmad, “Green extraction methods and environmental applications of carotenoids-a review,” RSC Adv., vol. 5, no. 77, pp. 62358–62393, 2015, doi: 10.1039/C5RA10243J.

A. Lohani, A. Verma, H. Joshi, N. Yadav, and N. Karki, “Nanotechnology-Based Cosmeceuticals,” ISRN Dermatol., vol. 2014, pp. 1–14, 2014, doi: 10.1155/2014/843687.

V. V. Makarov et al., “‘Green’ nanotechnologies: Synthesis of metal nanoparticles using plants,” Acta Naturae, vol. 6, no. 20, pp. 35–44, 2014, doi: 10.1039/c1gc15386b.

S. Machmudah, “Subcritical Water Extraction of Xanthone from Mangosteen (Garcinia Mangostana Linn) Pericarp,” J. Adv. Chem. Eng., vol. 05, no. 01, pp. 1–6, 2015, doi: 10.4172/2090-4568.1000117.

M. Plaza and C. Turner, “Pressurized hot water extraction of bioactives,” TrAC - Trends Anal. Chem., vol. 71, pp. 39–54, 2015, doi: 10.1016/j.trac.2015.02.022.

M. S. Md Sarip and N. A. Morad, “Determination of Overall Mass Transfer Coefficient for 6-Gingerol and 6-Shagoal in Subcritical Water Extraction,” Adv. Mater. Res., vol. 550–553, no. 5, pp. 1900–1903, 2012, doi: 10.4028/www.scientific.net/AMR.550-553.1900.

P. Mottahedin, A. Haghighi Asl, and M. Khajenoori, “Extraction of Curcumin and Essential Oil from Curcuma longa L. by Subcritical Water via Response Surface Methodology,” J. Food Process. Preserv., vol. 00, pp. 1–9, 2016, doi: 10.1111/jfpp.13095.

M.-J. Ko, H.-L. Kwon, and M.-S. Chung, “Pilot-scale subcritical water extraction of flavonoids from satsuma mandarin (Citrus unshiu Markovich) peel,” Innov. Food Sci. Emerg. Technol., vol. 38, pp. 175–181, 2016, doi: 10.1016/j.ifset.2016.10.008.

S. Xiao et al., “Subcritical Water Extraction of Ursolic Acid from Hedyotis diffusa,” Appl. Sci., vol. 7, no. 2, pp. 1–13, 2017, doi: 10.3390/app7020187.

B. Pavlic, S. Vidovic, J. Vladic, R. Radosavljevic, M. Cindric, and Z. Zekovic, “Subcritical Water Extraction of sage (Salvia Officinalis L.) by-products-Process optimization by response surface methodology,” J. Supercrit. Fluids, vol. 116, pp. 36–45, 2016.

Z. Zekovic et al., “Optimization of subcritical water extraction of antioxidants from Coriandrum sativum seeds by response surface methodology,” J. Supercrit. Fluids, vol. 95, pp. 560–566, 2014.

M. Herrero, A. Cifuentes, and E. Ibañez, “Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae - A review,” Food Chem., vol. 98, pp. 136–148, 2006, doi: 10.1016/j.foodchem.2005.05.058.

M. Bimakr, R. A. Rahman, A. Ganjloo, F. S. Taip, L. M. Salleh, and M. Z. I. Sarker, “Optimization of Supercritical Carbon Dioxide Extraction of Bioactive Flavonoid Compounds from Spearmint (Mentha spicata L.) Leaves by Using Response Surface Methodology,” Food Bioprocess Technol., vol. 5, no. 3, pp. 912–920, 2011, doi: 10.1007/s11947-010-0504-4.

X. Xu, Y. Gao, G. Liu, Q. Wang, and J. Zhao, “Optimization of supercritical carbon dioxide extraction of sea buckthorn (Hippophae thamnoides L.) oil using response surface methodology,” LWT - Food Sci. Technol., vol. 41, no. 7, pp. 1223–1231, 2008, doi: 10.1016/j.lwt.2007.08.002.

Q. T. Dang and N. N. Phan, “Optimization of supercritical CO2 extraction of oleoresin from black pepper ( Piper nigrum L .) and antioxidant capacity of the oleoresin,” vol. 21, no. 4, pp. 1489–1493, 2014.

M. Cvjetko, S. Jokic, Z. Lepojevic, S. Vidovic, B. Maric, and I. R. Redovnikovic, “Optimization of the Supercritical CO2 Extraction of Oil from Rapeseed Using Response Surface Methodology,” Food Technol. Biotechnol., vol. 50, no. 2, pp. 208–215, 2012.

M. Hussaan, N. Iqbal, S. Adeel, M. Azeem, M. Tariq Javed, and A. Raza, “Microwave-assisted enhancement of milkweed (Calotropis procera L.) leaves as an eco-friendly source of natural colorants for textile,” Environ. Sci. Pollut. Res., vol. 24, no. 5, pp. 5089–5094, 2017, doi: 10.1007/s11356-016-8162-3.

C.-H. Chan, T.-Y. See, R. Yusoff, G.-C. Ngoh, and K.-W. Kow, “Extraction of bioactives from Orthosiphon stamineus using microwave and ultrasound-assisted techniques: Process optimization and scale up,” Food Chem., vol. 221, pp. 1382–1387, 2016, doi: 10.1016/j.foodchem.2016.11.016.

Z. Yang and W. Zhai, “Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC-MS,” Innov. Food Sci. Emerg. Technol., vol. 11, no. 3, pp. 470–476, 2010, doi: 10.1016/j.ifset.2010.03.003.

A. Ghasemzadeh, H. Z. E. Jaafar, A. Rahmat, and M. K. Swamy, “Optimization of microwave-assisted extraction of zerumbone from Zingiber zerumbet L. rhizome and evaluation of antiproliferative activity of optimized extracts,” Chem. Cent. J., vol. 11, no. 5, pp. 1–10, 2017, doi: 10.1186/s13065-016-0235-3.

K. Lefsih et al., “Pectin from Opuntia ficus indica: Optimization of microwave-assisted extraction and preliminary characterization,” Food Chem., vol. 221, pp. 91–99, 2017, doi: 10.1016/j.foodchem.2016.10.073.

K. Thirugnanasambandham and V. Sivakumar, “Microwave assisted extraction process of betalain from dragon fruit and its antioxidant activities,” J. Saudi Soc. Agric. Sci., vol. 16, no. 1, pp. 1–8, 2015, doi: 10.1016/j.jssas.2015.02.001.

S. Joseph and B. Mathew, “Microwave Assisted Biosynthesis of Silver Nanoparticles Using the Rhizome Extract of Alpinia galanga and Evaluation of Their Catalytic and Antimicrobial Activities,” J. Nanoparticles, vol. 2014, p. 9, 2014, doi: 10.1155/2014/967802.

I. Aguiló-Aguayo, J. Walton, I. Viñas, and B. K. Tiwari, “Ultrasound assisted extraction of polysaccharides from mushroom by-products,” LWT - Food Sci. Technol., vol. 77, pp. 92–99, 2017, doi: 10.1016/j.lwt.2016.11.043.

F. Chen et al., “Optimization of ultrasound-assisted extraction of anthocyanins in red raspberries and identification of anthocyanins in extract using high-performance liquid chromatography-mass spectrometry,” Ultrason. Sonochem., vol. 14, no. 6, pp. 767–778, 2007, doi: 10.1016/j.ultsonch.2006.12.011.

J. Wang, B. Sun, Y. Cao, Y. Tian, and X. Li, “Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran,” Food Chem., vol. 106, no. 2, pp. 804–810, 2008, doi: 10.1016/j.foodchem.2007.06.062.

S. N. K. M. Amir, M. F. M. Nordin, K. Shameli, I. M. A. Wahab, M. A. Hamid (2020). Modeling and optimization of pilot-scale subcritical water extraction on Zingiber zerumbet by central composite design. IOP Conf. Series: Materials Science and Engineering, vol 778. pp. 1-10, doi: 10.1088/1757-899X/778/1/012077

M. Valizadeh Kiamahalleh, G. Najafpour-Darzi, M. Rahimnejad, A. A. Moghadamnia, and M. Valizadeh Kiamahalleh, “High performance curcumin subcritical water extraction from turmeric (Curcuma longa L.),” J. Chromatogr. B Anal. Technol. Biomed. Life Sci., vol. 1022, pp. 191–198, 2016, doi: 10.1016/j.jchromb.2016.04.021.

A. Shalmashi, F. Golmohammad, and M. H. Eikani, “Subcritical water extraction of caffeine from black tea leaf of Iran,” J. Food Process Eng., vol. 31, no. 3, pp. 330–338, 2008, doi: 10.1111/j.1745-4530.2007.00156.x.

T. P. Krishna Murthy and B. Manohar, “Optimization of Supercritical Carbon Dioxide Extraction of Phenolic Compounds from Mango Ginger Rhizome ( Curcuma Amada Roxb .) Using Response Surface Methodology,” Biomed. Biotechnol., vol. 2, no. 1, pp. 14–19, 2014, doi: 10.12691/bb-2-1-3.

S. A. B. Vieira de Melo, G. M. N. Costa, R. Garau, A. Casula, and B. Pittau, “Supercritical CO2 Extraction of Essential Oil From Thymus vulgaris,” Brazilian J. Chem. Eng., vol. 17, pp. 79–83, 2000, doi: http://dx.doi.org/10.1590/S0104-66322000000300014.

R. C. De Oliveira, R. M. Rossi, M. L. Gimenes, S. Jagadevan, W. M. Giufrida, and S. T. D. De Barros, “Extraction of passion fruit seed oil using supercritical CO2: a study of mass transfer and rheological property by Bayesian inference,” 2013.

S. Machmudah, Y. Kawahito, M. Sasaki, and M. Goto, “Effect of Supercritical Carbon Dioxide Condition on Extraction of Carotenoids and Seed Oil from Rosehip Fruits,” Proc. Int. Symp. Ecotopia Sci. 2007, pp. 569–573, 2007.

N. Tongkham, B. Juntasalay, P. Lasunon, and N. Sengkhamparn, “Dragon Fruit Peel Pectin: Microwave-Assisted Extraction and Fuzzy Assessment,” Agric. Nat. Resour., 2017, doi: 10.1016/j.anres.2017.04.004.

C. H. Kuo et al., “Optimized ultrasound-assisted extraction of phenolic compounds from Polygonum cuspidatum.,” Molecules, vol. 19, no. 1, pp. 67–77, 2013, doi: 10.3390/molecules19010067.

L. Petigny, S. Périno-Issartier, J. Wajsman, and F. Chemat, “Batch and continuous ultrasound assisted extraction of boldo leaves (Peumus boldus Mol.),” Int. J. Mol. Sci., vol. 14, no. 3, pp. 5750–5764, 2013, doi: 10.3390/ijms14035750.

Z. Zhong, “Optimization of Ultrasound-Assisted Extraction Condition of Flavonoids from Tartary Buckwheat,” J. Pharm. Sci. Innov., vol. 1, no. 6, pp. 39–43, 2012, doi: 10.7897/2277-4572.02577.

Usman Ali and P. Kumar, “Effect of soxhlet and ultrasound assisted extraction on antioxidant activity of pomegranate peel extract,” Int. J. Food Nutr. Sci., vol. 3, no. 6, pp. 265–270, 2015.

N. Ul et al., “Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba,” Arabian Journal of Chemistry. 2015, doi: 10.1016/j.arabjc.2015.06.025.

K. B. Narayanan and N. Sakthivel, “Coriander leaf mediated biosynthesis of gold nanoparticles,” Mater. Lett., vol. 62, no. 30, pp. 4588–4590, 2008, doi: 10.1016/j.matlet.2008.08.044.

S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry, “Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth,” J. Colloid Interface Sci., vol. 275, no. 2, pp. 496–502, 2004, doi: 10.1016/j.jcis.2004.03.003.

A. Thirumurugan, G. J. Jiflin, G. Rajagomathi, Neethu Anns Tomy, S. Ramachandran, and R. Jaiganesh, “Biotechnological synthesis of gold nanoparticles of Azadirachta indica leaf extract,” Int. J. Biol. Technol., vol. 1, no. 1, pp. 75–77, 2010.

V. Mamillapalli, A. M. Atmakuri, and P. Khantamneni, “Nanoparticles for Herbal Extracts,” Asian J. Pharm., vol. 10, no. 2, pp. 54–60, 2016.

K. X. Lee et al., “Green synthesis of gold nanoparticles using aqueous extract of Garcinia Mangostana fruit peels,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 7, no. 2, p. 025005, 2016, doi: 10.1088/2043-6262/7/2/025005.

K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh, “Biological synthesis of metallic nanoparticles,” Nanomedicine Nanotechnology, Biol. Med., vol. 6, no. 2, pp. 257–262, 2010, doi: 10.1016/j.nano.2009.07.002.

V. Kumar and S. K. Yadav, “Plant-mediated synthesis of silver and gold nanoparticles and their applications,” J. Chem. Technol. Biotechnol., vol. 84, no. 2, pp. 151–157, 2009, doi: 10.1002/jctb.2023.

M. M. H. Khalil, E. H. Ismail, and F. El-Magdoub, “Biosynthesis of Au nanoparticles using olive leaf extract. 1st Nano Updates,” Arab. J. Chem., vol. 5, no. 4, pp. 431–437, 2012, doi: 10.1016/j.arabjc.2010.11.011.

S. P. Dubey, M. Lahtinen, H. Särkkä, and M. Sillanpää, “Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids,” Colloids Surfaces B Biointerfaces, vol. 80, no. 1, pp. 26–33, 2010, doi: 10.1016/j.colsurfb.2010.05.024.

S. A. Aromal, V. K. Vidhu, and D. Philip, “Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 85, no. 1, pp. 99–104, 2012, doi: 10.1016/j.saa.2011.09.035.

A. R. Vilchis-nestor, V. Sánchez-mendieta, M. A. Camacho-lópez, R. M. Gómez-espinosa, M. A. Camacho-lópez, and J. A. Arenas-alatorre, “Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract,” vol. 62, pp. 3103–3105, 2008, doi: 10.1016/j.matlet.2008.01.138.

A. D. Dwivedi and K. Gopal, “Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 369, no. 1–3, pp. 27–33, 2010, doi: 10.1016/j.colsurfa.2010.07.020.

S. P. Dubey, M. Lahtinen, and M. Sillanpää, “Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 364, no. 1–3, pp. 34–41, 2010, doi: 10.1016/j.colsurfa.2010.04.023.

K. J. Rao and S. Paria, “Aegle marmelos leaf extract and plant surfactants mediated green synthesis of Au and Ag nanoparticles by optimizing process parameters using taguchi method,” ACS Sustain. Chem. Eng., vol. 3, no. 3, pp. 483–491, 2015, doi: 10.1021/acssuschemeng.5b00022.

A. M. Elbagory, C. N. Cupido, M. Meyer, and A. A. Hussein, “Large scale screening of southern African plant extracts for the green synthesis of gold nanoparticles using microtitre-plate method,” Molecules, vol. 21, no. 11, 2016, doi: 10.3390/molecules21111498.

S. Ghosh et al., “Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential,” J. Nanobiotechnology, vol. 10, no. 1, p. 17, 2012, doi: 10.1186/1477-3155-10-17.

S. P. Dubey, M. Lahtinen, and M. Sillanpää, “Tansy fruit mediated greener synthesis of silver and gold nanoparticles,” Process Biochem., vol. 45, no. 7, pp. 1065–1071, 2010, doi: 10.1016/j.procbio.2010.03.024.

D. Philip, “Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis,” Phys. E Low-dimensional Syst. Nanostructures, vol. 42, no. 5, pp. 1417–1424, 2010, doi: 10.1016/j.physe.2009.11.081.

D. Philip, “Spectrochimica Acta Part A?: Molecular and Biomolecular Spectroscopy Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 77, no. 4, pp. 807–810, 2010, doi: 10.1016/j.saa.2010.08.008.

D. Philip, C. Unni, S. A. Aromal, and V. K. Vidhu, “Spectrochimica Acta Part A?: Molecular and Biomolecular Spectroscopy Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 78, no. 2, pp. 899–904, 2011, doi: 10.1016/j.saa.2010.12.060.

M. Noruzi, D. Zare, K. Khoshnevisan, and D. Davoodi, “Spectrochimica Acta Part A?: Molecular and Biomolecular Spectroscopy Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 79, no. 5, pp. 1461–1465, 2011, doi: 10.1016/j.saa.2011.05.001.

M. Shah, D. Fawcett, S. Sharma, S. K. Tripathy, and G. E. J. Poinern, Green synthesis of metallic nanoparticles via biological entities, vol. 8, no. 11. 2015.

S. Pandey, G. Oza, A. Mewada, and M. Sharon, “Green Synthesis of Highly Stable Gold Nanoparticles using Momordica charantia as Nano fabricator,” Sch. Res. Libr. Arch. Appl. Sci. Res., vol. 4, no. 2, pp. 1135–1141, 2012.

P. Velmurugan et al., “Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens.,” Bioprocess Biosyst. Eng., pp. 1935–1943, 2014, doi: 10.1007/s00449-014-1169-6.

A. Lakshmanan, C. Umamaheswari, and N. S. Nagarajan, “A Facile Phyto-Mediated Synthesis of Gold Nanoparticles using Aqueous Extract of Momordica cochinchinensis Rhizome and Their Biological Activities,” vol. 2, no. 2, pp. 76–80, 2016.

P. Karuppaiya, E. Satheeshkumar, W. T. Chao, L. Y. Kao, E. C. F. Chen, and H. S. Tsay, “Anti-metastatic activity of biologically synthesized gold nanoparticles on human fibrosarcoma cell line HT-1080,” Colloids Surfaces B Biointerfaces, vol. 110, pp. 163–170, 2013, doi: 10.1016/j.colsurfb.2013.04.037.

C. Sreelakshmi, N. Goel, K. K. R. Datta, A. Addlagatta, R. Ummanni, and B. V. S. Reddy, “Green Synthesis of Curcumin Capped Gold Nanoparticles and Evaluation of Their Cytotoxicity,” Nanosci. Nanotechnol. Lett., vol. 5, no. 12, pp. 1258–1265, 2013, doi: 10.1166/nnl.2013.1678.

B. S. Bhau, S. Ghosh, S. Puri, B. Borah, D. K. Sarmah, and R. Khan, “Green synthesis of gold nanoparticles from the leaf extract of Nepenthes khasiana and antimicrobial assay,” Adv. Mater. Lett., vol. 6, no. 1, pp. 55–58, 2015, doi: 10.5185/amlett.2015.5609.

N. Dorosti and F. Jamshidi, “Plant-mediated gold nanoparticles by Dracocephalum kotschyi as anticholinesterase agent?: Synthesis , characterization , and evaluation of anticancer and antibacterial activity,” J. Econ. Financ. Adm. Sci., vol. 14, no. 3, pp. 1–11, 2016, doi: 10.1016/j.jab.2016.03.001.

B. Kumar and K. Smita, “Aqueous Phase Lavender Leaf Mediated Green Synthesis of Gold Nanoparticles and Evaluation of its Antioxidant Activity,” Biol. Med., vol. 08, no. 03, pp. 8–11, 2016, doi: 10.4172/0974-8369.1000290.

S. N. Correa, A. M. Naranjo, and A. P. Herrera, “Biosynthesis and characterization of gold nanoparticles using extracts of tamarindus indica L leaves,” J. Phys. Conf. Ser., vol. 687, p. 012082, 2016, doi: 10.1088/1742-6596/687/1/012082.

N. Ahmad, S. Sharma, and R. Rai, “Rapid green synthesis of silver and gold nanoparticles using peels of Punica granatum,” vol. 3, no. 2, pp. 376–380, 2012, doi: 10.5185/amlett.2012.6357.

J. K. Patra and K.-H. Baek, “Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential.,” Int. J. Nanomedicine, vol. 10, pp. 7253–64, 2015, doi: 10.2147/IJN.S95483.

C. Jayaseelan, R. Ramkumar, A. A. Rahuman, and P. Perumal, “Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity,” Ind. Crops Prod., vol. 45, pp. 423–429, 2013, doi: 10.1016/j.indcrop.2012.12.019.

T. Y. Suman, S. R. Radhika Rajasree, R. Ramkumar, C. Rajthilak, and P. Perumal, “The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 118, pp. 11–16, 2014, doi: 10.1016/j.saa.2013.08.066.

B. Nagaraj et al., “Synthesis of plant mediated gold nanoparticles using flower extracts of Carthamus tinctorius L. (safflower) and evaluation of their biological activities,” Dig. J. Nanomater. Biostructures, vol. 7, no. 3, pp. 1289–1296, 2012.

R. Radha, M. Murugalakshmi, and S. Kokila, “Eco friendly synthesis and characterization of Gold Nanoparticles from Bauhinia purpurea flower extract,” Imp. J. Interdiscip. Res., vol. 2, no. 6, pp. 306–310, 2016.

J. Preeti, M. Ashish, S. Swati, and S. R. Anita, “Alhagi maurorum flower extract mediated novel synthesis of gold nanoparticles,” vol. 2017, no. 1, pp. 225–229, 2017.

M. Rinnerthaler, J. Bischof, M. K. Streubel, A. Trost, and K. Richter, “Oxidative stress in aging human skin,” Biomolecules, vol. 5, no. 2, pp. 545–589, 2015, doi: 10.3390/biom5020545.

R. Rungruang, W. Ratanathavorn, N. Boohuad, O. Selamassakul, and N. Kaisangsri, “Antioxidant and anti-aging enzyme activities of bioactive compounds isolated from selected Zingiberaceae plants,” Agric. Nat. Resour., vol. 55, pp. 153–160, 2021, doi: 10.34044/j.anres.2021.55.1.20.

Y. Zhu et al., “Antioxidant and anti-aging activities of polysaccharides from Cordyceps cicadae,” Int. J. Biol. Macromol., vol. 157, pp. 394–400, 2020, doi: 10.1016/j.ijbiomac.2020.04.163.

K. Tahir et al., “Nerium oleander leaves extract mediated synthesis of gold nanoparticles and its antioxidant activity,” Mater. Lett., vol. 156, pp. 198–201, 2015, doi: 10.1016/j.matlet.2015.05.062.

N. Basavegowda, A. Idhayadhulla, and Y. R. Lee, “Phyto-synthesis of gold nanoparticles using fruit extract of Hovenia dulcis and their biological activities,” Ind. Crops Prod., vol. 52, pp. 745–751, 2014, doi: 10.1016/j.indcrop.2013.12.006.

K. Adavallan, N. R. Prasad, and N. Krishnakumar, “Antioxidant and Antifungal Potential of Morus Alba Leaf Extract Mediated Synthesis of Gold Nanoparticles,” vol. 3, no. 6, pp. 67–74, 2015.

I. Chiorean, “Statistical aspects on the usage of some dermatological creams with metallic nanoparticles,” vol. 60, no. 2, pp. 311–317, 2015.

P. Singh et al., “In vitro anti-inflammatory activity of spherical silver and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata: a green synthetic approach,” Artif. Cells, Nanomedicine Biotechnol., vol. 0, no. 0, pp. 1–11, 2017, doi: https://doi.org/10.1080/21691401.2017.1408117.

U. Murad, Barkatullah, S. Khan, M. Ibrar, S. Ullah, and U. Khattak, “Synthesis of silver and gold nanoparticles from leaf of Litchi chinensis and its biological activities,” Asian Pac. J. Trop. Biomed., 2018, doi: 10.4103/2221-1691.227995.

S. Senthilkumar, L. Kashinath, M. Ashok, and A. Rajendran, “Antibacterial Properties and Mechanism of Gold Nanoparticles Obtained from Pergularia Daemia Leaf Extract,” J. Nanomedicine Res., vol. 6, no. 1, pp. 1–5, 2017, doi: 10.15406/jnmr.2017.06.00146.

Y. Rao, G. K. Inwati, and M. Singh, “Green synthesis of capped gold nanoparticles and their effect on Gram-positive and Gram-negative bacteria,” Futur. Sci. OA, vol. 3, no. September, 2017, doi: 10.4155/fsoa-2017-0062.

P. Daisy and K. Saipriya, “Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus,” Int. J. Nanomedicine, vol. 7, pp. 1189–1202, 2012, doi: 10.2147/IJN.S26650.

S. Patra, S. Mukherjee, A. K. Barui, A. Ganguly, B. Sreedhar, and C. R. Patra, “Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics,” Mater. Sci. Eng. C, vol. 53, pp. 298–309, 2015, doi: 10.1016/j.msec.2015.04.048.

M. S. Bangale, S. S. Mitkare, S. G. Gattani, and D. M. Sakarkar, “Recent nanotechnological aspects in cosmetics and dermatological preparations,” Int. J. Pharm. Pharm. Sci., vol. 4, no. 2, pp. 88–97, 2012.

G. Sonavane, K. Tomoda, A. Sano, H. Ohshima, H. Terada, and K. Makino, “In vitro permeation of gold nanoparticles through rat skin and rat intestine: Effect of particle size,” Colloids Surfaces B Biointerfaces, vol. 65, no. 1, pp. 1–10, 2008, doi: 10.1016/j.colsurfb.2008.02.013.

A. Lohani, A. Verma, H. Joshi, N. Yadav, and N. Karki, “Nanotechnology-based cosmeceuticals.,” ISRN Dermatol., vol. 2014, pp. 1–14, 2014, doi: 10.1155/2014/843687.

Published

2021-05-13

How to Cite

Siti Nur Khairunisa binti Mohd Amir, Mariam Firdhaus binti Mad Nordin, Kamyar Shameli, & Mariani Abdul Hamid. (2021). Gold Nanoparticles from Plant Materials: Green Extraction, Biological Synthesis and Its Beneficials Properties for Cosmeceutical Applications. Journal of Research in Nanoscience and Nanotechnology, 2(1), 12–29. https://doi.org/10.37934/jrnn.2.1.1229
سرور مجازی ایران Decentralized Exchange

Issue

Section

Topical Reviews

Most read articles by the same author(s)

<< < 1 2 
فروشگاه اینترنتی