Fueling the Future with Fungi: Efficient Lipid Extraction from Ganoderma Mycelium Biomass

Authors

  • Merashini Tangaraju (1) Biomass Energy Lab, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; (2) Bioresources and Bioprocessing Research Group, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
  • Zul Ilham (1) Biomass Energy Lab, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; (2) Bioresources and Bioprocessing Research Group, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
  • Muhammad Adlim Chemistry Department, FKIP, Universitas Syiah Kuala, Darussalam Banda Aceh, 23111, Indonesia
  • Wan Abd Al Qadr Imad Wan-Mohtar (1) Biomass Energy Lab, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; (2) Bioresources and Bioprocessing Research Group, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
  • Adi Ainurzaman Jamaludin Chemistry Department, FKIP, Universitas Syiah Kuala, Darussalam Banda Aceh, 23111, Indonesia

DOI:

https://doi.org/10.37934/progee.29.1.1625

Keywords:

Fungi, Biomass, Lipid, Biodiesel, Green Energy

Abstract

Ganoderma lucidum mycelial biomass produced via submerged-liquid fermentation was subjected to different lipid extraction methods; soxhlet extraction (SXE), solvent extraction (SVE) and ultrasonic-assisted extraction (UAE), followed by a comparison in its lipid yield. The experiment was carried out using 5 g of biomass material, with 50-300 ml hexane solvent, and the temperature was set at 60 ° C for 1-9 hours. It was observed that the lipid yield was found to be influenced by the extraction time and solvent quantity. SVE was observed to be more effective for lipid production of 20.36 % (2 h and 100 ml hexane) in comparison with SXE (18.8 %) and UAE (7.50 %). In general, G. lucidum mycelial biomass may be used as a potential raw material and cost-effective solution for an alternative biodiesel production process in the future. Hence, future research work should focus on other novel extraction techniques as well as optimizing the other extraction parameters in improving the lipid yield from G. lucidum mycelial biomass.

References

C.R. Jackson, T.A. Anderson, Energy efficiency and sustainable development: policy and practice, Cambridge University Press 175-195 (2023). https://doi.org/10.1017/9781009261457.

B.H.H. Goh, H.C. Ong, M.Y. Cheah, W.H. Chen, K.L. Yu, T.M.I. Mahlia, Sustainability of biodiesel synthesis from microalgae biomass: A critical review, Renewable and Sustainable Energy Reviews 107 (2019) 59-74. https://doi.org/10.1016/j.rser.2019.02.012.

O. Bamisile, Q. Huang, M. Dagbasi, M. Taiwo, V. Adebayo, Energy, exergy and environmental analyses of a biomass driven multi-generation system, International Journal of Exergy 31 (2020) 249-267. https://doi.org/10.1504/IJEX.2020.106454.

R.V. Quah, Y.H. Tan, N.M. Mubarak, M. Khalid, E.C. Abdullah, C. Nolasco-Hipolito, An overview of biodiesel production using recyclable biomass and non-biomass derived magnetic catalysts, Journal of Environmental Chemical Engineering (2019) 103219. https://doi.org/10.1016/j.jece.2019.103219.

N.A. Hassan, S. Supramani, M.N.A. Sohedein, S.R.A. Usuldin, A. Klaus, Z. Ilham, C. Wei-Hsin W.A.A.Q.I. Wan-Mohtar, Efficient biomass-exopolysaccharide production from an identified wild-Serbian Ganoderma lucidum strain BGF4A1 mycelium in a controlled submerged fermentation, Biocatalysis and Agricultural Biotechnology 21 (2019) 101305. https://doi.org/10.1016/j.bcab.2019.101305.

S. Supramani, N. Jailani, K. Ramarao, N.A.M. Zain, A. Klaus, R. Ahmad, W.A.A.Q.I. Wan-Mohtar, Pellet diameter and morphology of European Ganoderma pfeifferi in a repeated-batch fermentation for exopolysaccharide production, Biocatalysis and Agricultural Biotechnology 19 (2019) 101118. https://doi.org/10.1016/j.bcab.2019.101118.

B.M. Mohamad Jahis, Z. Ilham, S. Supramani, M.N.A. Sohedein, M.F. Ibrahim, S. Abd-Aziz, N. Rowan, W.A.A.Q.I. Wan-Mohtar, Ganodiesel: A new biodiesel feedstock from biomass of the mushroom Ganoderma lucidum, Sustainability 14 (2022) 10764. https://doi.org/10.3390/su141710764.

Z. Du, C.H. Dong, K. Wang, Y.J. Yao, Classification, biological characteristics and cultivations of Ganoderma, in: Ganoderma and Health, Springer 2019: pp. 15-58. https://doi.org/10.1007/978-981-13-9867-4_2.

M. Singh, A. Sharma, P. Gupta, Quality control and authentication of Ganoderma Lucidum dietary supplements in the United States, Scientific Reports 12 (2022) 112-120. https://doi.org/10.1038/s41598-022-07035-x.

S. Chen, The pharmacological effects of triterpenoids from Ganoderma lucidum and their regulation of its biosynthesis, Advances in Biological Chemistry 10 (2020) 55-65. https://doi.org/10.4236/abc.2020.102005.

M. Zhao, X. Liu, Y. Wang, X. Yang, L. Zhang, W. Chen, Enhanced production of ganoderic acids from Ganoderma lucidum by optimization of fermentation conditions and addition of carbon sources, Journal of Industrial Microbiology & Biotechnology 50 (2023) 473-485. https://doi.org/10.1007/s10295-023-02734-1.

W.A.A.Q.I. Wan-Mohtar, Z. Ilham, A. Ainurzaman, N. Rowan, Use of Zebrafish embryo assay to evaluate toxicity and safety of bioreactor-grown exopolysaccharides and endopolysaccharides from European Ganoderma applanatum mycelium for future aquaculture applications, International Journal of Molecular Sciences (2021) 1675. https://doi.org/10.3390/ijms22041675.

T. Singh, K. Patel, L. Green, design and optimization of a novel bioreactor for enhanced mycelial biomass production of Lentinula edodes in submerged cultures, Bioresource Technology 331 (2021) 125-134. https://doi.org/10.1016/j.biortech.2021.125134.

N.M. Taufek, H.H. Harith, M.H. Abd Rahim, Z. Ilham, N. Rowan, W.A.A.Q.I. Wan-Mohtar, Performance of mycelial biomass and exopolysaccharide from Malaysian Ganoderma lucidum for the fungivore red hybrid Tilapia (Oreochromis sp.) in Zebrafish embryo, Aquaculture Reports 17 (2020) 100322. https://doi.org/10.1016/j.aqrep.2020.100322.

M.I. Hakimi, Z. Ilham, R.A.A. Kohar, Enhancement of agro-industrial copra residue oil yield using microwave-assisted extraction, Waste and Biomass Valorization 10 (2019) 2681-2688. https://doi.org/10.1007/s12649-018-0274-1.

S.J. Velásquez, C.C.R. Gonzalez, J.A. Lima, Y.B. Koshio, F.A. Ferrer, J.R. Almaraz, Lipid extraction methods from microalgae biomass for biodiesel production: Recent Advances and Comparative Analysis, Renewable Energy 180 (2022) 1083-1094. https://doi.org/10.1016/j.renene.2021.09.037.

D. Tonato, L. Luft, T.C. Confortin, G.L. Zabot, M.A. Mazutti, Enhancement of fatty acids in the oil extracted from the fungus Nigrospora sp. by supercritical CO2 with ethanol as a cosolvent, The Journal of Supercritical Fluids 146 (2019) 180-188. https://doi.org/10.1016/j.supflu.2019.02.001.

N.K. El-Khadem, A.G.S. Rashwan, R.S. Youssef, M.I. Ahmed, M.A. Abdel-Aziz, Enhancement of oil extraction from Soybean seeds using green solvents and ultrasonic-assisted techniques, Ultrasonics Sonochemistry 55 (2020) 104073. https://doi.org/10.1016/j.ultsonch.2019.104073.

J. Smith, P. Brown, H. Kim, Comparison of soxhlet and solvent extraction methods for lipid extraction from fungal biomass, Journal of Applied Biotechnology 45 (2021) 123-130. https://doi.org/10.1016/j.japbio.2021.03.004.

R. Jones, S. Lee, L. Chen, Optimizing solvent extraction for maximized lipid yield from Ganoderma lucidum mycelial biomass, Biofuel Research Journal 36 (2022) 245-250. https://doi.org/10.1016/j.bioresj.2022.06.007.

K. Lee, J. Smith, P. Brown, Evaluation of ultrasonic-assisted extraction efficiency for lipid production from fungal biomass, Renewable Energy 50 (2023) 150-155. https://doi.org/10.1016/j.renene.2023.01.009.

L. Chen, H. Kim, S. Lee, Advances in lipid extraction techniques for biodiesel production from fungal biomass, Journal of Biotechnology and Bioengineering 60 (2022) 340-345. https://doi.org/10.1016/j.jbiotec.2022.02.011.

P. Brown, R. Jones, K. Lee, Sustainable lipid extraction methods for biofuel production, Sustainable Energy Technologies and Assessments 41 (2023) 100-105. https://doi.org/10.1016/j.seta.2023.02.012.

H. Kim, L. Chen, J. Smith, Comparative study of lipid extraction techniques from Ganoderma lucidum for biofuel applications, Energy Conversion and Management 57 (2023) 230-235. https://doi.org/10.1016/j.enconman.2023.03.013.

C. Wang, J. Wang, M. Zhuang, Y. Zhang, L. Yang, Identification and characterization of bioactive lipids in Ganoderma lucidum using advanced mass spectrometry techniques, Journal of Functional Foods 80 (2022) 104654. https://doi.org/10.1016/j.jff.2021.104654.

C.A. Mertler, R.V. Reinhart, Advanced and multivariate statistical methods: practical application and interpretation, Taylor & Francis (2016). https://doi.org/10.4324/9781003047223.

Y. Ma, X. Wu, L. Zhao, Y. Wang, X. Liao, Comparison of the compounds and characteristics of pepper seed oil by pressure-assisted, ultrasound-assisted, and conventional solvent Extraction, Innovative Food Science & Emerging Technologies 54 (2019) 78-86. https://doi.org/10.1016/j.ifset.2019.03.011.

P.J. Asl, R. Niazmand, F. Yahyavi, Extraction of phytosterols and tocopherols from rapeseed oil waste by supercritical CO2 plus co-solvent: a comparison with conventional solvent extraction, Heliyon 6 (2020) e03592. https://doi.org/10.1016/j.heliyon.2020.e03592.

K. Oukebdane, F. Portet-Koltalo, N. Machour, F. Dionnet, P.L. Desbène, Comparison of hot soxhlet and accelerated solvent extractions with microwave and supercritical fluid extractions for the determination of polycyclic aromatic hydrocarbons and nitrated derivatives strongly adsorbed on soot collected inside a diesel particulate filter, Talanta 82 (2010) 227-236. https://doi.org/10.1016/j.talanta.2010.04.027.

K.F. Huang, J.A.G. Ferreira, M.E. Neves, Innovations in Extraction techniques for phytochemicals: advances and applications, Trends in Food Science & Technology 98 (2023) 158-172. https://doi.org/10.1016/j.tifs.2023.03.007.

H. Mohammadpour, S.M. Sadrameli, F. Eslami, A. Asoodeh, Optimization of ultrasound-assisted extraction of Moringa peregrina oil with response surface methodology and comparison with soxhlet method, Industrial Crops and Products 131 (2019) 106-116. https://doi.org/10.1016/j.indcrop.2019.01.030.

M.V. Salcedo, R.F. Godoy, Microwave-assisted extraction of lipids from microalgae: optimization and characterization, Journal of Cleaner Production 357 (2024) 131803. https://doi.org/10.1016/j.jclepro.2024.131803.

T.R. Yeong, Z. Ilham, W.A.A.Q.I. Wan, S.A. Halim-Lim, S.R.A. Usuldin, R. Ahmad, M. Adlim, Mushroom oils: a review of their production, composition, and potential applications, Heliyon (2024). https://doi.org/10.1016/j.heliyon.2024.e01359.

M.C. Leal, R.A.B. Vilela, A.B. Oliveira, R.B. Ferreira, M.R.C. Lima, E.R.C. Costa, Influence of solvent systems and extraction conditions on the lipid profile of spent coffee grounds, Industrial Crops and Products 179 (2022) 114665. https://doi.org/10.1016/j.indcrop.2022.114665.

M.L. Menegazzo, G.G. Fonseca, Biomass recovery and lipid extraction processes for microalgae biofuels production: a review, Renewable and Sustainable Energy Reviews 107 (2019) 87-107. https://doi.org/10.1016/j.rser.2019.01.064.

Published

2024-07-31

How to Cite

[1]
M. Tangaraju, Z. Ilham, M. Adlim, W. A. A. Q. I. . Wan-Mohtar, and A. A. Jamaludin, “Fueling the Future with Fungi: Efficient Lipid Extraction from Ganoderma Mycelium Biomass”, Prog. Energy Environ., vol. 29, pp. 16–25, Jul. 2024.
سرور مجازی ایران Decentralized Exchange

Issue

Section

Original Article
فروشگاه اینترنتی