Progress in Energy and Environment

Journal homepage: http://www.akademiabaru.com/submit/index.php/progee

Original Article

Characterization of Surface Morphology and Magnetic Properties of Fe₃O₄-Deposited Alginate Bead

Swee Pin Yeap^{*}, Mohammad Afiq Afiki Bin Ismail

Department of Chemical and Petroleum Engineering, Faculty of Engineering, Technology, and Built Environment, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia.

Abstract

It is generally known that Fe₃O₄ nanoparticles are magnetically separable and thus, have been widely used in water treatment. However, magnetophoresis of the singly dispersed Fe₃O₄ nanoparticles has been proven to be slow. Realizing this limitation, the present work aims to immobilise various quantities of nano-Fe₃O₄ onto the surface of an alginate bead to promote cooperative magnetophoresis. The formed nano-Fe₃O₄ deposited alginate beads were characterized for their surface morphology and magnetic properties using scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM), respectively. SEM analysis showed that the external surface of the alginate bead turns porous upon subjecting to sonication process. The pores serve as the template to hold the Fe₃O₄ nanoparticles in place. Upon the deposition of Fe₃O₄ nanoparticles, the external surface of alginate bead turned rougher. Besides changes in surface morphology, the saturation magnetization value of the beads recorded a substantial increment along with the loading amount of Fe₃O₄. Such observation proved that it is feasible to induce a cooperative magnetic effect by immobilise various quantities of Fe₃O₄ onto the surface of alginate bead.

Copyright © 2020 PENERBIT AKADEMIA BARU - All rights reserved

1 Introduction

Nanotechnology has been the key technology to combat many environmental issues especially in water and wastewater treatment [1,2]. In specific, nanoparticles are the particles with at least one of the dimensions fall within the nanoscale range (1 nm to 100 nm). Each type of nanoparticles has their own unique properties. Out of the many types of nanoparticles, magnetic nanoparticles have received great interest for water treatment owing to their ability to respond to magnetic field. Accordingly, these nanoparticles offer an advantage whereby they can be easily separated after their applications. Nevertheless, collecting magnetic nanoparticles from a large volume of liquid medium can be challenging. In fact, the magnetophoresis rate can be rather slow if the magnetic nanoparticles move individually or as a tiny cluster [3,4]. The time lag poses a serious challenge for the effective use of magnetic nanoparticles in water treatment [5]. Hence, it was proposed to attach an amount of magnetic nanoparticles onto other substrates (such as microcapsule [6], activated carbon [7], biomass [8,9]) in order to fully realise its feasibility for water treatment.

Nevertheless, some of the substrates require the use of high temperature, pressure, or toxic chemical for preparation. For instance, synthesis of activated carbon involves high temperature pyrolysis process

Article Info

Received 24 April 2020 Received in revised form 20 May 2020 Accepted 21 May 2020 Available online 28 May 2020

Keywords

Magnetic nanoparticles Alginate bead Surface deposition Saturation magnetization Surface morphology

Volume 14 No 2 (2020) 11-17

^{*} Corresponding author yeapsw@ucsiuniversity.edu.my

(300 – 900°C) [10,11]. In this work, alginate bead, a more environmentally friendly material made from bio-resources (seaweed), was used as the substrate to hold the nanoparticles. The production of alginate bead is simple, does not require any hazardous material, solvent or special conditions; thus, it is preferable for large scale industrial application. In fact, alginate-based composites have been widely employed as an adsorbent for pollutant removal [12,13]. Noteworthy that the physical characteristics of an adsorbent are associated with its application performance [14]. Thus, besides to deposit magnetic nanoparticles onto the external surface of an alginate bead, the present work also aims to characterize its surface and magnetic properties.

2 Methodology and Experiment Setup

2.1 Preparation of Alginate Beads

Alginate bead was prepared from the gelation of sodium alginate using calcium chloride as the crosslinking agent [15]. Both chemicals were obtained from Chemiz. First, sodium alginate powder weighted 2 g was dissolved in 100 mL of distilled water to give an alginate solution of 2 wt% concentration. The mixture was stirred at 80°C until a transparent and viscous solution was obtained. After that, the solution was added drop-by-drop into a continuously stirred calcium chloride solution in which the alginate gel beads were formed. The formed alginate beads were then rinsed with distilled water to remove excess reactant.

2.2 Depositing Nano-Fe₃O₄ onto the Surface of Alginate Beads

0.25 g/L of Fe₃O₄ nanoparticle suspension was prepared by dispersing Fe₃O₄ nanopowder (Nanoamor, USA) into distilled water. The suspension was subjected to 1-hour of ultrasonication using a sonicator bath. Then, alginate beads were poured into the suspension and followed by another 1-hour of ultrasonication. The second round of sonication was to reduce the extent of particle agglomeration as well as to enhance the mixing of nanoparticles with the bead. It was expected that the nanoparticles will deposit on the external surface of the alginate bead, as illustrated in Fig. 1. The nano-Fe₃O₄ deposited alginate beads were then rinsed several times with distilled water to remove any unbound or loosely bound nanoparticles. Similar procedures were repeated by increase the amount of Fe₃O₄ loading from 0.25 g/L to 3.0 g/L. As shown in Fig. 2, the nano-Fe₃O₄ deposited alginate beads appear to be brownish in colour, indicating successful attachment of Fe₃O₄ nanoparticles onto the bead. The beads were air-dried (instead of oven-dried to avoid extreme shrinkage) before proceeding to the surface morphology and magnetic properties analyses.

Fig. 1 Illustration of (a) alginate bead and (b) alginate bead surface deposited with nano-Fe₃O₄.

2.3 Characterizing the Alginate Beads

Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis were used to characterize the size and shape of nano-Fe₃O₄ and alginate bead, respectively. Fourier transformed infrared spectroscopy (FTIR) analysis was used to identify the surface functional group of the alginate bead. It was conducted using the ATR technique for the range 400 to 4000 cm⁻¹. To determine the

magnetic properties of the beads, magnetic hysteresis loop was generated from vibrating-sample magnetometry (VSM) analysis.

Fig. 2 Physical outlook of (a) pure alginate bead and (b) nano-Fe₃O₄ deposited alginate bead [The beads shrank upon dehydration in SEM sample preparation].

3 Results and Discussion

TEM analysis on the nano-Fe₃O₄ clearly showed that this particle is of uniform (spherical) shape (Fig. 3). The average particle size is 30.8 ± 8.2 nm, as reported in our previous work [3]. Severe agglomeration observed in this image can be ascribed to the overwhelm of interparticle attraction forces over repulsion forces between the bare nanoparticles [16,17]. Meanwhile, there are possibility that the seen agglomeration was induced by the drying step during TEM sample preparation [17,18]. Hence, sonication was imposed on the nano-Fe₃O₄ (to reduce the agglomeration) before being deposited onto the alginate bead.

Fig. 3 TEM image of Fe₃O₄ nanoparticle.

Fig. 4 SEM images of alginate beads obtained at 1.5k (left) and 5k (right) magnifications. The alginate bead was surface deposited with (a) none, (b) 0.25 g/L, and (c) 3.0 g/L nano-Fe₃O₄ particles.

In order to identify the change in surface morphology of the bead, SEM analysis was conducted on the alginate bead which was surface deposited with (a) none, (b) 0.25 g/L, and (c) 3.0 g/L nano-Fe₃O₄ particles. As shown in Fig. 4a, the pure alginate bead displayed a rather smooth texture. On the other hand, the external surface of the nano-Fe₃O₄ deposited alginate beads appeared to be highly porous. The presence of pores on the bead surface is obviously seen, especially, for the 0.25 g/L nano-Fe₃O₄ deposited bead (Fig. 4b). Small quantity of Fe₃O₄ clusters were found to deposit within the pores. In most likelihood, these pores were formed due the sonication step that imposed onto the alginate bead during it mixing with nano-Fe₃O₄. The intense sonication imposed high shearing impact that disrupts

the surface of a material until pore is formed [19,20]. In fact, in our previous work, we did not observe such pores on the external surface of alginate beads that were formed without sonication [21]. The formed pores serve as the site to accommodate more Fe_3O_4 nanoparticles. In this regard, it was found that the pores on the bead surface were almost fully covered by nano-Fe₃O₄ when the concentration of nanoparticles being increased to 3.0 g/L (Fig. 4c).

This observation indicates that it is possible to apply sonication as a *pre*-treatment strategy to increase the surface area of an alginate bead. Future work can be done to evaluate the effect of sonication frequency and sonication duration on the pore formation, and thus, the amount of nanoparticles that can be upheld by the pores.

Surface properties of the alginate bead and nano-Fe₃O₄ deposited alginate bead were identified using FTIR analyser. Fig. 5 shows the FTIR profile of both types of beads. The profile of alginate bead clearly shows that hydroxyl groups are present (3264 cm⁻¹); meanwhile, the peaks at 1602 cm⁻¹ and 1417 cm⁻¹ are ascribed to the asymmetrical and symmetrical stretching vibrations of carboxyl group, respectively [22]. As can be seen from Fig. 5, the nano-Fe₃O₄ deposited alginate bead has a similar FTIR profile to the pure alginate bead. A peak at around 579 cm⁻¹ – 632 cm⁻¹, which supposed to be induced by Fe-O vibrations [23,24], was not observed here. Such phenomenon might be due to Fe-O band was covered by another broad peak of the alginate. Otherwise, it was undetectable in the fingerprint region (<1000 cm⁻¹) owing to the concentration of that band was too low.

Fig. 5 FTIR spectra of alginate bead without (black line) and with Fe₃O₄ deposition (blue line).

Fig. 6 delineates the hysteresis loop obtained from VSM measurement. As shown in Fig. 6, the saturation magnetization value of the beads which were surface deposited with 0.25 g/L and 3 g/L nano-Fe₃O₄ were 0.0271 and 0.1198 emu/g, correspondingly; also, the alginate beads possess mild retentivity (*Mr*) of 0.0025 emu/g and 0.0208 emu/g, respectively (Fig. 6). The former indicates that the alginate bead is more magnetically responsive with the increase amount of nano-Fe₃O₄ loading; while the latter indicates that the magnetic alginate beads were not of perfect superparamagnetic because they retain magnetic memory in zero field.

Fig. 6 Magnetic hysteresis loop of alginate bead surface deposited with different amounts of nano-Fe₃O₄.

4 Conclusion

Fe₃O₄ nanoparticles were successfully deposited onto the external surface of alginate bead. It was found that exposing the alginate bead to an intense sonication may disrupt the surface structure of the bead by creating multiple pores. These surface pores act as a template to hold the Fe₃O₄ nanoparticles in place. It was also observed that the bead surface turned rougher upon deposition of Fe₃O₄ nanoparticles; this shall offer extra surface area for its potential application in water treatment. Meanwhile, the alginate bead attained net magnetic properties whereby the saturation magnetization value increases with the loading amount of Fe₃O₄ nanoparticles. Such magnetic responsivity suggests that the bead can be recollected using a magnetic field. Moreover, the cooperative magnetophoresis induced by the attached Fe₃O₄ nanoparticle clusters will promote faster magnetic separation than singly dispersed nanoparticles. Future work can be done to evaluate the performance of this magnetic bead in water remediation. Due to the potential concerns of nanosafety, investigation on the potential detachment of nanoparticles from the alginate surface upon exposure to the environmental condition is suggested for future study.

Acknowledgement

We sincerely thank the financial support from UCSI University through Pioneer Scientist Incentive Fund (PSIF) with project code Proj-In-FETBE-049.

References

- G.N. Hlongwane, P.T. Sekoai, M. Meyyappan, K. Moothi, Simultaneous removal of pollutants from water using nanoparticles: A shift from single pollutant control to multiple pollutant control, Science of The Total Environment 656 (2019) 808-833. <u>https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.11.257</u>
- [2] F. Pulizzi, W. Sun, Treating water with nano, Nature Nanotechnology 13 (2018) 633-633. https://doi.org/10.1038/s41565-018-0238-4
- [3] S.P. Yeap, S.S. Leong, A.L. Ahmad, B.S. Ooi, J. Lim, On Size Fractionation of Iron Oxide Nanoclusters by Low Magnetic Field Gradient, The Journal of Physical Chemistry C 118 (2014) 24042-24054. <u>https://doi.org/10.1021/jp504808v</u>
- [4] J.S. Andreu, J. Camacho, J. Faraudo, M. Benelmekki, C. Rebollo, L.M. Martínez, Simple analytical model for the magnetophoretic separation of superparamagnetic dispersions in a uniform magnetic gradient, Phys Rev E Stat Nonlin Soft Matter Phys 84 (2011) 021402. <u>https://doi.org/10.1103/physreve.84.021402</u>

- [5] J. Lim, S.P. Yeap, S.C. Low, Challenges associated to magnetic separation of nanomaterials at low field gradient, Separation and Purification Technology 123 (2014) 171-174. <u>https://doi.org/10.1016/j.seppur.2013.12.038</u>
- [6] L. Kong, X. Gan, A.L.b. Ahmad, B.H. Hamed, E.R. Evarts, B. Ooi, J. Lim, Design and synthesis of magnetic nanoparticles augmented microcapsule with catalytic and magnetic bifunctionalities for dye removal, Chemical Engineering Journal 197 (2012) 350-358. https://doi.org/https://doi.org/10.1016/j.cej.2012.05.019
- [7] M. Yegane Badi, A. Azari, H. Pasalari, A. Esrafili, M. Farzadkia, Modification of activated carbon with magnetic Fe3O4 nanoparticle composite for removal of ceftriaxone from aquatic solutions, Journal of Molecular Liquids 261 (2018) 146-154. https://doi.org/https://doi.org/10.1016/j.molliq.2018.04.019
- [8] K.A. Tan, N. Morad, T.T. Teng, I. Norli, P. Panneerselvam, Removal of Cationic Dye by Magnetic Nanoparticle (Fe3O4) Impregnated onto Activated Maize Cob Powder and Kinetic Study of Dye Waste Adsorption APCBEE Procedia 1 (2012) 83-89. https://doi.org/https://doi.org/10.1016/j.apcbee.2012.03.015
- [9] P. Sun, C. Hui, R. Azim Khan, J. Du, Q. Zhang, Y.-H. Zhao, Efficient removal of crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and modeling study their adsorption behavior, Scientific Reports 5 (2015). <u>https://doi.org/10.1038/srep12638</u>
- [10] C.I. Contescu, S.P. Adhikari, N.C. Gallego, N.D. Evans, B.E. Biss, Activated Carbons Derived from High-Temperature Pyrolysis of Lignocellulosic Biomass., Journal of Carbon Research 4 (2018) 51.
- [11] D. Kibami, C. Pongener, K.S. Rao, D. Sinha, Surface Characterization and Adsorption studies of Bambusa vulgaris-a low cost adsorbent, Journal of Materials and Environmental Science 8 (2017) 2494-2505.
- [12] B. Wang, Y. Wan, Y. Zheng, X. Lee, T. Liu, Z. Yu, J. Huang, Y.S. Ok, J. Chen, B. Gao, Alginate-based composites for environmental applications: a critical review, Critical Reviews in Environmental Science and Technology 49 (2019) 318-356. <u>https://doi.org/10.1080/10643389.2018.1547621</u>
- [13] R. Torres-Caban, C.A. Vega-Olivencia, N. Mina-Camilde, Adsorption of Ni²⁺ and Cd²⁺ from Water by Calcium Alginate/Spent Coffee Grounds Composite Beads, Applied Sciences 9 (2019) 4531.
- [14] J.A.G. Balanay, C.T. Lungu, Morphologic and Surface Characterization of Different Types of Activated Carbon Fibres, Adsorption Science & Technology 30 (2012) 355-367. <u>https://doi.org/10.1260/0263-6174.30.4.355</u>
- [15] S. Mandal, S.S. Kumar, B. Krishnamoorthy, S.K. Basu, Development and evaluation of calcium alginate beads prepared by sequential and simultaneous methods, Brazilian Journal of Pharmaceutical Sciences 46 (2010) 785-793.
- [16] S.P. Yeap, A.L. Ahmad, B.S. Ooi, J. Lim, Electrosteric Stabilization and Its Role in Cooperative Magnetophoresis of Colloidal Magnetic Nanoparticles, Langmuir 28 (2012) 14878-14891. <u>https://doi.org/10.1021/la303169g</u>
- [17] A. Ali, H. Zafar, M. Zia, I. Ul Haq, A.R. Phull, J.S. Ali, A. Hussain, Synthesis, characterization, applications, and challenges of iron oxide nanoparticles, Nanotechnol Sci Appl 9 (2016) 49-67. <u>https://doi.org/10.2147/nsa.s99986</u>
- [18] B. Michen, C. Geers, D. Vanhecke, C. Endes, B. Rothen-Rutishauser, S. Balog, A. Petri-Fink, Avoiding drying-artifacts in transmission electron microscopy: Characterizing the size and colloidal state of nanoparticles, Scientific Reports 5 (2015) 9793-9793. <u>https://doi.org/10.1038/srep09793</u>
- [19] S.K. Low, M.C. Tan, N.L. Chin, Effect of ultrasound pre-treatment on adsorbent in dye adsorption compared with ultrasound simultaneous adsorption, Ultrasonics Sonochemistry 48 (2018) 64-70. https://doi.org/https://doi.org/10.1016/j.ultsonch.2018.05.024
- [20] M. Tomizawa, F. Shinozaki, Y. Motoyoshi, T. Sugiyama, S. Yamamoto, M. Sueishi, Sonoporation: Gene transfer using ultrasound, World J Methodol 3 (2013) 39-44. <u>https://doi.org/10.5662/wjm.v3.i4.39</u>
- [21] S.Y. Wai, S.P. Yeap, Z.A. Jawad, Synthesis of magnetite macro-bead for water remediation: process optimization via manipulation of bead size and surface morphology, IOP Conference Series: Earth and Environmental Science 463 (2020) 012177. <u>https://doi.org/10.1088/1755-1315/463/1/012177</u>
- [22] S. Asadi, S. Eris, S. Azizian, Alginate-Based Hydrogel Beads as a Biocompatible and Efficient Adsorbent for Dye Removal from Aqueous Solutions, ACS Omega 3 (2018) 15140-15148. <u>https://doi.org/10.1021/acsomega.8b02498</u>
- [23] J. Xu, C. Ju, J. Sheng, F. Wang, Q. Zhang, G. Sun, M. Sun, Synthesis and Characterization of Magnetic Nanoparticles and Its Application in Lipase Immobilization, Bulletin- Korean Chemical Society 34 (2013) 2408-2412. <u>https://doi.org/10.5012/bkcs.2013.34.8.2408</u>
- [24] S.B. Hammouda, N. Adhoum, L. Monser, Synthesis of magnetic alginate beads based on Fe3O4 nanoparticles for the removal of 3-methylindole from aqueous solution using Fenton process, Journal of Hazardous Materials 294 (2015) 128-136. <u>https://doi.org/https://doi.org/10.1016/j.jhazmat.2015.03.068</u>