Small-Scale Botanical in Enhancing Indoor Air Quality: A Bibliometric Analysis (2011-2020) and Short Review

Authors

  • Huiyi Tan School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
  • Keng Yinn Wong School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai Johor, Malaysia https://orcid.org/0000-0003-1261-5216
  • Hong Yee Kek School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
  • Kee Quen Lee Mechanical Precision Engineering Department, Malaysia-Japan International Institute Technology, 54100 Kuala Lumpur, Malaysia.
  • Haslinda Mohamed Kamar School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia. https://orcid.org/0000-0003-2528-8330
  • Wai Shin Ho School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
  • Hooi Siang Kang School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
  • Xinyou Ho School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
  • Bemgba Bevan Nyakuma Department of Chemistry, Faculty of Sciences, Benue State University, P.M.B 102119 Makurdi, Benue State, Nigeria.
  • Syie Luing Wong Dpto. Matemática Aplicada, Ciencia e Ingeniería de Materiales y Tecnología Electrónica Universidad Rey Juan Carlos, Madrid, Spain.
  • Muhammad Akmal Hakim Hishammuddin College of Civil Engineering (CCE), Tongji University, Shanghai 200092, P.R. China. https://orcid.org/0000-0002-5706-932X

DOI:

https://doi.org/10.37934/progee.19.1.1337

Keywords:

Small-scale botanical, Indoor air quality, Bibliometric analysis, Review, VOS Viewer

Abstract

Poor indoor air quality (IAQ) has developed a positive relationship with human health risks. Recently, research findings reported that the pollution level of indoor air could be 2 – 5 times higher than the outdoor air. In some studies, the poor IAQ could reach up to 100 times or more in a natural/ mechanical ventilated building. IAQ depends heavily on the ambient air quality and pollutants/ contaminants produced by household activities. Poor IAQ could lead to various health issues, i.e., asthma, lung cancer, dizziness, fatigue, headaches, etc. One of the possible solutions to overcome the poor IAQ problem is the utilisation of indoor botanical to improve the IAQ. The phytoremediation of botanical is an affordable and environmentally friendly approach to purify the polluted indoor air. Although there is no established recommendation for determining the best indoor botanical in improving the IAQ, many studies have revealed the ability of specific indoor botanicals to remove pollutants/ contaminants. This paper presents the bibliometric analysis and short review based on 79 publications issued in 2011 – 2021. Those articles were extracted from the Web of Science database. Based on the analysis, the number of publications has increased significantly starting from the year 2017. Indoor Air was identified as one of the top productive journals for this research topic.

References

H. Tan, K.Y. Wong, W.S. Ho, M.H.D. Othman, H.M. Kamar, M.C. Chiong, S.L. Wong, P.Y. Ong, E.J. Mohamad, Indoor air quality in the built environment: short bibliometric analysis and review, Penerbit UTHM, Malaysia, 2021.

G. Soreanu, M. Dixon, A. Darlington, Botanical biofiltration of indoor gaseous pollutants – A mini-review, Chemical Engineering Journal 229 (2013) 585-594. https://doi.org/https://doi.org/10.1016/j.cej.2013.06.074.

R. Fleck, R.L. Gill, T. Pettit, P.J. Irga, N.L.R. Williams, J.R. Seymour, F.R. Torpy, Characterisation of fungal and bacterial dynamics in an active green wall used for indoor air pollutant removal, Building and Environment 179 (2020) 106987. https://doi.org/https://doi.org/10.1016/j.buildenv.2020.106987.

A. Cincinelli, T. Martellini, Indoor Air Quality and Health, International Journal of Environmental Research and Public Health 14(11) (2017). https://doi.org/10.3390/ijerph14111286.

H. Tan, K.Y. Wong, B.B. Nyakuma, H.M. Kamar, W.T. Chong, S.L. Wong, H.S. Kang, Systematic study on the relationship between particulate matter and microbial counts in hospital operating rooms, Environmental Science and Pollution Research 29(5) (2022) 6710-6721. https://doi.org/10.1007/s11356-021-16171-9.

K.Y. Wong, M.K. Haslinda, K. Nazri, S.N. Alia, Effects of surgical staff turning motion on airflow distribution inside a hospital operating room, Evergreen 6(1) (2019) 52-58.

D. Siswanto, B.H. Permana, C. Treesubsuntorn, P. Thiravetyan, Sansevieria trifasciata and Chlorophytum comosum botanical biofilter for cigarette smoke phytoremediation in a pilot-scale experiment—evaluation of multi-pollutant removal efficiency and CO2 emission, Air Quality, Atmosphere & Health 13(1) (2020) 109-117. https://doi.org/10.1007/s11869-019-00775-9.

G.P. Suárez-Cáceres, R. Fernández-Cañero, A.J. Fernández-Espinosa, S. Rossini-Oliva, A. Franco-Salas, L. Pérez-Urrestarazu, Volatile organic compounds removal by means of a felt-based living wall to improve indoor air quality, Atmospheric Pollution Research 12(3) (2021) 224-229. https://doi.org/https://doi.org/10.1016/j.apr.2020.11.009.

P.J. Irga, T. Pettit, R.F. Irga, N.J. Paull, A.N.J. Douglas, F.R. Torpy, Does plant species selection in functional active green walls influence VOC phytoremediation efficiency?, Environmental Science and Pollution Research 26(13) (2019) 12851-12858. https://doi.org/10.1007/s11356-019-04719-9.

H.M. Kamar, K.Y. Wong, N. Kamsah, The effects of medical staff turning movements on airflow distribution and particle concentration in an operating room, Journal of Building Performance Simulation 13(6) (2020) 684-706. https://doi.org/10.1080/19401493.2020.1812722.

S.L. Wong, B.B. Nyakuma, K.Y. Wong, C.T. Lee, T.H. Lee, C.H. Lee, Microplastics and nanoplastics in global food webs: A bibliometric analysis (2009–2019), Marine Pollution Bulletin 158 (2020) 111432. https://doi.org/https://doi.org/10.1016/j.marpolbul.2020.111432.

N. Sinkovics, Enhancing the foundations for theorising through bibliometric mapping, International Marketing Review 33(3) (2016) 327-350. https://doi.org/10.1108/IMR-10-2014-0341.

L. Saggiomo, B. Esattore, F. Picone, What are we talking about? Sika deer (Cervus nippon): A bibliometric network analysis, Ecological Informatics 60 (2020) 101146. https://doi.org/https://doi.org/10.1016/j.ecoinf.2020.101146.

H.-H. Kim, I.-Y. Yeo, J.-Y. Lee, Higher attention capacity after improving indoor air quality by indoor plant placement in elementary school classrooms, The Horticulture Journal 89(3) (2020) 319-327. https://doi.org/10.2503/hortj.UTD-110.

F.R. Torpy, P.J. Irga, J. Brennan, M.D. Burchett, Do indoor plants contribute to the aeromycota in city buildings?, Aerobiologia 29(3) (2013) 321-331. https://doi.org/10.1007/s10453-012-9282-y.

A. Pichlhöfer, E. Sesto, J. Hollands, A. Korjenic, Health-related benefits of different indoor plant species in a school setting, Sustainability 13(17) (2021). https://doi.org/10.3390/su13179566.

P.A. Jensen, W.F. Todd, G.N. Davis, P.V. Scarpino, Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria, American Industrial Hygiene Association Journal 53(10) (1992) 660-667. https://doi.org/10.1080/15298669291360319.

W. Sriprapat, P. Suksabye, S. Areephak, P. Klantup, A. Waraha, A. Sawattan, P. Thiravetyan, Uptake of toluene and ethylbenzene by plants: Removal of volatile indoor air contaminants, Ecotoxicology and Environmental Safety 102 (2014) 147-151. https://doi.org/https://doi.org/10.1016/j.ecoenv.2014.01.032.

H. Ullah, C. Treesubsuntorn, P. Thiravetyan, Application of exogenous indole-3-acetic acid on shoots of Zamioculcas zamiifolia for enhancing toluene and formaldehyde removal, Air Quality, Atmosphere & Health 13(5) (2020) 575-583. https://doi.org/10.1007/s11869-020-00820-y.

C. Treesubsuntorn, P. Thiravetyan, Botanical biofilter for indoor toluene removal and reduction of carbon dioxide emission under low light intensity by using mixed C3 and CAM plants, Journal of Cleaner Production 194 (2018) 94-100. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.05.141.

M. Masi, W.G. Nissim, C. Pandolfi, E. Azzarello, S. Mancuso, Modelling botanical biofiltration of indoor air streams contaminated by volatile organic compounds, Journal of Hazardous Materials 422 (2022) 126875. https://doi.org/https://doi.org/10.1016/j.jhazmat.2021.126875.

V. Hörmann, K.-R. Brenske, C. Ulrichs, Suitability of test chambers for analyzing air pollutant removal by plants and assessing potential indoor air purification, Water, Air, & Soil Pollution 228(10) (2017) 1-13. https://doi.org/10.1007/s11270-017-3586-z.

K.J. Kim, H.J. Kim, M. Khalekuzzaman, E.H. Yoo, H.H. Jung, H.S. Jang, Removal ratio of gaseous toluene and xylene transported from air to root zone via the stem by indoor plants, Environmental Science and Pollution Research 23(7) (2016) 6149-6158. https://doi.org/10.1007/s11356-016-6065-y.

M.-W. Lin, L.-Y. Chen, Y.-K. Chuah, Investigation of A Potted Plant (Hedera helix) with Photo-Regulation to Remove Volatile Formaldehyde for Improving Indoor Air Quality, Aerosol and Air Quality Research 17(10) (2017) 2543-2554. https://doi.org/10.4209/aaqr.2017.04.0145.

A. Setsungnern, C. Treesubsuntorn, P. Thiravetyan, The influence of different light quality and benzene on gene expression and benzene degradation of Chlorophytum comosum, Plant Physiology and Biochemistry 120 (2017) 95-102. https://doi.org/https://doi.org/10.1016/j.plaphy.2017.09.021.

I.Z. Ibrahim, W.-T. Chong, S. Yusoff, The design of the botanical indoor air biofilter system for the atmospheric particle removal, MATEC Web of Conferences, EDP Sciences, 2018, p. 02035.

H. Teiri, H. Pourzamani, Y. Hajizadeh, Phytoremediation of VOCs from indoor air by ornamental potted plants: A pilot study using a palm species under the controlled environment, Chemosphere 197 (2018) 375-381. https://doi.org/https://doi.org/10.1016/j.chemosphere.2018.01.078.

W. Sriprapat, P. Thiravetyan, Efficacy of ornamental plants for benzene removal from contaminated air and water: Effect of plant associated bacteria, International Biodeterioration & Biodegradation 113 (2016) 262-268. https://doi.org/https://doi.org/10.1016/j.ibiod.2016.03.001.

B. Bhargava, S. Malhotra, A. Chandel, A. Rakwal, R.R. Kashwap, S. Kumar, Mitigation of indoor air pollutants using Areca palm potted plants in real-life settings, Environmental Science and Pollution Research 28(7) (2021) 8898-8906. https://doi.org/10.1007/s11356-020-11177-1.

Y.-M. Su, C.-H. Lin, Removal of Indoor Carbon Dioxide and Formaldehyde Using Green Walls by Bird Nest Fern, The Horticulture Journal 84(1) (2015) 69-76. https://doi.org/10.2503/hortj.CH-114.

H. Ullah, C. Treesubsuntorn, P. Thiravetyan, Enhancing mixed toluene and formaldehyde pollutant removal by Zamioculcas zamiifolia combined with Sansevieria trifasciata and its CO2 emission, Environmental Science and Pollution Research 28(1) (2021) 538-546. https://doi.org/10.1007/s11356-020-10342-w.

N.H. Hashim, E.J. Teh, M.A. Rosli, A dynamic botanical air purifier (DBAP) with activated carbon root-bed for reducing indoor carbon dioxide levels, IOP Conference Series: Earth and Environmental Science 373 (2019) 012022. https://doi.org/10.1088/1755-1315/373/1/012022.

M. Rehan, Shafiullah, O. Singh, Isolation and characterization of phytosterols from dieffenbachia amoena leaf extract, Int. J. Pharm.l Sci. Res. 11(6) (2020) 2875-2881. https://doi.org/10.13040/ijpsr.0975-8232.11(6).2875-81.

J. Chen, X. Wei, Thidiazuron in micropropagation of aroid plants, Thidiazuron: From Urea Derivative to Plant Growth Regulator, Springer2018, pp. 95-113.

K.L. Cumpston, S.N. Vogel, J.B. Leikin, T.B. Erickson, Acute airway compromise after brief exposure to a Dieffenbachia plant, The Journal of Emergency Medicine 25(4) (2003) 391-397. https://doi.org/https://doi.org/10.1016/j.jemermed.2003.02.005.

G.S. Bunting, Revision of Spathiphyllum (Araceae) (1960).

B. Yu, F. Liao, J. Liu, Y. Sun, L. Huang, Efficient regeneration and transformation of Spathiphyllum cannifolium, Plant Cell, Tissue and Organ Culture (PCTOC) 127(2) (2016) 325-334. https://doi.org/10.1007/s11240-016-1052-z.

M.H. Yoo, Y.J. Kwon, K.-C. Son, S.J. Kays, Efficacy of indoor plants for the removal of single and mixed volatile organic pollutants and physiological effects of the volatiles on the plants, Journal of the American Society for Horticultural Science 131(4) (2006) 452-458. https://doi.org/10.21273/JASHS.131.4.452.

I. Pavlovic, P. Tarkowski, T. Prebeg, H. Lepedus, B. Salopek-Sondi, Green spathe of peace lily (Spathiphyllum wallisii): An assimilate source for developing fruit, South African Journal of Botany 124 (2019) 54-62. https://doi.org/https://doi.org/10.1016/j.sajb.2019.04.014.

J. Chen, Y. Li, Coal fly ash as an amendment to container substrate for Spathiphyllum production, Bioresource Technology 97(15) (2006) 1920-1926. https://doi.org/https://doi.org/10.1016/j.biortech.2005.08.009.

C. Lanier, N. Manier, D. Cuny, A. Deram, The comet assay in higher terrestrial plant model: Review and evolutionary trends, Environmental Pollution 207 (2015) 6-20. https://doi.org/https://doi.org/10.1016/j.envpol.2015.08.020.

K.J. Kim, S.W. Han, J. Yoon, N. Jeong, S.J. You, E.H. Yoo, H.W. Seo, S.Y. Jo, S.J. Kays, Removal of indoor odors via phytoremediation: interaction between aromatic hydrocarbon odorants decreases toluene removal, Air Quality, Atmosphere & Health 13(12) (2020) 1395-1401. https://doi.org/10.1007/s11869-020-00864-0.

M. Griffiths, The new Royal Horticultural Society dictionary: index of garden plants, Macmillan Press Ltd. 1994.

A. Meshram, N. Srivastava, Epipremnum aureum (Jade pothos): a multipurpose plant with its medicinal and pharmacological properties, Journal of Critical Reviews 2(2) (2015) 21-5. https://doi.org/10.31838/jcr.02.01.04.

A. Aydogan, J. Usman, D.G. Peck, S. Jung, K. Li, E.J. Biddinger, Golden Pothos viability in engineered mixed bed growth media containing ionic liquids for plant-based building air filtration systems, Rhizosphere 15 (2020) 100209. https://doi.org/https://doi.org/10.1016/j.rhisph.2020.100209.

V. Na roi-et, W. Chiemchaisri, C. Chiemchaisri, Genotoxicity assessment of volatile organic compounds in landfill gas emission using comet assay in higher terrestrial plant, Bulletin of Environmental Contamination and Toxicology 98(2) (2017) 283-289. https://doi.org/10.1007/s00128-016-2012-3.

A.S. Wanas, K. Matsunami, H. Otsuka, S.Y. Desoukey, M.A. Fouad, M.S. Kamel, Triterpene glycosides and glucosyl esters, and a triterpene from the leaves of Schefflera actinophylla, Chemical and Pharmaceutical Bulletin 58(12) (2010) 1596-1601. https://doi.org/10.1248/cpb.58.1596.

N.S. Ashmawy, H.A. Gad, M.L. Ashour, S.H. El-Ahmady, A.N.B. Singab, The genus Polyscias (Araliaceae): A phytochemical and biological review, Journal of Herbal Medicine 23 (2020) 100377. https://doi.org/https://doi.org/10.1016/j.hermed.2020.100377.

J. A Clement, E. SH Clement, The medicinal chemistry of genus Aralia, Current topics in medicinal chemistry 14(24) (2014) 2783-2801. https://doi.org/10.2174/1568026615666141208110021.

Y. Li, Z. Shen, Roles of dispersal limit and environmental filtering in shaping the spatiotemporal patterns of invasive alien plant diversity in China, Frontiers in Ecology and Evolution 8 (2020) 471. https://doi.org/10.3389/fevo.2020.544670.

J. Huang, First report of anthracnose caused by Colletotrichum gloeosporioides on Schefflera actinophylla in China, Plant disease 97(7) (2013) 998-998. https://doi.org/10.1094/PDIS-12-12-1205-PDN.

I.S. Compendium, Schefflera actinophylla (umbrella tree), 2020.

K. Bunk, S. Krassovitski, T. Speck, T. Masselter, Branching morphology and biomechanics of ivy (Hedera helix) stem-branch attachments, American Journal of Botany 106(9) (2019) 1143-1155. https://doi.org/10.1002/ajb2.1341.

A. Zdarta, W. Smulek, A. Pacholak, E. Kaczorek, Environmental aspects of the use of hedera helix extract in bioremediation process, Microorganisms 7(2) (2019) 43. https://doi.org/10.3390/microorganisms7020043.

P. Garcia-Caparros, G. Martinez-Ramirez, E.M. Almansa, F. Javier Barbero, R.M. Chica, M. Teresa Lao, Growth, photosynthesis, and physiological responses of ornamental plants to complementation with monochromic or mixed red-blue leds for use in indoor environments, Agronomy 10(2) (2020) 284. https://doi.org/10.3390/agronomy10020284.

Z. Su, S. Cai, J. Liu, J. Zhao, Y. Liu, J. Yin, D. Zhang, Root-associated endophytic bacterial community composition of asparagus officinalis of three different varieties, Indian Journal of Microbiology 61(2) (2021) 160-169. https://doi.org/10.1007/s12088-021-00926-6.

J. Li, J. Zhong, Q. Liu, H. Yang, Z. Wang, Y. Li, W. Zhang, I. Agranovski, Indoor formaldehyde removal by three species of Chlorophytum comosum under dynamic fumigation system: part 2—plant recovery, Environmental Science and Pollution Research 28(7) (2021) 8453-8465. https://doi.org/10.1007/s11356-020-11167-3.

M.M.S. Shamsuri, A. Leman, A. Hariri, K. Rahman, M. Yusof, A. Afandi, Profiling of Indoor Plant to Deteriorate Carbon Dioxide Using Low Light Intensity, MATEC Web of Conferences, EDP Sciences, 2016, p. 01011.

J.C. Hernandez-Barrios, N.P. Anten, D.D. Ackerly, M. Martinez-Ramos, Defoliation and gender effects on fitness components in three congeneric and sympatric understorey palms, Journal of Ecology 100(6) (2012) 1544-1556. https://doi.org/10.1111/j.1365-2745.2012.02011.x.

H. Teiri, Y. Hajizadeh, M.R. Samaei, H. Pourzamani, F. Mohammadi, Modelling the phytoremediation of formaldehyde from indoor air by Chamaedorea Elegans using artificial intelligence, genetic algorithm and response surface methodology, Journal of Environmental Chemical Engineering 8(4) (2020) 103985. https://doi.org/https://doi.org/10.1016/j.jece.2020.103985.

M. Lascurain-Rangel, G. Rodriguez-Rivas, J. Antonio Gomez-Diaz, J.L. Alvarez-Palacios, G. Benitez-Badillo, C. Lopez-Binnquist, R. Davalos-Sotelo, J.C. Lopez-Acosta, Long-term enrichment with the camedor palm (Chamaedorea elegans Mart.) improved forest cover in an anthropogenic tropical landscape, Forest Ecology and Management 450 (2019) 117499. https://doi.org/10.1016/j.foreco.2019.117499.

C. Musalem, Color green for dollars: constraints and limitations for establishing Chamaedorea palm firms in Veracruz, Mexico, Color green for dollars: constraints and limitations for establishing Chamaedorea palm firms in Veracruz, Mexico. (2014).

M. Jansen, P.A. Zuidema, A. van Ast, F. Bongers, M. Malosetti, M. Martinez-Ramos, J. Nunez-Farfan, N.P. Anten, Heritability of growth and leaf loss compensation in a long-lived tropical understorey palm, PloS one 14(5) (2019) e0209631. https://doi.org/10.1371/journal.pone.0209631.

F. D'Alessandro, F. Asdrubali, N. Mencarelli, Experimental evaluation and modelling of the sound absorption properties of plants for indoor acoustic applications, Building and Environment 94 (2015) 913-923. https://doi.org/https://doi.org/10.1016/j.buildenv.2015.06.004.

R.A.K. Rao, U. Khan, Adsorption studies of Cu (II) on Boston fern (Nephrolepis exaltata Schott cv. Bostoniensis) leaves, Applied Water Science 7(4) (2017) 2051-2061. https://doi.org/10.1007/s13201-016-0386-3.

I. Sivanesan, M.S. Son, P. Soundararajan, B.R. Jeong, Effect of silicon on growth and temperature stress tolerance of Nephrolepis Exaltata'corditas', Horticultural Science & Technology 32(2) (2014) 142-148.

C. Wong, Y.S. Ling, J.L.S. Wee, A. Mujahid, M. Müller, A comparative UHPLC-Q/TOF–MS-based eco-metabolomics approach reveals temperature adaptation of four Nepenthes species, Scientific reports 10(1) (2020) 1-13.

D.B. McConnell, Production environment affects growth rate of Boston fern, Proceedings of the Florida State Horticultural Society, 1991, pp. 317-318.

O.A. Sanchez-Flores, J.M. Coronado-Blanco, E. Ruiz-Cancino, First Documented Record of Aleuroglandulus subtilis Bondar1 for Mexico Primer Registro Documentado de Aleuroglandulus subtilis Bondar1 para Mexico, Southwestern Entomologist (2020).

G. Garcia-Guzman, F. Dominguez-Velazquez, J. Mendiola-Soto, M. Heil, Light environment affects the levels of resistance hormones in Syngonium podophyllum leaves and its attack by herbivores and fungi, Botanical Sciences 95(3) (2017) 363-373. https://doi.org/10.17129/botsci.1213.

J.A.T. DA SILVA, Response of Syngonium podophyllum L." White Butterfly" shoot cultures to alternative media additives and gelling agents, and flow cytometric analysis of regenerants, Nusantara Bioscience 7(1) (2015). https://doi.org/10.13057/nusbiosci/n070105.

M. Urrestarazu, Infrared thermography used to diagnose the effects of salinity in a soilless culture, Quantitative InfraRed Thermography Journal 10(1) (2013) 1-8. https://doi.org/10.1080/17686733.2013.763471.

L. Wang, Q. Sheng, Y. Zhang, J. Xu, H. Zhang, Z. Zhu, Tolerance of fifteen hydroponic ornamental plant species to formaldehyde stress, Environmental Pollution 265 (2020) 115003. https://doi.org/10.1016/j.envpol.2020.115003.

W. Guo, P. Li, K. Lei, L. Ji, Characterization of the complete chloroplast genome of Sansevieria trifasciata var. Laurentii, Mitochondrial DNA Part B 6(1) (2021) 198-199. https://doi.org/10.1080/23802359.2020.1860717.

N.E. Fawaz, S.S.E. El Hawary, M. Rabeh, Z.Y. Ali, A. Albohy, Sansevieria: An evaluation of cytotoxic activity in reference to metabolomic and molecular docking studies, Egyptian Journal of Chemistry 64(2) (2021) 4-6. https://doi.org/10.21608/ejchem.2020.43384.2877.

B. Dey, R. Bhattacharjee, A. Mitra, R.K. Singla, A. Pal, Mechanistic explorations of antidiabetic potentials of Sansevieria trifasciata, Indo Global Journal of Pharmaceutical Sciences 4(2) (2014) 113-122. https://doi.org/10.35652/IGJPS.2014.115.

X. Li, Y. Yang, Preliminary study on Cd accumulation characteristics in Sansevieria trifasciata Prain, Plant Diversity 42(5) (2020) 351-355. https://doi.org/10.1016/j.pld.2020.05.001.

J. Lee, H. Kang, H. Sin, J. Yoon, S. Choi, Effect of removing indoor hcho by several korean foliage plants, Indian Journal of Science and Technology 8 (2015) 26. https://doi.org/10.17485/ijst/2015/v8i26/80458.

Q. Muhammad, S.N. Gilani, F. Shahid, R. Abdur, N. Rifat, P. Samreen, Preliminary comparative phytochemical screening of Euphorbia species, American-Eurasian Journal of Agricultural & Environmental Sciences 12(8) (2012) 1056-1060.

A. Rauf, A. Khan, N. Uddin, M. Akram, M. Arfan, G. Uddin, M. Qaisar, Preliminary phytochemical screening, antimicrobial and antioxidant activities of Euphorbia milli, Pakistan Journal of Pharmaceutical Sciences 27(4) (2014).

S. Chaman, F.Z. Khan, R. Khokhar, H. Maab, S. Qamar, S. Zahid, M. Ahmad, K. Hussain, Cytotoxic and antiviral potentials of Euphorbia milii var. splendens leaf against Peste des petits ruminant virus, Trop. J. Pharm. Res 18(7) (2019) 1507-1511.

I. Delgado, R. De-Carvalho, A. De-Oliveira, S. Kuriyama, E. Oliveira-Filho, C. Souza, F.J.R. Paumgartten, Absence of tumor promoting activity of Euphorbia milii latex on the mouse back skin, Toxicology Letters 145(2) (2003) 175-180.

T.A. Chohan, M. Sarfraz, K. Rehman, T. Muhammad, M.U. Ghori, K.M. Khan, I. Afzal, M.S.H. Akash, Alamgeer, A. Malik, T.A. Chohan, Phytochemical profiling, antioxidant and antiproliferation potential of Euphorbia milii var.: Experimental analysis and in-silico validation, Saudi Journal of Biological Sciences 27(11) (2020) 3025-3034. https://doi.org/https://doi.org/10.1016/j.sjbs.2020.08.003.

J.M. Patt, A.M. Tarshis Moreno, R.P. Niedz, Response surface methodology reveals proportionality effects of plant species in conservation plantings on occurrence of generalist predatory arthropods, PloS one 15(4) (2020) e0231471.

S. Zhang, Z. Xu, R. Le, H. Hu, First Report of Leaf Blight Wilt on Dracaena sanderiana by Pantoea stewartii subsp. indologenes in China, Plant Disease 104(6) (2020) 1854-1854.

O. Choi, Y. Lee, B. Kang, S. Kim, J. Kim, Bacterial blight on Dracaena sanderiana caused by Burkholderia cepacia, Australasian Plant Disease Notes 15(1) (2020) 1-4.

A. Yokosuka, Y. Mimaki, Y. Sashida, Steroidal Saponins from Dracaena s urculosa, Journal of natural products 63(9) (2000) 1239-1243.

M. Fuadi, M. Mohamed, N. Salleh, M. Anwar, Y. Awang, R. Fauzi, Effect of different concentrations of benzyladenine and frequency of watering on growth and quality of Dracaena sanderiana and Codiaeum variegatum, Journal of environmental biology 35(6) (2014) 1047.

M.D. Cruz, R. Müller, B. Svensmark, J.S. Pedersen, J.H. Christensen, Assessment of volatile organic compound removal by indoor plants—a novel experimental setup, Environmental Science and Pollution Research 21(13) (2014) 7838-7846. https://doi.org/10.1007/s11356-014-2695-0.

A.A. Morsy, I.E. Elshahawy, Anthracnose of lucky bamboo Dracaena sanderiana caused by the fungus Colletotrichum dracaenophilum in Egypt, Journal of Advanced Research 7(3) (2016) 327-335. https://doi.org/https://doi.org/10.1016/j.jare.2016.01.002.

E. Schuettpelz, K.M. Pryer, Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy, Proceedings of the National Academy of Sciences 106(27) (2009) 11200-11205.

M.D. Lowman, H.B. Rinker, Forest canopies, Elsevier 2004.

J.-Y. Liang, Y.-H. Chien, Effects of photosynthetic photon flux density and photoperiod on water quality and crop production in a loach (Misgurnus anguillicandatus)–nest fern (Asplenium nidus) raft aquaponics system, International Biodeterioration & Biodegradation 102 (2015) 214-222. https://doi.org/10.1016/j.ibiod.2015.02.018.

S. Haddad, R. Bayerly, In vitro propagation of ferns (Asplenium nidus) via spores culture, Jordan Journal of Agricultural Sciences 10(1) (2014) 144-153.

S. Pimsuwan, D. Watcharinrat, P.J.T. Kanchanaphusanon, U. Suksa-ard, The effects of watering rates using the drip irrigation method on the root mass growth of bird’s nest ferns, International Journal of GEOMATE 18(67) (2020) 15-20. https://doi.org/10.21660/2020.67.5546.

H.L. Bornhorst, Growing native Hawaiian plants: a how-to guide for the gardener, Bess Press2005.

N. Baltrushes, Medical ethnobotany, phytochemistry and bioactivity of the ferns of Moorea, French Polynesia. Senior Honors Thesis. Department of Integrative Biology, University of California. Berkeley, California, USA (2006).

A. Benniamin, Medicinal ferns of North Eastern India with special reference to Arunachal Pradesh, Indian Journal of Traditional Knowledge 10(3) (2011) 516-522.

Published

2022-08-23

How to Cite

[1]
H. Tan, “Small-Scale Botanical in Enhancing Indoor Air Quality: A Bibliometric Analysis (2011-2020) and Short Review”, Prog. Energy Environ., vol. 19, pp. 13–37, Aug. 2022.
سرور مجازی ایران Decentralized Exchange

Issue

Section

Review Article
فروشگاه اینترنتی