Paper Waste Co-Digestion, Combined Milling, and Hydrothermal Pretreatment for Improved Biogas Production

Authors

  • Utibe Ofon (1) Department of Microbiology, University of Uyo, Uyo, Nigeria; (2) International Center for Energy and Environmental Sustainability Research, Uyo, Akwa Ibom State, Nigeria
  • Uduak Ndubuisi-Nnaji Department of Microbiology, University of Uyo, Uyo, Nigeria
  • Anthony Adegoke Department of Microbiology, University of Uyo, Uyo, Nigeria
  • Favour Jackson Department of Microbiology, University of Uyo, Uyo, Nigeria
  • Mboutidem Ekaette Department of Microbiology, University of Uyo, Uyo, Nigeria

DOI:

https://doi.org/10.37934/progee.30.1.3344

Keywords:

Co-digestion , Hydrothermal, Combined pretreatment, Paper waste, Chicken manure, Biogas yield

Abstract

This research, conducted in two experiments, focused on the effect of co-digestion and combined hydrothermal with milling pretreatment of paper waste (PW) and chicken manure (CM) on biogas production. In the first experiment, three reactors labeled B-D contained varying ratios of the feedstock (4:1, 3:2, 1:1) with control reactors A and E respectively containing milled paper waste (MPW) and chicken manure (CM) alone were prepared and assessed for biogas production. In the second experiment, the optimum co-digested mixture (reactor D) with a ratio of 1:1 and cumulative biogas volume (633.5mL/gVS) was selected from the first experiment and duplicated (reactor F) for the hydrothermal pretreatment. All digesters were operated at a temperature of 45oC for 32 days. The results revealed that reactor F, which contained the hydrothermally pretreated paper waste, showed a significant cumulative biogas yield of 1095.5 mL/gVS which was 1.7 times higher, surpassing control reactor D with a yield of 633.5 mL/gVS. Bacterial isolates present in the substrates and inoculum belonged to the following genera: Staphylococcus (50%), Lactobacillus (22.2%), Micrococcus (16.7%), and Bacillus (11.1%). The research outcome showed that co-digestion combined with hydrothermal pretreatment method led to enhanced biogas production. These results highlight how creative pretreatment methods can optimize waste-to-energy operations, supporting both renewable energy production and sustainable waste management.

References

N. Mohammad, W.W. Mohamad Ishak, S.I. Mustapa, B.V. Ayodele, Natural gas as a key alternative energy source in sustainable renewable energy transition: a mini-review, Frontiers in Energy Research 9 (2021) 6-23. https://doi.org/10.3389/fenrg.2021.625023

C. Gursan, V. de Gooyert, The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition? Renewable and Sustainable Energy Reviews 138 (2021) 110-552. https://doi.org/10.1016/j.rser.2020.110552

A.M. Azam Rafiq, M. Shafique, J. Yuan, Renewable electricity generation and economic growth nexus in developing countries: An ARDL approach, Economic Research-Ekonomska Istrazivanja 34(1) (2021) 2423-2446. https://doi.org/10.1080/1331677X.2020.1865180

R. Kumar, R. Jilte, M.H. Ahmadi, Electricity alternative for e-rickshaws: an approach towards green city, International Journal of Intelligent Enterprise 5(4) (2018) 333-344.

https://doi.org/10.1504/IJIE.2018.095721

S. Achinas, V. Achinas, G.J.W. Euverink, A technological overview of biogas production from biowaste, Engineering 3(3) (2017) 299 -307. https://doi.org/10.1016/J.ENG.2017.03.002

M. Laiq Ur Rehman, A. Iqbal, C.C. Chang, W. Li, M. Ju, Anaerobic digestion, Water Environment Research 91(10) (2019) 1253-1271. https://doi.org/10.1002/wer.1219

H.K. Jeswani, A. Whiting, A. Martin, A. Azapagic, Environmental and economic sustainability of poultry litter gasification for electricity and heat generation, Waste Management 95 (2019) 182-191. https://doi.org/10.1016/j.wasman.2019.05.053

S. Saini, P. Chutani, P. Kumar, K.K. Sharma, Development of an eco-friendly deinking process for the production of bioethanol using diverse hazardous paper wastes, Renewable Energy 146 (2020) 2362-2373. https://doi.org/10.1016/j.renene.2019.08.087

A. Abraham, A.K. Mathew, H. Park, O. Choi, R. Sindhu, B. Parameswaran, B.I. Sang, Pretreatment strategies for enhanced biogas production from lignocellulosic biomass, Bioresource Technology 301 (2020) 122-725. https://doi.org/10.1016/j.biortech.2019.122725

B. Ahmed, K. Aboudi, V.K. Tyagi, C.J. Alvarez-Gallego, L.A. Fernandez-Guelfo, L.I. Romero-Garcia, A. A. Kazmi, Improvement of anaerobic digestion of lignocellulosic biomass by hydrothermal pretreatment, Applied Sciences 9(18) (2019) 38-53. https://doi.org/10.3390/app9183853

A. Singh, M. L. Tsai, C. W. Chen, R. R. Singhania, A. K. Patel, V. Tambat, C. D. Dong, Role of hydrothermal pretreatment towards sustainable biorefinery, Bioresource Technology 367 (2023) 128271. https://doi.org/10.1016/j.biortech.2022.128271

T. Kunatsa, X. Xia, A review on anaerobic digestion with focus on the role of biomass co-digestion, modelling and optimisation on biogas production and enhancement, Bioresource Technology 344 (2022) 126-311. https://doi.org/10.1016/j.biortech.2021.126311

R. Karki, W. Chuenchart, K.C. Surendra, S. Shrestha, L. Raskin, S. Sung, S.K. Khanal, Anaerobic co-digestion: Current status and perspectives. Bioresource Technology 330 (2021) 100-125. https://doi.org/10.1016/j.biortech.2021.125001

W. Li, M.A.H. Siddhu, F.R. Amin, Y. He, R. Zhang, G. Liu, C. Chen, Methane production through anaerobic co-digestion of sheep dung and waste paper, Energy Conversion and Management 156 (2018) 279-287. https://doi.org/10.1016/j.enconman.2017.08.002

Y. Qin, J. Wu, B. Xiao, T. Hojo, Y.Y. Li, Biogas recovery from two-phase anaerobic digestion of food waste and paper waste: Optimization of paper waste addition, Science of The Total Environment 634 (2018) 1222-1230. https://doi.org/10.1016/j.scitotenv.2018.03.341

H. Abushammala, M. A. Masood, S. T. Ghulam, J. Mao, On the conversion of paper waste and rejects into high-value materials and energy, Sustainability 15(8) (2023) 6915. https://doi.org/10.3390/su15086915

S. A. M. Johari, A. Aqsha, M. R. Shamsudin, M. K. Lam, N. Osman, M. Tijani, Technical trends in biogas production from chicken manure, in: Manure Technology and Sustainable Development, 2023, pp. 145-182, Singapore: Springer Nature Singapore.

C. Rodriguez, A. Alaswad, Z. El-Hassan, A.G. Olabi, Waste paper and macroalgae co-digestion effect on methane production, Energy 154 (2018) 119-125. https://doi.org/10.1016/j.energy.2018.04.115

U.A. Ofon, U.U. Ndubuisi-Nnaji, S.E. Shaibu, O. K. Fatunla, N. A. O. Offiong, Recycling anaerobic digestate enhances the co-digestion potential of agro-industrial residues: influence of different digestates as sources of microbial inoculum, Environmental Technology 43(28) (2022) 4472-4483. https://doi.org/10.1080/09593330.2021.1952313

U.U. Ndubuisi-Nnaji, U.A. Ofon, N.U. Asamudo, V.M. Ekong, Enhanced biogas and biofertilizer production from anaerobic co-digestion of harvest residues and goat manure, Journal of Scientific Research and Reports 26(3) (2020) 1-13. https://doi.org/10.9734/jsrr/2020/v26i330231

M. Hakimi, M.D. Manogaran, R., Shamsuddin, S.A.M. Johari, M.A.M. Hassan, T. Soehartanto, Co-anaerobic digestion of sawdust and chicken manure with plant herbs: Biogas generation and kinetic study, Heliyon 9(6) (2023) 17-96. https://doi.org/10.1016/j.heliyon.2023.e17096

AOAC, Official Methods of Analysis of AOAC International, 20th ed. Gaithersburg, MD, USA: AOAC International, 2016, p. 3172.

A.M. Mansor, J.S. Lim, F.N. Ani, H. Hashim, W.S. Ho, Characteristics of cellulose, hemicellulose and lignin of MD2 pineapple biomass, Chemical Engineering Transactions 72 (2019) 79-84. https://doi.org/10.3303/CET1972014.

P. Belibagli, H. E. G. Akbay, S. Arslan, B. Mazmanci, N. Dizge, N. Senthilkumar, D. Balakrishnan, Enhanced biogas yield in anaerobic digestion of citric acid wastewater by pre-treatment: The effect of calcium hydroxide precipitation and electrocoagulation process, Process Safety and Environmental Protection 184 (2024) 1344-1356. https://doi.org/10.1016/j.psep.2024.02.050

I. Owusu-Agyeman, E. Plaza, Z. Cetecioglu, Production of volatile fatty acids through co-digestion of sewage sludge and external organic waste: Effect of substrate proportions and long-term operation, Waste Management 112 (2020) 30-39. https://doi.org/10.1016/j.wasman.2020.05.027

N.R. Sonone, S.D. Chavan, M.U. Tanpure, Analysis of Proximate Principles of Feeds and Fodders, International Journal of Current Microbiology and Applied Science 7(8) (2018) 678-683. https://doi.org/10.20546/ijcmas.2018.708.073

U.A. Ofon, U. U. Ndubuisi-Nnaji, I.M. Udo, E.S. Udofia, O.K. Fatunla, S.E. Shaibu, Biogas production potential from anaerobic co-digestion of food waste and animal manure, Journal of Chemical Society of Nigeria 49(1) (2024). https://doi.org/10.46602/jcsn.v49i1.949

M. Cheesbrough, District laboratory practice in tropical countries, Part 2, Cambridge University Press, 2005.

R. D. Holt, On the evolutionary ecology of species’ ranges, Evolutionary Ecology Research 5(2) (2003) 159-178.

Y. Xue, Q. Li, Y. Gu, H. Yu, Y. Zhang, X. Zhou, Improving biodegradability and biogas production of miscanthus using a combination of hydrothermal and alkaline pretreatment, Industrial Crops and Products 144 (2020) 111-985. https://doi.org/10.1016/j.indcrop.2019.111985

C. Li, G. Zhang, Z. Zhang, D. Ma, L. Wang, G. Xu, Hydrothermal pretreatment for biogas production from anaerobic digestion of antibiotic mycelial residue, Chemical Engineering Journal 279 (2015) 530-537. https://doi.org/10.1016/j.cej.2015.05.073

I. Cybulska, G. Brudecki, H. Lei, Hydrothermal pretreatment of lignocellulosic biomass, Green biomass pretreatment for biofuels production, 27 (2013) 87-106. https://doi.org/10.1007/978-94-007-6052-3_4

T. Zhang, L. Liu, Z. Song, G. Ren, Y. Feng, X. Han, G. Yang, Biogas production by co-digestion of goat manure with three crop residues, PloS One 8(6) (2013) 66-84.

https://doi.org/10.1371/journal.pone.0066845

S. Mirmohamadsadeghi, K. Karimi, R. Azarbaijani, L.P. Yeganeh, I. Angelidaki, A.S. Nizami, M. Tabatabaei, Pretreatment of lignocelluloses for enhanced biogas production: A review on influencing mechanisms and the importance of microbial diversity, Renewable and Sustainable Energy Reviews 135 (2021) 110-173. https://doi.org/10.1016/j.rser.2020.110173

M.A. Islam, P. Biswas, A.A.M. Sabuj, Z.F. Haque, C.K. Saha, M.M. Alam, S. Saha, Microbial load in bio-slurry from different biogas plants in Bangladesh, Journal of Advanced Veterinary and Animal Research 6(3) (2019) 376-394. https://doi.org/10.5455/javar.2019.f357

S. Zhao, W. Chen, W. Luo, H. Fang, H. Lv, R. Liu, Q. Niu, Anaerobic co-digestion of chicken manure and cardboard waste: Focusing on methane production, microbial community analysis and energy evaluation. Bioresource Technology 321 (2021) 124429. https://doi.org/10.1016/j.biortech.2020.124429

M. Hassan, S.F.B. Masud, M. Anwar, C. Zhao, R.S. Singh, E. Mehryar, Methane enhancement by the co-digestion of thermochemical alkali solubilized rice husk and cow manure: Lignocellulosics decomposition perspectives, Biomass Conversion and Biorefinery 13(15) (2023) 13963-13975.

https://doi.org/10.1007/s13399-022-02310-w

B. Shamurad, P. Sallis, E. Petropoulos, S. Tabraiz, C. Ospina, P. Leary, N. Gray, Stable biogas production from single-stage anaerobic digestion of food waste, Applied energy 263 (2020) 114609.

https://doi.org/10.1016/j.apenergy.2020.114609

C.O. Adetunji, O.T. Olaniyan, A. Varma, Novel microorganisms involved in the production of sustainable biogas production. In: Mahajan, S. and Varma, A. (editors), Animal Manure: Agricultural and Biotechnological Applications (2022) pp. 123-130. https://doi.org/10.1007/978-3-030-97291-2_7

M. Ferdes, M.N.G. Dinca,Moiceanu, B.S. Zabava, G. Paraschiv, Microrganisms and enzymes used in the biological pretreatment of the substrate to enhance biogas production: A review, Sustainability, 12(17) (2020) 72-80. https://doi.org/10.3390/su12177205

M.O. Arekemase, I. Aweda, Production of Biogas from Mono-and Co-Digestion of Agricultural Waste (Cow Dung, Chicken Dropping, and Rice Husk), Iraqi Journal of Science 62(1) (2021) 45-60. https://doi.org/10.24996/ijs.2021.62.1.5

B. de Diego-Diaz, J. Fernandez-Rodriguez, A.I. Vitas, F.J. Penas, Biomethanization of solid wastes from the alcoholic beverage industry: malt and sloe. Kinetic and microbiological analyses, Chemical Engineering Journal 33(2) (2016) 274-315. https://doi.org/10.1016/j.cej.2017.10.075

Abstract

Downloads

Published

2025-02-02

How to Cite

[1]
U. Ofon, U. . Ndubuisi-Nnaji, A. Adegoke, F. Jackson, and M. Ekaette, “Paper Waste Co-Digestion, Combined Milling, and Hydrothermal Pretreatment for Improved Biogas Production”, Prog. Energy Environ., vol. 30, pp. 33–44, Feb. 2025.
سرور مجازی ایران Decentralized Exchange

Issue

Section

Original Article
فروشگاه اینترنتی