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Abstract 
The extraction of lipids from Ganoderma lucidum mycelial biomass presents 
a potential cost-effective solution for biodiesel production. This study aimed 
to evaluate the efficacy of three different lipid extraction methods: Soxhlet 
extraction (SXE), solvent extraction (SVE), and ultrasonic-assisted extraction 
(UAE). The biomass (5 g) was subjected to varying conditions of hexane 
solvent (50-300 ml) at a constant temperature of 60°C for 1-9 hours. The 
research methodology involved a systematic comparison of lipid yields 
obtained under different extraction conditions. The results demonstrated that 
lipid yield was significantly influenced by extraction time and solvent 
quantity, with SVE yielding the highest lipid content of 20.36% (at 2 hours 
and 100 ml hexane), followed by SXE at 18.8% and UAE at 7.50%. These 
findings indicate that SVE is the most effective method for lipid extraction 
from G. lucidum mycelial biomass. The implication of this study is that G. 
lucidum mycelial biomass can be considered a viable raw material for 
biodiesel production. Future research should focus on exploring novel 
extraction techniques and optimizing parameters to further enhance lipid 
yields, underscoring the significance of this study in advancing sustainable 
biodiesel production. 
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1 Introduction 
Ever since industrial revolution, the consumption of food, water, energy and electricity have risen 
dramatically due to the rapid population growth and their improvements in lifestyle [1]. Currently, fossil 
fuels dominate the world's energy demand and economy, especially the demand for transport fuel, which is 
highly affecting the environment [2]. In fact, fossil fuels are non-renewable, and not sustainable in the long 
run. Therefore, bio-based fuels, such as biodiesel, have been anticipated to be a viable substitute for fossil 
fuels, as they are sustainable, cost effective, free of toxic chemicals such as sulphur, and have greater 
lubricity for automobiles [3].  
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Biodiesel production also contributes disadvantages, for instance it needs a high production rate of 
material, and this issue leads to the rising of oil rates demand in the market [2,4]. Consequently, it has been 
estimated that using crops such as sunflower seed or rapeseed, required a large-scales and duration in order 
to achieve the existing biodiesel goals. For these reasons, it is important to find new novel raw materials, 
which can reduce the production price of biodiesel without competing with food security and so on. In 
recent years, research has been conducted on the production of biodiesel from various feedstock including 
plant-based oils, animal fats, waste oils, algal oils or even biomass [4]. Nevertheless, the research on using 
fungi-based feedstock remained limited.  As fungi are fast growing and can be utilized easily under 
favorable conditions, thus the production of biodiesel from this species could serve as a potential resource 
for energy [5,6,7].  

Ganoderma lucidum is a wood decaying fungus that has been used extensively as traditional Asian 
medicine for more than 2,000 years [8,9]. This mushroom is edible and has many health benefits such as to 
treat various diseases, most commonly cancer [8-10]. G. lucidum undergoes four stages of life cycle: (1) 
spores, (2) spore germination, (3) mycelium and (4) fruiting body. G. lucidum can easily be cultivated from 
its mycelium in short period of time with the help of biotechnological practises and nutrients. Through 
fruiting bodies and spores, it requires long period of time [10,11]. According to recent research. G. lucidum 
mycelium was cultivated by submerged-liquid fermentation process which took 3 to 6 months [8,12,13]. 
By day 10 of the fermentation process, high biomass yield could be obtained which reduces the time needed 
to produce byproducts and completely decreases contamination possibilities. Moreover, the active 
ingredients of G. lucidum is usually extracted for medicinal purposes. Apart from medicinal benefits, G. 
lucidum also assumed as a good source of biomass [6,14].  

In extracting lipid from G. lucidum for biodiesel production it is important to know proper extraction 
techniques and factors that can affect the lipid yield. Extraction methods can be divided into mechanical, 
physical, and chemical. These include soxhlet extraction, supercritical fluid extraction, pressurized liquid 
extraction, solvent extraction, and aqueous enzyme extraction [15]. Lipid extraction consumes around 90 % 
of the energy and is costly by making the process difficult [16]. Thus, the implementation of extraction 
techniques that are able to extract lipid with less duration, energy and solvent consumption without losing 
lipid quality are the key factors for cost-effective and environmentally sustainable processes. Earlier studies 
have shown that the oil yielded from extraction methods are influenced by the sample size, temperature, 
solvent volume, solvent types and time [17,18]. 

Recent advances in lipid extraction techniques have demonstrated varied performances, each with 
distinct advantages and limitations. Soxhlet extraction (SXE) remains a widely used method due to its 
ability to continuously extract lipids over extended periods, though it is time-consuming and solvent 
intensive. Recent studies have reported lipid yields up to 18.8% using SXE for fungal biomass, indicating 
its effectiveness despite operational drawbacks [19]. Solvent extraction (SVE) has gained attention for its 
simplicity and efficiency, achieving higher lipid yields in shorter times compared to SXE. A recent 
investigation reported a lipid yield of 20.36% from Ganoderma lucidum mycelial biomass using SVE with 
optimized conditions [20]. Ultrasonic-assisted extraction (UAE) utilizes ultrasonic waves to enhance cell 
disruption and lipid release, significantly reducing extraction time and solvent usage. However, its 
performance can be variable, with lipid yields from fungal biomass such as G. lucidum reported at 7.50%, 
highlighting a need for further optimization [21]. Collectively, these techniques offer valuable insights into 
efficient lipid extraction, with recent studies underscoring the potential for optimizing conditions to 
improve yield and sustainability [22,23,24]. 

This study focuses on the comparison of three different extraction techniques (Soxhlet extraction, 
solvent extraction and ultrasonic-assisted extraction) on extraction of G. lucidum mycelial biomass lipid 
(GMBL) cultured through submerged-liquid fermentation.  The lipid yield of the GMBL will be identified 
and compared to determine the most effective extraction technique for GMBL. The study's novelty lies in 
its comprehensive evaluation and comparison of three distinct lipid extraction methods Soxhlet extraction 
(SXE), solvent extraction (SVE), and ultrasonic-assisted extraction (UAE) on Ganoderma lucidum 
mycelial biomass. By systematically varying extraction conditions such as solvent volume and time, and 
analysing their impact on lipid yield, the study provides a detailed assessment of each method's 
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effectiveness. The application of these techniques to G. lucidum mycelial biomass for biodiesel production 
is a relatively underexplored area, offering new insights into optimizing extraction processes for this 
specific biomass. 

2 Methodology 
2.1 Preparation of material 

In this research, G. lucidum mycelial biomass was prepared in the Omics Laboratory at the Institute of 
Biological Sciences, University of Malaya. Mycelium of G. lucidum was cultivated by submerged-liquid 
fermentation in which the pellets were formed within 30 days of cultivation. Biomass of the mycelium was 
mass produced by using a bioreactor in the laboratory [14]. G. lucidum mycelium was dried at 60°C for 
three consecutive days in a drying oven. Next, the biomass obtained was ground into fine powder as shown 
in Fig. 1. 
 

 

 
Fig. 1 Phases from A (mycelium pallets of G. lucidum at 30th day of submerged-liquid fermentation), to B (dried 
G.lucidum mycelial biomass after 3 days) followed by C (finely powdered G.lucidum mycelial biomass by using 
mortar and pestle). 

2.2 Extraction of lipid 

The lipid extraction of G. lucidum mycelial biomass was carried out using soxhlet, ultrasonic and solvent 
extraction. Hexane was used as a solvent for 5 g of G. lucidum mycelial biomass at 60 °C for all three 
extraction techniques. After extraction, the lipid of G. lucidum was extracted from the sample by filtering 
and the lipid mixture of the solvent was evaporated using a rotary evaporator [15].  

2.3 Soxhlet extraction (SXE) 

In soxhlet extraction (SXE), the extraction was carried out using a soxhlet equipment from the Biomass 
Energy Laboratory at the Institute of Biological Sciences, University of Malaya. SXE conducted using 50, 
100 and 150 ml of hexane at 3, 6 and 9 h. 

2.4 Solvent extraction (SVE) 

In solvent extraction (SVE), the biomass powder was mixed with hexane in a 500 ml sample bottle. The 
sample bottle was then put on a hot plate at 60 ° C with a magnetic stirring of 200 rpm. SVE was conducted 
using 100, 150 and 200 ml of hexane at 1, 2 and 3 h. After the extraction period, the mixture was subjected 
to filtration to separate the liquid phase containing the dissolved lipids from the solid biomass residue. The 
filtrate was then concentrated to isolate the lipid content. Filtration was conducted using a vacuum filtration 
setup to ensure efficient separation of the solvent and residual biomass [19]. 
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2.5 Ultrasonic-assisted extraction (UAE) 

In ultrasonic-assisted extraction (UAE) procedure, an ultrasonic water bath was used to extract lipids. The 
biomass powder was mixed with hexane in a 500 ml sample bottle. The sample bottle was then put in 
ultrasonic water bath equipment. The experiment was carried out using 100, 200 and 300 ml of hexane at 
1, 3 and 5 h.  

2.6 Determination of lipid yield 

The lipid remained dissolved in the hexane solvent after the extraction process. A rotary evaporator was 
used to eliminate the excess solvent through the application of heat and pressure [15,17]. Mass of recovered 
lipid after the removal of solvent was weighed. The extracted lipid yield (%) is estimated by using equation 
below [17]. 

Lipid yield (%) 100i

s

m
m

=      (1) 

where the coefficient mi (g/l) is the mass of recovered lipid while ms (g/l) is the mass of dried material (5 g 
of G. lucidum mycelial biomass) used for the extraction of SXE, SVE and UAE.   

2.7 Statistical analysis 

The statistical analysis was carried out by Minitab version 18 software. All three extractions techniques 
were repeated three times. The mean values and standard deviations of the results were calculated by 
analysis of variance (ANOVA). 

3 Results and Discussion  
3.1 Lipid yield  

Extraction of GMBL using SXE, SVE and UAE was evaluated. It was observed that all three techniques 
were able to extract GMBL with different lipid yield obtained. The amount of the lipid yield was not as 
high as expected. Fig. 2 depicts the highest lipid yield obtained by each technique with different solvent 
volume and extraction time. From the result, the highest GMBL of 20.36% were achieved when using SVE 
(60 min/100 ml), followed by 18.8% by SXE (6 h/150 ml) and 7.5% from UAE (5 h/200 ml). Based on 
previous research, 1 g of mycelium of G. lucidum has lipid content of approximately around 1.67% [25].  
 

 
Fig. 2 Bar graph represents the comparison of G. lucidum mycelial biomass lipid yield (%) using SXE (6 h/150 ml), 
SVE (3 h/200 ml), UAE (5 h/200 ml). 
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In the statistical analysis done, two factors have been tested upon the yield of GMBL which were the 
solvent volume and extraction time as well as the   interaction between both independent variables. The 
fitness model analysed were 0.9945 for SXE, 0.9927 for SVE and 0.9775 for UAE.  These indicate that the 
lipid yield was strongly affected by the solvent volume used and the extraction time. Table 1, 2 and 3 show 
that there were significant effects and interactions between the factors for all three extraction techniques 
(p-value < 0.05). Previous findings have also suggested that the yield of lipid is influenced by several 
conditions such as solvent type, solvent volume, temperature, and time taken for the extraction [17,26]. On 
the other hand, Table 4 summarizes the comparison between the three different techniques used on the 
extraction of GMBL. SXE and SVE have been recorded to be effective in extracting lipid and widely used 
in previous research [27,28]. In extracting GMBL, SVE (14.57 - 20.36 %) and SXE (9.44 - 18.80 %) was 
observed to have a higher yield compared with by using UAE (4.30 - 7.50 %).     

 
Table 1 Analysis of variance (ANOVA) for the experimental results of SXE 

Source DF Sum of sq Mean sq F-value P-value 
Solvent volume 2 14.560 7.2800 67.55 0.000 
Extraction time 2 139.253 69.6267 646.05 0.000 
Solvent volume*Extraction time 4 22.897 5.7242 53.11 0.000 
Error 9 0.970 0.1078   

*mean—12.12, variance—10.45, standard deviation—3.03, R2—0.9945, adjusted R2—0.987, predicted R2—0.9782 
 
Table 2 Analysis of variance (ANOVA) for the experimental results of SVE 

Source DF Sum of sq Mean sq F-value P-value 
Solvent volume 2 9.906 4.9532 31.60 0.000 
Extraction time 2 137.224 68.6118 437.73 0.000 
Solvent volume*Extraction time 4 43.766 10.9415 69.80 0.000 
Error 9 1.411 0.1567   

*mean—13.44, variance—11.31, standard deviation—3.36, R2—0.9927, adjusted R2—0.9261, predicted R2—0.9707 
 
Table 3 Analysis of variance (ANOVA) for the experimental results of UAE 

Source DF Sum of sq Mean sq F-value P-value 
Solvent volume 2 1.0844 0.54222 9.76 0.006 
Extraction time 2 19.1878 9.59389 172.69 0.000 
Solvent volume*Extraction time 4 1.4056 0.35139 6.33 0.000 
Error 9 0.5000 0.05556   

*mean—9.24, variance—5.34, standard deviation—2.31, R2—0.9775, adjusted R2—0.9574, predicted R2—0.9098 
 

In SXE and SVE, the transfer of heat between solid and liquid occurs from the outside to the inside of 
the sample membrane, while the transfer of mass occurs vice versa (from the inside to the outside) 
[15,27,28]. On the contrary, the UAE utilizes the frequency of electrostatic interactions arising from the 
development of high-intensity wave propagation. The UAE process involves a physical mechanism 
whereby the penetration of the cell walls and washing out of the cell material takes place before it becomes 
disrupted [29,30]. The lower lipid yield in UAE may be due to non-consistent transmission and exposure 
to sonic power which affected biomass cell wall.
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Table 4 Comparison between three lipid extraction techniques on GMBL yield [15,22-25]. 
Aspects Extraction techniques 

 SXE SVE UAE 
Procedure  An appropriate size of cellulose thimble 

chosen for the sample before place in soxhlet 
extractor. Solvent in a round bottom flask 

heated with a mantle 

Sample soaked in solvent with a magnetic 
stirrer in a flat bottom flask and then 

heated by a hot plate. 

Sample soaked in solvent, and placed 
in an ultrasonic water bath equipment 

Solvent  hexane hexane hexane 
Sample size 1-5 g 1-5 g 1-5 g 
Temperature 60 °C 60 °C 60 °C 
Solvent volume 50-150 ml 100-200 ml  100-300 ml 
Extraction time 3-9 h 1-3 h 1-5 h 
Advantages  No filtration needed, easy to use Short extraction duration Moderate extraction duration, easy to 

use 
Disadvantages Long extraction duration Filtration needed High solvent amount, filtration needed 
Lipid yield 9.44 % - 18.80 % 14.57 % - 20.36 % 4.30 % - 7.50 % 
Quantity  Moderate  High  Low  
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3.2 Effect of solvent volume and extraction time 

Fig. 3 depicts the effect of altered hexane volume and extraction time on GMBL yield by SXE (a), SVE 
(b) and UAE (c). As shown in the results above, the lipid yield increased as the solvent volume and the 
extraction time increased. A high solvent volume will help to accelerate the chemical reaction resulting 
in enhanced lipid production. Indeed, one previous research stated that the use of high amount of solvent 
volume affects the inclination of extraction recovery [31]. Additionally, the author reported that the 
solvent volume must be sufficient to ensure that the particles of samples are immersed in solvent 
throughout the extraction process. Hexane was selected for this analysis because it can be quickly 
recovered, non-polar, low latent vaporization heat and high solvent selectivity [18,31,32]. Alternatively, 
an optimal solvent volume and extraction time could be determined to enhance the lipid yield of GMBL. 
 
 

 
 
 
 
    
 
 
 

 
 
 
 

Fig. 3 Effect of solvent volume and extraction time on extracted G. lucidum mycelial biomass lipid yield (%): 
SXE where S1=50 ml, S2=100ml, S3=150 ml (a), SVE where S1=100 ml, S2=150 ml, S3=200 ml (b) and UAE 
where S1=100 ml, S2= 200 ml, S3= 300 ml (c). 
 

Solvent extraction (SVE) outperformed Soxhlet extraction (SXE) and ultrasonic-assisted extraction 
(UAE) in lipid yield from Ganoderma lucidum mycelial biomass due to its more efficient and adaptable 
extraction conditions [19]. SVE allows for precise optimization of solvent volume and extraction time, 
leading to a higher lipid yield of 20.36% with minimal solvent use (100 ml hexane over 2 hours). This 
direct contact method facilitates effective lipid dissolution, enhancing extraction efficiency. In contrast, 
SXE, while thorough, requires longer extraction times and larger solvent volumes, resulting in a lipid 
yield of 18.8%, which may be less efficient due to prolonged processing and greater solvent use. UAE, 
which utilizes ultrasonic waves to disrupt cell structures and improve solvent penetration, achieved a 
lower lipid yield of 7.50%. This lower yield likely stems from suboptimal ultrasonic parameters, which 
may not have fully optimized solvent interaction and extraction efficiency [21,24]. Thus, while SXE 

(a) (b) 

(c) 
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and UAE offer valuable extraction mechanisms, SVE's ability to fine-tune extraction conditions 
contributes to its superior performance in this study. 

In SXE (Fig. 3) the lipid yield decreased when the time was set up to the highest at 9 h (50 ml to 
150 ml), while, when the time set up from 3 h to 6 h the lipid yields increased. This is because SXE 
reached optimal time (3 h-6 h) that after 6 h there was not much lipid obtained.  Therefore, the lower 
the duration is more efficient compared to the higher duration [32,33]. In addition, SVE had used the 
shortest time duration (between 1 h to 3 h) and the smallest volume of solvents (100 ml to 200 ml) to 
achieve the highest lipid yield compared to SXE and UAE. The higher yield of GLBM in SVE could 
be due to the use of a magnetic stirrer that continuously mixed biomass sample with hexane solvent 
throughout the extraction process, while in SXE and UAE the sample was in static manner [23,34,35].  

4 Conclusion 
Overall, a reasonable amount of GMBL could be obtained from all three extraction methods in this 
study. The SVE (20.36%) and SXE (18.8%) techniques extracted higher G. lucidum mycelial biomass 
lipid compared with the UAE (7.5%). In SVE, the GMBL yield was enhanced as the amount of hexane 
(100-200 ml) and extraction time (1-3 h) increased.  SVE also required the shortest time (3 h) and 
smallest volume of hexane solvent (200 ml) to achieve the maximum quantity of lipid yield. Among 
the extraction techniques used, SVE could be recommended as an effective extraction technique to 
acquire lipid yield as it requires a short extraction period with moderately low solvent volume. SVE is 
also the most effective method for lipid extraction from G. lucidum mycelial biomass, achieving the 
highest lipid yield of 20.36%. This provides a practical and efficient approach for utilizing this biomass 
in biodiesel production. In addition, this study demonstrated that G. lucidum mycelial biomass can be a 
viable and cost-effective raw material for biodiesel production, supporting the potential for using 
underutilized biomass in sustainable energy solutions. Nonetheless, future research work should focus 
on other novel extraction techniques such as supercritical fluid extraction, microwave-assisted 
extraction and pulse electric field extraction besides optimizing the extraction parameters in improving 
the lipid yield from G. lucidum mycelial biomass. 
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