Evacuated Tubes Solar Air Collectors: A Review on Design Configurations, Simulation Works and Applications

Authors

  • Nabila Sulaiman Correspondence: Department of Mechanical Engineering, Kulliyyah of Engineering, International Islamic University Malaysia (IIUM), Gombak, 53100 Kuala Lumpur, Malaysia | nabilaiium@gmail.com https://orcid.org/0000-0002-1982-7038
  • Sany Izan Ihsan Department of Mechanical Engineering, Kulliyyah of Engineering, International Islamic University Malaysia (IIUM), Gombak, 53100 Kuala Lumpur, Malaysia https://orcid.org/0000-0002-5171-6338
  • Syed Noh Syed Abu Bakar Department of Mechanical Engineering, Kulliyyah of Engineering, International Islamic University Malaysia (IIUM), Gombak, 53100 Kuala Lumpur, Malaysia https://orcid.org/0000-0003-2097-2176
  • Zafri Azran Abdul Majid Department of Audiology and Speech-Language Pathology, Kulliyyah of Allied Health Science, International Islamic University Malaysia (IIUM), 25200 Kuantan, Pahang, Malaysia
  • Zairul Azrul Zakaria Department of Mechanical Engineering, Kulliyyah of Engineering, International Islamic University Malaysia (IIUM), Gombak, 53100 Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.37934/progee.25.1.1032

Keywords:

Evacuated tube solar air collector, solar thermal, simulation works, drying application, thermal performance

Abstract

One of the primary components of solar energy utilization systems is evacuated tube solar air collectors (ETSACs). The irradiance is absorbed by these collectors, which is then transformed into thermal energy at the absorbing surface before being transmitted to the air passing through the collectors. This type of collector outperforms flat plate collectors in terms of reducing heat loss through conduction and convection and also during cloudy days; thus, ETSACs are the most preferred collectors to be applied for space heating, crop drying, and industrial applications. This review focuses on a summary of design configurations, simulation works, and applications of ETSACs in order to understand the influence of the thermal performance of ETSACs so that these collectors can be applied more effectively. Studies on the use of nanofluids as thermal performance enhancers and phase change materials as thermal storage media can be considered to enhance the thermal performance of ETSACs.

References

M.J. Ring, D. Lindner, E.F. Cross, M.E. Schlesinger, Causes of the global warming observed since the 19th century, Atmospheric and Climate Sciences 2 (2012) 401–415. https://doi.org/10.4236/acs.2012.24035.

P. A. Owusu, S. Asumadu-Sarkodie, A review of renewable energy sources, sustainability issues and climate change mitigation, Cogent Engineering 3 (2016) 1167990. https://doi.org/10.1080/23311916.2016.1167990.

A. Suman, Role of renewable energy technologies in climate change adaptation and mitigation: A brief review from Nepal, Renewable and Sustainable Energy Reviews 151 (2021), 111524. https://doi.org/10.1016/j.rser.2021.111524.

R. Kumar, R. Arya, N. Diwakar, S. Daniel, Investigating the different process parameters and their effects of solar energy, International Journal for Research Trends and Innovation 4 (2019) 1–5.

M.H. Ahmadi, M. Ghazvini, M. Sadeghzadeh, M.A. Nazari, R. Kumar, A. Naeimi, T. Ming, Solar power technology for electricity generation: A critical review, Energy Science & Engineering 6 (2018) 340–361. https://doi.org/10.1002/ese3.239.

F.M. Guangul, G.T. Chala, Solar energy as renewable energy source: SWOT analysis, 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC) (2019) 1–5. https://doi.org/10.1109/ICBDSC.2019.8645580.

L. Kumar, M. Hasanuzzaman, N.A. Rahim, Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review, Energy Conversion and Management 195 (2019) 885–908. https://doi.org/10.1016/j.enconman.2019.05.081.

K. Ravi Kumar, N.V.V. Krishna Chaitanya, N. Sendhil Kumar, Solar thermal energy technologies and its applications for process heating and power generation – A review, Journal of Cleaner Production 282 (2021) 125296. https://doi.org/10.1016/j.jclepro.2020.125296.

Q. Li, W. Gao, W. Lin, T. Liu, Y. Zhang, X. Ding, X. Huang, W. Liu, Experiment and simulation study on convective heat transfer of all-glass evacuated tube solar collector, Renewable Energy 152 (2020) 1129–1139. https://doi.org/10.1016/j.renene.2020.01.089.

A. Shafieian, M. Khiadani, A. Nosrati, Strategies to improve the thermal performance of heat pipe solar collectors in solar systems: A review, Energy Conversion and Management 183 (2019) 307–331.

https://doi.org/10.1016/j.enconman.2018.12.115.

S.A. Kalogirou, Solar thermal collectors and applications, Progress in Energy and Combustion Science 30 (2004) 231–295. https://doi.org/10.1016/j.pecs.2004.02.001.

S.E. Zubriski, K.J. Dick, Measurement of the efficiency of evacuated tube solar collectors under various operating conditions, Journal of Green Building 7 (2012) 114–130. https://doi.org/10.3992/jgb.7.3.114.

B. Window, Heat extraction from single ended glass absorber tubes, Solar Energy 31 (1983) 159–166. https://doi.org/10.1016/0038-092X(83)90077-4.

S. Kalogirou, The potential of solar industrial process heat applications, Applied Energy 76 (2003) 337–361. https://doi.org/10.1016/S0306-2619(02)00176-9.

P. Olczak, D. Matuszewska, J. Zabaglo, The comparison of solar energy gaining effectiveness between flat plate collectors and evacuated tube collectors with heat pipe: Case study, Energies 13 (2020), https://doi.org/10.3390/en13071829.

A. Dubey, A. Arora, Enhancement of heat transfer in solar parabolic trough air heater: An experimental study, in: International Conference of Advance Research and Innovation, 2020, pp. 54–57. http://dx.doi.org/10.2139/ssrn.3560009.

M.A. Alghoul, M.Y. Sulaiman, B.Z. Azmi, M. Abd Wahab, Review of materials for solar thermal collectors, Anti-Corrosion Methods and Materials 52 (2005) 199–206. https://doi.org/10.1108/00035590510603210.

A. Kumar, S. Kumar, U. Nagar, A. Yadav, Experimental study of thermal performance of one-ended evacuated tubes for producing hot air, Journal of Solar Energy 2013 (2013) 524715.

https://doi.org/10.1155/2013/524715.

D. Mevada et al., Applications of evacuated tubes collector to harness the solar energy: a review, International Journal of Ambient Energy 43 (2022) 344–361.

https://doi.org/10.1080/01430750.2019.1636886.

V. Goel, V.S. Hans, S. Singh, R. Kumar, S.K. Pathak, M. Singla, S. Bhattacharyya, E. Almatrafi, R.S. Gill, A comprehensive study on the progressive development and applications of solar air heaters, Solar Energy 229 (2021) 112–147. https://doi.org/10.1016/j.solener.2021.07.040.

I. Kamfa, J. Fluch, R. Bartali, D. Baker, Solar-thermal driven drying technologies for large-scale industrial applications: State of the art, gaps, and opportunities, International Journal of Energy Research 44 (2020) 9864–9888. https://doi.org/10.1002/er.5622.

K. Chopra, V.V. Tyagi, A.K. Pandey, A. Sari, Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications, Applied Energy 228 (2018) 351–389. https://doi.org/10.1016/j.apenergy.2018.06.067.

H. Kim, J. Kim, H. Cho, Review of thermal performance and efficiency in evacuated tube solar collector with various Nanofluids, International Journal of Air-Conditioning and Refrigeration 25(2) (2017) 1730001. https://doi.org/10.1142/S2010132517300014.

A. Saxena and A.A. El-sebaii, A thermodynamic review of solar air heaters, Renewable and Sustainable Energy Reviews 43 (2015) 863–890. https://doi.org/10.1016/j.rser.2014.11.059.

A. Kumar, Z. Said, and E. Bellos, An up-to-date review on evacuated tube solar collectors, Journal of Thermal Analysis and Calorimetry 145 (2021) 2873–2889. https://doi.org/10.1007/s10973-020-09953-9.

A. Sharma and G. Saxena, Performance investigation of evacuated tube solar heating system: A review, Journal of Alternate Energy Sources and Technologies 9 (2018) 15–26. https://doi.org/10.37591/joaest.v9i3.1249.

H. Olfian, S. Soheil, M. Ajarostaghi, M. Ebrahimnataj, Development on evacuated tube solar collectors: A review of the last decade results of using nanofluids, Solar Energy 211 (2020) 265–282. https://doi.org/10.1016/j.solener.2020.09.056.

M.A.J. Al-Neama, Performance enhancement of solar air collectors applied for drying processes, Doctoral dissertation, Szent István University, Godollo, Hungary, 2018.

V.C. Parashottambhai, Investigations on evacuated glass tube, Doctoral dissertation, Gujarat Technological University Ahmedabad, 2022.

A. Elbrashy, F. Aboutaleb, M. El-Fakharany, F.A. Essa, Experimental study of solar air heater performance with evacuated tubes connected in series and involving nano-copper oxide/paraffin wax as thermal storage enhancer, Environmental Science and Pollution Research 30 (2023) 4603–4616. https://doi.org/10.1007/s11356-022-22462-6.

A. Fudholi, K. Sopian, M.H. Ruslan, M.A. Alghoul, M.Y. Sulaiman, Review of solar dryers for agricultural and marine products, Renewable and Sustainable Energy Reviews 14 (2010) 1–30. https://doi.org/10.1016/j.rser.2009.07.032.

E. Vengadesan, R. Senthil, A review on recent developments in thermal performance enhancement methods of flat plate solar air collector, Renewable and Sustainable Energy Reviews 134 (2020) 110315. https://doi.org/10.1016/j.rser.2020.110315.

A. Abi Mathew, V. Thangavel, A novel thermal storage integrated evacuated tube heat pipe solar air heater: Energy, exergy, economic and environmental impact analysis, Solar Energy, 220 (2021) 828–842. https://doi.org/10.1016/j.solener.2021.03.057.

A.E. Kabeel, M.H. Hamed, Z.M. Omara, A.W. Kandeal, Solar air heaters: Design configurations, improvement methods and applications – A detailed review, Renewable and Sustainable Energy Reviews 70 (2017) 1189–1206. https://doi.org/10.1016/j.rser.2016.12.021.

S. Chamoli, R. Lu, D. Xu, P. Yu, Thermal performance improvement of a solar air heater fitted with winglet vortex generators, Solar Energy 159 (2017) 966–983, 2018, https://doi.org/10.1016/j.solener.2017.11.046.

S. Rashidi, M. Hossein Kashefi, F. Hormozi, Potential applications of inserts in solar thermal energy systems – A review to identify the gaps and frontier challenges, Solar Energy 171 (2018) 929–952. https://doi.org/10.1016/j.solener.2018.07.017.

A.V. Kumar, T.V Arjunan, D. Seenivasan, R. Venkatramanan, S. Vijayan, M. Matheswaran, Influence of twisted tape inserts on energy and exergy performance of an evacuated Tube-based solar air collector, Solar Energy 225 (2021) 892–904. https://doi.org/10.1016/j.solener.2021.07.074.

B.N. Prasad, J.S. Saini, Effect of artificial roughness on heat transfer and friction factor in a solar air heater, Solar Energy 41 (1988) 555–560. https://doi.org/10.1016/0038-092X(88)90058-8.

N.K. Pandey, V.K. Bajpai, Experimental investigation of heat transfer and friction characteristics of arc-shaped roughness elements having central gaps on the absorber plate of solar air heater, Journal of Solar Energy Engineering 138 (2016) 1–8. https://doi.org/10.1115/1.4033402.

R.S. Gill, V.S. Hans, R.P. Singh, Optimization of artificial roughness parameters in a solar air heater duct roughened with hybrid ribs, Applied Thermal Engineering 191 (2021) 116871. https://doi.org/10.1016/j.applthermaleng.2021.116871.

A.K. Raj, C.N. Vinay, M. Srinivas, S. Jayaraj, Experimental investigation on solar thermal air heater with a combination of roughness elements for heat transfer improvement, Journal of Thermal Analysis and Calorimetry 146 (2021) 1453–1464. https://doi.org/10.1007/s10973-020-10097-z.

M.A. Aravindh A. Sreekumar, Efficiency enhancement in solar air heaters by modification of absorber plate-a review, International Journal of Green Energy 13 (2016) 1209–1223. https://doi.org/10.1080/15435075.2016.1183207.

B. Kalidasan, A.K. Pandey, S. Shahabuddin, M. Samykano, M. Thirugnanasambandam, R. Saidur, Phase change materials integrated solar thermal energy systems: Global trends and current practices in experimental approaches, Journal of Energy Storage 27 (2020) 101118. https://doi.org/10.1016/j.est.2019.101118.

F. Abdalla, P. Tuohy, D. Evans, P. Blackwell, A review of integrated phase change materials for evacuated tube solar collector system, in: International Conference on Energy Research, 2018, pp. 379–390.

F.S. Javadi, H.S.C. Metselaar, P. Ganesan, Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review, Solar Energy 206 (2020) 330–352. https://doi.org/10.1016/j.solener.2020.05.106.

M. Aramesh, B. Shabani, On the integration of phase change materials with evacuated tube solar thermal collectors, Renewable and Sustainable Energy Reviews 132 (2020) 110135.

https://doi.org/10.1016/j.rser.2020.110135.

M.A. Essa, I.Y. Rofaiel, M.A. Ahmed, Experimental and theoretical analysis for the performance of evacuated tube collector integrated with helical finned heat pipes using PCM energy storage, Energy, 206 (2020) 118166. https://doi.org/10.1016/j.energy.2020.118166.

H. Tyagi, P. Phelan, R. Prasher, Predicted efficiency of a Low-temperature Nanofluid-based direct absorption solar collector, Journal of Solar Energy Engineering 131 (2009) 041004.

https://doi.org/10.1115/1.3197562.

S. Iranmanesh, H.C. Ong, B.C. Ang, E. Sadeghinezhad, A. Esmaeilzadeh, M. Mehrali, Thermal performance enhancement of an evacuated tube solar collector using graphene nanoplatelets nanofluid, Journal of Cleaner Production 162 (2017) 121–129. https://doi.org/10.1016/j.jclepro.2017.05.175.

W. Chamsa-ard, S. Brundavanam, C.C. Fung, D. Fawcett, G. Poinern, Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: A review, Nanomaterials, 7 (2017) 131. https://doi.org/10.3390/nano7060131.

M.H. Yazdi, E. Solomin, A. Fudholi, G. Divandari, K. Sopian, P.L. Chong, Thermal performance of nanofluid flow inside evacuated tube solar collector, International Journal of Heat and Technology 39 (2021) 1262–1270. https://doi.org/10.18280/ijht.390424.

A. Kumar, A. Kumar, Z. Said, A comprehensive review analysis on advances of evacuated tube solar collector using nanofluids and PCM, Sustainable Energy Technologies and Assessments 47 (2021) 101417. https://doi.org/10.1016/j.seta.2021.101417.

Y. Kim, T. Seo, Thermal performances comparisons of the glass evacuated tube solar collectors with shapes of absorber tube, Renewable Energy 32 (2007) 772–795. https://doi.org/10.1016/J.RENENE.2006.03.016.

R. Supankanok, S. Sriwong, P. Ponpo, W. Wu, W. Chandra-Ambhorn, A. Anantpinijwatna, Modification of a solar thermal collector to promote heat transfer inside an evacuated tube solar thermal absorber, Applied Sciences 11 (2021) 4100. https://doi.org/10.3390/app11094100.

A. Kumar, S. Kumar, A. Yadav, Thermal performance analysis of evacuated tubes solar air collector in Indian climate conditions, International Journal of Ambient Energy 37 (2016) 162–171. https://doi.org/10.1080/01430750.2014.915884.

B.K. Naik, A. Varshney, P. Muthukumar, C. Somayaji, Modelling and performance analysis of U type evacuated tube solar collector using different working fluids, Energy Procedia 90 (2016) 227–237. https://doi.org/10.1016/j.egypro.2016.11.189.

S. Ataee, M. Ameri, Energy and exergy analysis of all-glass evacuated solar collector tubes with coaxial fluid conduit, Solar Energy 118 (2015) 575–591. https://doi.org/10.1016/j.solener.2015.06.019.

P.-L. Paradis, D.R. Rousse, S. Hallé, L. Lamarche, G. Quesada, Thermal modeling of evacuated tube solar air collectors, Solar Energy 115 (2015) 708–721. https://doi.org/10.1016/j.solener.2015.03.040.

V. Dabra, L. Yadav, A. Yadav, The effect of tilt angle on the performance of evacuated tube solar air collector: experimental analysis, International Journal of Engineering, Science and Technology (2018) 100–110. https://doi.org/10.4314/ijest.v5i4.9.

Z. Wang, Y. Diao, Y. Zhao, C. Chen, L. Liang, T. Wang, Thermal performance of integrated collector storage solar air heater with evacuated tube and lap joint-type flat micro-heat pipe arrays, Applied Energy 261 (2020) 114466. https://doi.org/10.1016/j.apenergy.2019.114466.

T. Wang, Y. Zhao, Y. Diao, R. Ren, Z. Wang, Performance of a new type of solar air collector with transparent-vacuum glass tube based on micro-heat pipe arrays. Energy 177 (2019) 16–28. https://doi.org/10.1016/j.energy.2019.04.059.

N. Mehla, A. Yadav, Experimental analysis of thermal performance of evacuated tube solar air collector with phase change material for sunshine and off-sunshine hours, International Journal of Ambient Energy 38 (2017) 130–145. https://doi.org/10.1080/01430750.2015.1074612.

H. Liang, Experimental research on the all-glass evacuated tube solar air collector, in: Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), Springer, Berlin, Heidelberg, 2008. https://doi.org/10.1007/978-3-540-75997-3_125.

T. Abu Hamed, S. Alkharabsheh, Design and performance analysis of a new evacuated tube solar air heaters equipped with fins and coils, International Journal of Sustainable Energy 39 (2020) 997–1008. https://doi.org/10.1080/14786451.2020.1798446.

I. Singh, S. Vardhan, Experimental investigation of an evacuated tube collector solar air heater with helical inserts, Renew. Energy 163 (2021) 1963–1972. https://doi.org/10.1016/j.renene.2020.10.114.

A.V. Kumar, T.V. Arjunan, D. Seenivasan, R. Venkatramanan, S. Vijayan, Thermal performance of an evacuated tube solar collector with inserted baffles for air heating applications, Solar Energy 215 (2021) 131–143. https://doi.org/10.1016/j.solener.2020.12.037.

A. Yadav, V.K. Bajpai, An experimental study on evacuated tube solar collector for heating of air in India, World Academy of Science, Engineering and Technology 79 (2011) 81–86. https://doi.org/10.5281/zenodo.1083537.

Z.A. Zakaria, Z.A.A. Majid, M.A. Harun, A.F. Ismail, S.I. Ihsan, K. Sopian, A. Abdul Razak, A.F. Sharol, Investigation on the thermal performance of Evacuated Glass-Thermal Absorber Tube Collector (EGATC) for air heating application, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 79 (2021) 48–64. https://doi.org/10.37934/arfmts.79.2.4864.

Z.A. Zakaria, Z.A.A. Majid, M.A. Harun, A.F. Ismail, S.I. Ihsan, K. Sopian, A. Abdul Razak, A.F. Sharol, Experimental investigation of integrated energy storage on the thermal performance enhancement of Evacuated Glass-Thermal Absorber Tube Collector (EGATC) for Air Heating Application, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 96(1) (2022) 137–152. https://doi.org/10.37934/arfmts.96.1.137152.

A.I. Bakry, Y.A.F. El-Samadouny, S.A. El-Agouz, A.M. Alshrombably, K.S. Abdelfatah, M.A. Said, Performance of the one-ended evacuated tubes as medium temperature solar air heaters at low flow rates, Sustainable Energy Technologies and Assessments 30 (2018) 174–182. https://doi.org/10.1016/j.seta.2018.10.002.

P.Y. Wang, H.Y. Guan, Z.H. Liu, G.S. Wang, F. Zhao, H.S. Xiao, High temperature collecting performance of a new all-glass evacuated tubular solar air heater with U-shaped tube heat exchanger, Energy Conversion and Management 77 (2014) 315–323.

https://doi.org/10.1016/j.enconman.2013.08.019.

X. Zhang, S. You, H. Ge, Y. Gao, W. Xu, M. Wang, M., T. H., X. Zheng, Thermal performance of direct-flow coaxial evacuated-tube solar collectors with and without a heat shield, Energy Conversion and Management 84 (2014) 80–87. https://doi.org/10.1016/j.enconman.2014.04.014.

A.A. Razak, Z.A.A. Majid, M.H. Ruslan, K. Sopian, Thermal performance analysis of staging effect of solar thermal absorber with cross design, Malaysian Journal of Analytical Sciences19 (2015) 1264–1273.

G. Martínez-Rodríguez, A.L. Fuentes-Silva, M. Picón-Núñez, Solar thermal networks operating with evacuated-tube collectors, Energy 146 (2018) 26–33. https://doi.org/10.1016/j.energy.2017.04.165.

M. Picón-Núñez, G. Martínez-Rodríguez, A.L. Fuentes-Silva, Targeting and design of evacuated-tube solar collector networks, Chemical Engineering Transactions 52 (2016) 859–864. https://doi.org/10.3303/CET1652144.

A.P. Singh, O.P. Singh, Performance enhancement of a curved solar air heater using CFD, Solar Energy, 174 (2018) 556–569. https://doi.org/10.1016/j.solener.2018.09.053.

M. Hayek, Investigation of evacuated-tube solar collectors performance using computational fluid dynamics, in: 2009 International Conference on Advances in Computational Tools for Engineering Applications, Beirut, Lebanon, 2009, pp. 240-244. https://doi.org/10.1109/ACTEA.2009.5227901.

S. Beekers, Efficiency of an evacuated tube solar collector under varying operating conditions and configurations, Master's thesis, Eindhoven University of Technology, Eindhoven, Netherlands, 2021.

A.I. Sato, V.L. Scalon, A. Padilha, Numerical analysis of a modified evacuated tubes solar collector, in: International Conference on Renewable Energies and Power Quality, 2012, pp. 384–389.

https://doi.org/10.24084/repqj10.322

B. Du, P.D. Lund, J. Wang, Combining CFD and artificial neural network techniques to predict the thermal performance of all-glass straight evacuated tube solar collector, Energy 220 (2021) 119713. https://doi.org/10.1016/j.energy.2020.119713.

K. Ahmed, O. Le, I. Andri, A. Pina, J. Fournier, CFD study of heat transfer enhancement and fluid flow characteristics of laminar flow through tube with helical screw tape insert, Energy Procedia 160 (2019) 699–706. https://doi.org/10.1016/j.egypro.2019.02.190.

A.W. Badar, R. Buchholz, Y. Lou, F. Ziegler, CFD based analysis of flow distribution in a coaxial vacuum tube solar collector with laminar flow conditions, International Journal of Energy and Environmental Engineering 3 (2012) 24. https://doi.org/10.1186/2251-6832-3-24.

S. Aggarwal, R. Kumar, S. Kumar, M. Bhatnagar, P. Kumar, Computational fluid dynamics based analysis for optimization of various thermal enhancement techniques used in evacuated tubes solar collectors: A review, Materials Today Proceeding 46 (2021) 8700–8707.

https://doi.org/10.1016/j.matpr.2021.04.021.

M. Iranmanesh, H. Samimi Akhijahani, M.S. Barghi Jahromi, CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system, Renewable Energy 145 (2020) 1192–1213. https://doi.org/10.1016/j.renene.2019.06.038.

M. Singla, V.S. Hans, S. Singh, CFD analysis of rib roughened solar evacuated tube collector for air heating, Renewable Energy 183 (2022) 78–89. https://doi.org/10.1016/j.renene.2021.10.055.

B. Du, P.D. Lund, J. Wang, M. Kolhe, E. Hu, Comparative study of modelling the thermal efficiency of a novel straight through evacuated tube collector with MLR, SVR, BP and RBF methods, Sustainable Energy Technologies and Assessments 44 (2021) 101029. https://doi.org/10.1016/j.seta.2021.101029.

J. Hu, G. Zhang, Performance improvement of solar air collector based on airflow reorganization: A review, Applied Thermal Engineering 155 (2019) 592–611.

https://doi.org/10.1016/j.applthermaleng.2019.04.021.

P. Singh, M.K. Gaur, Environmental and economic analysis of novel hybrid active greenhouse solar dryer with evacuated tube solar collector, Sustainable Energy Technologies and Assessments 47 (2021) 101428. https://doi.org/10.1016/j.seta.2021.101428.

A. Mahesh, C.E. Sooriamoorthi, A.K. Kumaraguru, Performance study of solar vacuum tubes type dryer Performance study of solar vacuum tubes type dryer, Journal of Renewable and Sustainable Energy 4 (2012) 063121. https://doi.org/10.1063/1.4767934.

S. Singh, R.S. Gill, V.S. Hans, M. Singh, A novel active-mode indirect solar dryer for agricultural products: Experimental evaluation and economic feasibility, Energy 222 (2021) 119956. https://doi.org/10.1016/j.energy.2021.119956.

E. Veeramanipriya, A.R. Umayal Sundari, Performance evaluation of hybrid photovoltaic thermal (PVT) solar dryer for drying of cassava, Solar Energy 215 (2021) 240–251. https://doi.org/10.1016/j.solener.2020.12.027.

S. Malakar, M. Alam, V.K. Arora, Evacuated tube solar and sun drying of beetroot slices: Comparative assessment of thermal performance, drying kinetics, and quality analysis, Solar Energy 233 (2022) 246–258. https://doi.org/10.1016/j.solener.2022.01.029.

C. Dutta, D.K. Yadav, V.K. Arora, S. Malakar, Drying characteristics and quality analysis of pre-treated turmeric (Curcuma longa) using evacuated tube solar dryer with and without thermal energy storage, Solar Energy 251 (2023) 392–403. https://doi.org/10.1016/j.solener.2023.01.032.

T. Rajagopal, S. Sivakumar, R. Manivel, Development of solar dryer incorporated with evacuated tube collector, International Journal of Innovative Research in Science, Engineering and Technology 3 (2014) 2655–2658.

M. Hosseinzadeh, A. Faezian, S.M. Mirzababaee, H. Zamani, Parametric analysis and optimization of a portable evacuated tube solar cooker, Energy 194 (2020) 116816. https://doi.org/10.1016/j.energy.2019.116816.

N. Mehla A. Yadav, Thermal analysis on charging and discharging behaviour of a phase change material-based evacuated tube solar air collector, Indoor Built Environment 27 (2018) 156–172. https://doi.org/10.1177/1420326X16667626.

V. Vedanarayanan, J. Dilli Srinivasan, K. Arulvendhan, P. Thirusenthil Kumaran, R. Selvakumar, T. Maridurai, M. Sudhakar, S. Al Obaid, S. Alfarraj, M.M. Raj, Performance development and evaluation of solar air collector with novel phase change material, International Journal of Photoenergy 2022 (2022) 3787141. https://doi.org/10.1155/2022/3787141.

M.H. Dhaou, S. Mellouli, F. Alresheedi, Y. El-Ghoul, Numerical assessment of an innovative design of an evacuated tube solar collector incorporated with pcm embedded metal foam/plate fins, Sustainability (Switzerland) 13(19) (2021) 10632. https://doi.org/10.3390/su131910632.

S. Gorjian, H. Ebadi, F. Calise, A. Shukla, C. Ingrao, A review on recent advancements in performance enhancement techniques for low-temperature solar collectors, Energy Conversion and Management 222 (2020) 113246. https://doi.org/10.1016/j.enconman.2020.113246.

G. Sadeghi, M. Najafzadeh, M. Ameri, Thermal characteristics of evacuated tube solar collectors with coil inside: An experimental study and evolutionary algorithms, Renewable Energy 151 (2020) 575–588. https://doi.org/10.1016/j.renene.2019.11.050.

Abstract

Published

2023-08-10

How to Cite

[1]
N. Sulaiman, Sany Izan Ihsan, Syed Noh Syed Abu Bakar, Zafri Azran Abdul Majid, and Zairul Azrul Zakaria, “Evacuated Tubes Solar Air Collectors: A Review on Design Configurations, Simulation Works and Applications”, Prog. Energy Environ., vol. 25, pp. 10–32, Aug. 2023.
سرور مجازی ایران Decentralized Exchange

Issue

Section

Review Article
فروشگاه اینترنتی