Efficient Methylene Blue Dye Removal using Hybrid ZnO/Co/Cs Photocatalyst Beads
DOI:
https://doi.org/10.37934/progee.27.1.110Keywords:
Azo dye, Photocatalytic, Zinc oxide, Cobalt, ChitosanAbstract
This study highlighted the developments of the hybrid photocatalytic system for wastewater treatment in the textile industry. Chitosan (Cs) and cobalt (Co) were introduced into the conventional catalyst zinc oxide (ZnO) to form the hybrid photocatalyst beads. Four different weight ratios of ZnO/Cs (1:1) and ZnO/Co/Cs (1:1:1, 1:2:1 and 2:1:1) beads were synthesized by the sol-gel method. The photocatalytic degradation properties of the hybrid ZnO/Co/Cs were investigated under visible light irradiation for methylene blue (MB) photodegradation. The study focused on the effect of ZnO/Co/Cs composition ratio, irradiation time and the amount of catalyst loading in the photoreactor for five hours of exposure time. The result was that the 1:1:1 ZnO/Co/Cs photocatalyst beads had the highest degradation rate compared to the other systems. Adding Co to the ZnO/Cs photocatalyst improved the photocatalytic activity by increasing the decolourization percentage of methylene blue
References
TK Sen, Application of Synthesized Biomass Bamboo Charcoal–Iron Oxide "BC/Fe" Nanocomposite Adsorbents in the Removal of Cationic Methylene Blue Dye Contaminants from Wastewater by Adsorption, Sustainability 15(11) (2023) 8841. https://doi.org/10.3390/su15118841.
H.A. Niaei, M. Rostamizadeh, F. Maasumi, M.J. Darabi, Kinetic, Isotherm, and Thermodynamic Studies of Methylene Blue Adsorption over Metal-doped Zeolite Nano-adsorbent, Physical Chemistry Research 9 (2021) 17–30. https://doi.org/10.22036/pcr.2020.233844.1781.
S.W. Lee, H.C. Han, Methylene Blue Application to Lessen Pain: Its Analgesic Effect and Mechanism, Frontiers in Neuroscience 15 (2021) 663650. https://doi.org/10.3389/fnins.2021.663650.
T. Saeed, A. Naeem, I.U. Din, M. Farooq, I.W. Khan, M. Hamayun, T. Malik, Synthesis of chitosan composite of metal-organic framework for the adsorption of dyes; kinetic and thermodynamic approach, Journal of Hazardous Materials 427 (2022) 127902. https://doi.org/10.1016/j.jhazmat.2021.127902.
P.O. Oladoye, T.O. Ajiboye, E.O. Omotola, O.J. Oyewola, Methylene blue dye: Toxicity and potential elimination technology from wastewater, Results in Engineering 16 (2022) 100678. https://doi.org/10.1016/j.rineng.2022.100678.
T. Saeed, A. Naeem, T. Mahmood, Z. Ahmad, M. Farooq, Farida, I.U. Din, I.W. Khan, Comparative study for removal of cationic dye from aqueous solutions by manganese oxide and manganese oxide composite, International Journal of Environmental Science and Technology 18 (2021) 659–672. https://doi.org/10.1007/s13762-020-02844-4.
Y. Dadban Shahamat, M. Masihpour, P. Borghei, S. Hoda Rahmati, Removal of azo red-60 dye by advanced oxidation process O3/UV from textile wastewaters using Box-Behnken design, Inorganic Chemistry Communication 143 (2022) 109785. https://doi.org/10.1016/j.inoche.2022.109785.
S. Papic, N. Koprivanac, A.L. Bozic, D. Vujevic, S.K. Dragicevic, H. Kusic, I. Peternel, Advanced Oxidation Processes in Azo Dye Wastewater Treatment, Water Environment Research78 (2006) 572–579. https://doi.org/10.2175/106143006x101665.
S. Song, J. Fan, Z. He, L. Zhan, Z. Liu, J. Chen, X. Xu, Electrochemical degradation of azo dye CI Reactive Red 195 by anodic oxidation on Ti/SnO2-Sb/PbO2 electrodes, Electrochimica Acta 55 (2010) 3606–3613. https://doi.org/10.1016/j.electacta.2010.01.101.
M. Pal, A. Shrivastava, R.K. Sharma, Wheat straw-based microbial electrochemical reactor for azo dye decolorization and simultaneous bioenergy generation, Journal of Environmental Management 323 (2022) 116253. https://doi.org/10.1016/j.jenvman.2022.116253.
M.F. Majnis, O.C. Yee, M.A. Mohd Adnan, M.R. Yusof Hamid, K.Z. Ku Shaari, N. Muhd Julkapli, Photoactive of Chitosan-ZrO2/TiO2 thin film in catalytic degradation of malachite green dyes by solar light, Optical Materials 124 (2022) 111967. https://doi.org/10.1016/j.optmat.2022.111967.
N. Muhd Julkapli, S. Bagheri, S. Bee Abd Hamid, Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes, The Scientific World Journal 2014 (2014). https://doi.org/10.1155/2014/692307.
S. Li, S. Shan, S. Chen, H. Li, Z. Li, Y. Liang, J. Fei, L. Xie, J. Li, Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: A review, Journal of Environmental Chemical Engineering 9 (2021) 105967. https://doi.org/10.1016/j.jece.2021.105967.
X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes, Nanoscale Research Letters 12 (2017) 4–13. https://doi.org/10.1186/s11671-017-1904-4.
Y. Lu, Y. Lin, D. Wang, L. Wang, T. Xie, T. Jiang, A high performance cobalt-doped ZnO visible light photocatalyst and its photogenerated charge transfer properties, Nano Research 4 (2011) 1144–1152. https://doi.org/10.1007/s12274-011-0163-4.
M.M. Khan, S.F. Adil, A. Al-Mayouf, Metal oxides as photocatalysts, Journal of Saudi Chemical Society 19 (2015) 462–464. https://doi.org/10.1016/j.jscs.2015.04.003.
G. Sadanandam, K. Lalitha, V.D. Kumari, M. V. Shankar, M. Subrahmanyam, Cobalt doped TiO2: A stable and efficient photocatalyst for continuous hydrogen production from glycerol: Water mixtures under solar light irradiation, International Journal of Hydrogen Energy 38 (2013) 9655–9664. https://doi.org/10.1016/j.ijhydene.2013.05.116.
M.H. Farzana, S. Meenakshi, Exploitation of zinc oxide impregnated chitosan beads for the photocatalytic decolorization of an azo dye, International Journal of Biological Macromolecules 72 (2015) 900–910. https://doi.org/10.1016/j.ijbiomac.2014.09.038.
M. Annaduzzaman, Chitosan biopolymer as an adsorbent for drinking water treatment Investigation on Arsenic and Uranium, 2015.
M. Vakili, M. Rafatullah, B. Salamatinia, A.Z. Abdullah, M.H. Ibrahim, K.B. Tan, Z. Gholami, P. Amouzgar, Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review, Carbohydrate Polymers 113 (2014) 115–130. https://doi.org/10.1016/j.carbpol.2014.07.007.
S. Cinar, U.H. Kaynar, T. Aydemir, S. Cam Kaynar, M. Ayvacikli, An efficient removal of RB5 from aqueous solution by adsorption onto nano-ZnO/Chitosan composite beads, International Journal of Biological Macromolecules 96 (2017) 459–465. https://doi.org/10.1016/j.ijbiomac.2016.12.021.
M.H. Farzana, S. Meenakshi, Visible light-driven photoactivity of zinc oxide impregnated chitosan beads for the detoxification of textile dyes, Applied Catalysis A: General 503 (2015) 124–134. https://doi.org/10.1016/j.apcata.2014.12.034.
D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. Javed Ansari, I.H. Shewael, G.H. Valiev, E. Kianfar, Nanomaterial by Sol-Gel Method: Synthesis and Application, Advances in Materials Science and Engineering 2021 (2021). https://doi.org/10.1155/2021/5102014.
M.C. Garcia, M. Mora, D. Esquivel, J.E. Foster, A. Rodero, C. Jimenez-Sanchidrian, F.J. Romero-Salguero, Microwave atmospheric pressure plasma jets for wastewater treatment: Degradation of methylene blue as a model dye, Chemosphere 180 (2017) 239–246. https://doi.org/https://doi.org/10.1016/j.chemosphere.2017.03.126.
X. Guo, Z. Ma, Y. Yuan, Y. Kang, H. Xu, Z. Mao, Y. Ma, Photoinduced Absorption Spectroscopy of Photoelectrocatalytic Methylene Blue Oxidation on Titania and Hematite: The Thermodynamic and Kinetic Impacts on Reaction Pathways, Advanced Science 10 (2023) 1–11. https://doi.org/10.1002/advs.202206685.
R. Ballesteros-Garrido, R. Adam, Zinc Oxide (ZnO): an Amphoteric Metal Oxide with Dehydrogenating Activity, SynOpen 07 (2023) 142–144. https://doi.org/10.1055/a-2063-4007.
A. Jaswal, K. Kishore, A. Singh, J. Singh, S. Dixit, K. Kumar, M.K. Sinha, Synthesis and Characterization of Highly Transparent and Superhydrophobic Zinc Oxide (ZnO) Film, in: C. Prakash, S. Singh, G. Krolczyk (Eds.), Adv. Funct. Smart Mater., Springer Nature Singapore, Singapore, 2023: pp. 119–127.
I. Bilican, S. Pekdemir, M.S. Onses, L. Akyuz, E.M. Altuner, B. Koc-Bilican, L.-S. Zang, M. Mujtaba, P. Mulercikas, M. Kaya, Chitosan Loses Innate Beneficial Properties after Being Dissolved in Acetic Acid: Supported by Detailed Molecular Modeling, ACS Sustainable Chemistry & Engineering 8 (2020) 18083–18093. https://doi.org/10.1021/acssuschemeng.0c06373.
P. Wulan, Y. Kusumastuti, A. Prasetya, Removal of Fe (II) from Aqueous Solution by Chitosan Activated Carbon Composite Beads, in: Ind. Waste Management, Trans Tech Publications Ltd, 2020: pp. 3–8. https://doi.org/10.4028/www.scientific.net/AMM.898.3.
A.M. Gueli, G. Bonfiglio, S. Pasquale, S.O. Troja, Effect of particle size on pigments colour, Color Research & Application 42 (2017) 236–243. https://doi.org/10.1002/col.22062.
B. Vaseeharan, J. Sivakamavalli, R. Thaya, Synthesis and characterization of chitosan-ZnO composite and its antibiofilm activity against aquatic bacteria, Journal of Composite Materials 49 (2015) 177–184. https://doi.org/10.1177/0021998313515289.
V. Gandhi, R. Ganesan, H.H. Abdulrahman Syedahamed, M. Thaiyan, Effect of Cobalt Doping on Structural, Optical, and Magnetic Properties of ZnO Nanoparticles Synthesized by Coprecipitation Method, The Journal of Physical Chemistry C 118 (2014) 9715–9725. https://doi.org/10.1021/jp411848t.
S. Chen, K. Zhang, Z. Li, Y. Wu, B. Zhu, J. Zhu, Hydrogen-bonded supramolecular adhesives: Synthesis, responsiveness, and application, Supramolecular Materials 2 (2023) 100032. https://doi.org/10.1016/j.supmat.2023.100032.
Z. Zhu, Y. Niu, S. Wang, M. Su, Y. Long, H. Sun, W. Liang, A. Li, Magnesium hydroxide coated hollow glass microspheres/chitosan composite aerogels with excellent thermal insulation and flame retardancy, Journal of Colloid and Interface Science 612 (2022) 35–42. https://doi.org/10.1016/j.jcis.2021.12.138.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Progress in Energy and Environment
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.