A CFD Assessment on Ventilation Strategies in Mitigating Healthcare-Associated Infection in Single Patient Ward
DOI:
https://doi.org/10.37934/progee.24.1.3545Keywords:
airborne infection, hospital, covid-19, patient ward, infectious particlesAbstract
A promising ventilation strategy is an effective measure to enhance indoor air quality and protect the patients against healthcare-acquired infection. The Computational Fluid Dynamics (CFD) model represents a patient ward that was constructed using Computer-Aided Design (CAD) software. The simulated results were verified and validated based on the published data. A Renormalization Group (RNG) k-epsilon model based on the Eulerian approach was used to simulate the airflow turbulence, while a discrete phase model (DPM) based on the Lagrangian approach was used to predict the dispersion of airborne particles. This study examined four cases of ventilation strategies, with varying ventilation rates, positioning of supply air diffusers, and location of exhaust grilles. This study revealed that the installation of air curtain jet coupled with a ceiling-mounted air supply diffuser (case 3) above the patient-occupying zone has the highest wiping efficiency against the infectious particles. The utilization of ventilation strategy in case 3 managed to reduce the particle by approximately 3.3 times as compared to the baseline case. The study outcome also suggested that the exhaust grilles should be placed on the upper wall, to ensure a proper mixing of fresh air in the entire patient ward.
References
C.f.D. Control, Prevention, Monitoring hospital-acquired infections to promote patient safety--United States, 1990-1999, MMWR. Morbidity and mortality weekly report 49(8) (2000) 149-153.
R.A. Weinstein, Nosocomial infection update, Emerging infectious diseases 4(3) (1998) 416.
S.S. Magill, J.R. Edwards, W. Bamberg, Z.G. Beldavs, G. Dumyati, M.A. Kainer, R. Lynfield, M. Maloney, L. McAllister-Hollod, J. Nadle, S.M. Ray, D.L. Thompson, L.E. Wilson, S.K. Fridkin, Multistate point-prevalence survey of health care-associated infections, The New England journal of medicine 370(13) (2014) 1198-208. https://doi.org/10.1056/NEJMoa1306801.
J. James, J.J.T.J.o.M. Jacob, S. Nursing, A study to assess the knowledge regarding standards of nosocomial infection control among first year b. sc nursing students at selected nursing college, Thiruvalla, TNNMC Journal of Medical & Surgical Nursing 9(2) (2021) 13-16.
J.P. Burke, Infection control-a problem for patient safety, New England Journal of Medicine 348(7) (2003) 651-656. https://doi.org/10.1056/NEJMhpr020557.
J. Wang, F. Liu, E. Tartari, J. Huang, S. Harbarth, D. Pittet, W. Zingg, The prevalence of healthcare-associated infections in mainland China: a systematic review and meta-analysis, Infection Control & Hospital Epidemiology 39(6) (2018) 701-709. https://doi.org/10.1017/ice.2018.60.
H. Wang, K.R. Paulson, S.A. Pease, S. Watson, H. Comfort, P. Zheng, A.Y. Aravkin, C. Bisignano, R.M. Barber, T. Alam, J.E. Fuller, E.A. May, D.P. Jones, M.E. Frisch, C. Abbafati, C. Adolph, A. Allorant, J.O. Amlag, B. Bang-Jensen, G.J. Bertolacci, S.S. Bloom, A. Carter, E. Castro, S. Chakrabarti, J. Chattopadhyay, R.M. Cogen, J.K. Collins, K. Cooperrider, X. Dai, W.J. Dangel, F. Daoud, C. Dapper, A. Deen, B.B. Duncan, M. Erickson, S.B. Ewald, T. Fedosseeva, A.J. Ferrari, J.J. Frostad, N. Fullman, J. Gallagher, A. Gamkrelidze, G. Guo, J. He, M. Helak, N.J. Henry, E.N. Hulland, B.M. Huntley, M. Kereselidze, A. Lazzar-Atwood, K.E. LeGrand, A. Lindstrom, E. Linebarger, P.A. Lotufo, R. Lozano, B. Magistro, D.C. Malta, J. Månsson, A.M. Mantilla Herrera, F. Marinho, A.H. Mirkuzie, A.T. Misganaw, L. Monasta, P. Naik, S. Nomura, E.G. O'Brien, J.K. O'Halloran, L.T. Olana, S.M. Ostroff, L. Penberthy, R.C. Reiner Jr, G. Reinke, A.L.P. Ribeiro, D.F. Santomauro, M.I. Schmidt, D.H. Shaw, B.S. Sheena, A. Sholokhov, N. Skhvitaridze, R.J.D. Sorensen, E.E. Spurlock, R. Syailendrawati, R. Topor-Madry, C.E. Troeger, R. Walcott, A. Walker, C.S. Wiysonge, N.A. Worku, B. Zigler, D.M. Pigott, M. Naghavi, A.H. Mokdad, S.S. Lim, S.I. Hay, E. Gakidou, C.J.L. Murray, Estimating excess mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related mortality, 2020–21, The Lancet 399(10334) (2022) 1513-1536. https://doi.org/10.1016/S0140-6736(21)02796-3.
S.R. Shrivastava, P.S. Shrivastava, J. Ramasamy, Airborne infection control in healthcare settings, Infect Ecol Epidemiol 3 (2013). https://doi.org/10.3402/iee.v3i0.21411.
H. Tan, K.Y. Wong, M.H.D. Othman, B.B. Nyakuma, D.D.C. Vui Sheng, H.Y. Kek, W.S. Ho, H. Hashim, M.C. Chiong, M.A. Zubir, N.H. Abdul Wahab, S.L. Wong, R. Abdul Wahab, I.H. Hatif, Does human movement-induced airflow elevate infection risk in burn patient’s isolation ward? A validated dynamics numerical simulation approach, Energy and Buildings 283 (2023) 112810. https://doi.org/10.1016/j.enbuild.2023.112810.
K.Y. Wong, H. Tan, B.B. Nyakuma, H.M. Kamar, W.Y. Tey, H. Hashim, M.C. Chiong, S.L. Wong, R.A. Wahab, G.R. Mong, W.S. Ho, M.H.D. Othman, G. Kuan, Effects of medical staff's turning movement on dispersion of airborne particles under large air supply diffuser during operative surgeries, Environmental Science and Pollution Research 29(54) (2022) 82492-82511. https://doi.org/10.1007/s11356-022-21579-y.
M.K. Satheesan, K.W. Mui, L.T. Wong, A numerical study of ventilation strategies for infection risk mitigation in general inpatient wards, Building Simulation 13(4) (2020) 887-896. https://doi.org/10.1007/s12273-020-0623-4.
H.T. Dao, K.S. Kim, Behavior of cough droplets emitted from Covid-19 patient in hospital isolation room with different ventilation configurations, Building and Environment 209 (2022) 108649. https://doi.org/10.1016/j.buildenv.2021.108649.
T.-L. Le, T.T. Nguyen, T.T. Kieu, A CFD Study on the Design Optimization of Airborne Infection Isolation Room, Mathematical Problems in Engineering 2022 (2022) 5419671. https://doi.org/10.1155/2022/5419671.
Y.-C. Shih, C.-C. Chiu, O. Wang, Dynamic airflow simulation within an isolation room, Building and Environment 42(9) (2007) 3194-3209. https://doi.org/https://doi.org/10.1016/j.buildenv.2006.08.008.
H. Brohus, K. Balling, D. Jeppesen, Influence of movements on contaminant transport in an operating room, Indoor air 16(5) (2006) 356-372. https://doi.org/10.1111/j.1600-0668.2006.00454.x.
B. Halvonova, A.K. Melikov, Performance of “ductless” personalized ventilation in conjunction with displacement ventilation: Impact of disturbances due to walking person (s), Building and Environment 45(2) (2010) 427-436. https://doi.org/10.1016/j.buildenv.2009.06.023.
A.M. Foster, M.J. Swain, R. Barrett, P. D’Agaro, L.P. Ketteringham, S.J. James, Three-dimensional effects of an air curtain used to restrict cold room infiltration, Applied Mathematical Modelling 31(6) (2007) 1109-1123. https://doi.org/https://doi.org/10.1016/j.apm.2006.04.005.
A. Khayrullina, B. Blocken, M.O. Magalhaes de Almeida, T. van Hooff, G. van Heijst, Impact of a wall downstream of an air curtain nozzle on air curtain separation efficiency, Building and Environment 197 (2021) 107873. https://doi.org/10.1016/j.buildenv.2021.107873.
M. Van Belleghem, G. Verhaeghe, C. T’Joen, H. Huisseune, P. Jaeger, M. De Paepe, Heat Transfer Through Vertically Downward-Blowing Single-Jet Air Curtains for Cold Rooms, Heat Transfer Engineering 33(14) (2012) 1196-1206. https://doi.org/10.1080/01457632.2012.677724.
G. Verhaeghe, M. Van Belleghem, A. Willockx, I. Verhaert, M. De Paepe, Study of air curtains used to restrict infiltration into refrigerated rooms (2010).
M.A.M.S. Shoshe, M.A. Rahman, Improvement of heat and smoke confinement using air curtains in informal shopping malls, Journal of Building Engineering 46 (2022) 103676. https://doi.org/https://doi.org/10.1016/j.jobe.2021.103676.
F. Hayes, W. Stoecker, Design data for air curtains, Ashrae Transactions 75(2) (1969) 168-180.
J. Ye, H. Qian, J. Ma, R. Zhou, X. Zheng, Using air curtains to reduce short-range infection risk in consulting ward: A numerical investigation, Building Simulation 14(2) (2021) 325-335. https://doi.org/10.1007/s12273-020-0649-7.
G. Cao, P. Nielsen, R. Jensen, P. Heiselberg, L. Liu, J. Heikkinen, Protected zone ventilation and reduced personal exposure to airborne cross-infection, Indoor Air 25(3) (2015) 307-319. https://doi.org/10.1111/ina.12142.
F. Wang, C. Chaerasari, D. Rakshit, I. Permana, Performance Improvement of a Negative-Pressurized Isolation Room for Infection Control, Healthcare, Multidisciplinary Digital Publishing Institute, 2021, p. 1081.
J. Ye, H. Qian, J. Ma, R. Zhou, X. Zheng, Using air curtains to reduce short-range infection risk in consulting ward: A numerical investigation, Building Simulation 14(2) (2021) 325-335. https://doi.org/10.1007/s12273-020-0649-7.
A.E. Andersson, M. Petzold, I. Bergh, J. Karlsson, B.I. Eriksson, K. Nilsson, Comparison between mixed and laminar airflow systems in operating rooms and the influence of human factors: experiences from a Swedish orthopedic center, American Journal of Infection Control 42(6) (2014) 665-669. https://doi.org/10.1016/j.ajic.2014.02.001.
N. Kamsah, H.M. Kamar, M.I. Alhamid, K.Y. Wong, Impacts of temperature on airborne particles in a hospital operating room, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 44(1) (2018) 12-23.
H.Y. Tan, K.Y. Wong, C.T. Lee, S.L. Wong, B.B. Nyakuma, R.A. Wahab, K.Q. Lee, M.C. Chiong, W.S. Ho, M.H.D. Othman, Y.H. Yau, H.Y. Kek, H.M. Kamar, Numerical assessment of ceiling-mounted air curtain on the particle distribution in surgical zone, Journal of Thermal Analysis and Calorimetry (2022). https://doi.org/10.1007/s10973-022-11466-6.
J.K. Smith, Quantitative versus qualitative research: An attempt to clarify the issue, Educational researcher 12(3) (1983) 6-13. https://doi.org/10.2307/1175144.
H. Tan, K.Y. Wong, M.H.D. Othman, H.Y. Kek, R.A. Wahab, G.K.P. Ern, W.T. Chong, K.Q. Lee, Current and potential approaches on assessing airflow and particle dispersion in healthcare facilities: a systematic review, Environmental Science and Pollution Research 29(53) (2022) 80137-80160. https://doi.org/10.1007/s11356-022-23407-9.
A. Volk, U. Ghia, C. Stoltz, Effect of grid type and refinement method on CFD-DEM solution trend with grid size, Powder Technology 311 (2017) 137-146. https://doi.org/https://doi.org/10.1016/j.powtec.2017.01.088.
H. Tan, K.Y. Wong, M.H.D. Othman, H.Y. Kek, B.B. Nyakuma, W.S. Ho, H. Hashim, R.A. Wahab, D.D.C.V. Sheng, N.H.A. Wahab, A.S. Yatim, Why do ventilation strategies matter in controlling infectious airborne particles? A comprehensive numerical analysis in isolation ward, Building and Environment 231 (2023) 110048. https://doi.org/10.1016/j.buildenv.2023.110048.
C. Wang, S. Holmberg, S. Sadrizadeh, Impact of door opening on the risk of surgical site infections in an operating room with mixing ventilation, Indoor and Built Environment 30(2) (2019) 166-179. https://doi.org/10.1177/1420326x19888276.
H.Y. Tan, K.Y. Wong, M.H.D. Othman, H.Y. Kek, W.Y. Tey, B.B. Nyakuma, G.R. Mong, G.R.Y. Kuan, W.S. Ho, H.S. Kang, D. Sheng, R.A. Wahab, Controlling infectious airborne particle dispersion during surgical procedures: Why mobile air supply units matter?, Building and Environment 223 (2022) 109489. https://doi.org/10.1016/j.buildenv.2022.109489.
A. Vakhrushev, M. Wu, A. Ludwig, G. Nitzl, Y. Tang, G. Hackl, Verification of a discrete phase model with water-particle flow experiments in a Tundish, 5th. Int. Conf. on Simulation; Modeling of Metal, Processes in Steelmaking (STEELSIM 2013), 2013.
A. Fluent, Fluent 14.0 user’s guide, Ansys Fluent Inc (2011).
A. ASHRAE, ASHRAE/ASHE Standard 170-2008 Ventilation of health care facilities. 2008, Atlanta, 2020.
H. Tan, K.Y. Wong, B.B. Nyakuma, H.M. Kamar, W.T. Chong, S.L. Wong, H.S. Kang, Systematic study on the relationship between particulate matter and microbial counts in hospital operating rooms, Environmental Science and Pollution Research volume 29(5) (2022) 6710-6721. https://doi.org/10.1007/s11356-021-16171-9.
R.H. Paul Peter Urone, College Physics, OpenStaxJun 21, 2012.
H. Tan, K.Y. Wong, M.H.D. Othman, B.B. Nyakuma, D.D.C.V. Sheng, H.Y. Kek, W.S. Ho, H. Hashim, M.C. Chiong, M.A. Zubir, N.H.A. Wahab, S.L. Wong, R.A. Wahab, I.H. Hatif, Does human movement-induced airflow elevate infection risk in burn patient’s isolation ward? A validated dynamics numerical simulation approach, Energy and Buildings 283 (2023) 112810. https://doi.org/10.1016/j.enbuild.2023.112810.
Q. Xu, L. Zhang, L. Chen, X. Zhao, X. Wang, M. Hu, Y. Le, F. Xue, X. Li, J. Zheng, SARS-CoV-2 might transmit through the skin while the skin barrier function could be the mediator, Medical Hypotheses 159 (2022) 110752. https://doi.org/10.1016/j.mehy.2021.110752.
J. Liu, H. Wang, W. Wen, Numerical simulation on a horizontal airflow for airborne particles control in hospital operating room, Building and Environment 44(11) (2009) 2284-2289. https://doi.org/10.1016/j.buildenv.2009.03.019.
S. You, M.P. Wan, A risk assessment scheme of infection transmission indoors incorporating the impact of resuspension, Risk Analysis 35(8) (2015) 1488-502. https://doi.org/10.1111/risa.12350.
F.J. Wang, C. Chaerasari, D. Rakshit, I. Permana, Kusnandar, Performance Improvement of a Negative-Pressurized Isolation Room for Infection Control, Healthcare 9(8) (2021) 1081. https://doi.org/10.3390/healthcare9081081.
E. Zender-Swiercz, Improvement of indoor air quality by way of using decentralised ventilation, Journal of Building Engineering 32 (2020) 101663. https://doi.org/10.1016/j.jobe.2020.101663.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Progress in Energy and Environment
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.