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Fiber-reinforced composites (FRCs) offer high specific mechanical properties like-
exceptional strength, lightweight properties, and versatility, but their susceptibility to 
impact damage poses a significant challenge. Characterizing these while connecting 
processing methods, microstructure, and environmental factors to impact response 
has seen limited success through conventional modeling. But with increasing 
computational power and availability of data, machine learning techniques present 
opportunities in this domain enabling accurate prediction and robust monitoring of 
impact performance and damage. This review paper provides a comprehensive 
examination of the evolving landscape in predicting impact performances and 
damages of FRCs to optimize composites’ design through the lens of different 
supervised, unsupervised, blended, deep transfer learning and alternative approaches 
highlighting their strengths, limitations, and suitability for specific tasks. Methods 
encompassing artificial neural networks (ANNs), support vector machines (SVMs), and 
convolutional neural networks (CNNs) have exhibited promise in predicting 
performance and damage parameters respectively. Each section critically evaluates 
the strengths, limitations, and contributions of these approaches, providing a holistic 
view of their effectiveness. 
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1. Introduction 
 

Composite materials are defined as the composition of more than one at least two visually 
distinct materials which are combined to provide better properties compared to the constituent’s 
individual materials while retaining their respective different properties while contributing desirable 
attributes as a whole [1]. Fiber-reinforced composites (FRCs) consist of fibers with superior strength 
and modulus bonded to a matrix with distinct interfaces (boundaries) between them [2]. FRCs are 
popularly used in engineering and structural applications because of their high performance relating 
to improved specific strength and stiffness. Currently, the demand for lightweight and high-
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performance structures continues to rise, so understanding the behavior of FRCs under different 
impact loading conditions becomes imperative for design structures. This is because of withstanding 
the anticipated impact loads to ensure safety and reliability; to optimize material selection for 
improving energy absorption; to develop effective non-destructive evaluation techniques for 
preventive maintenance; to advance the understanding of fundamental mechanisms for developing 
novel materials with superior impact resistance. Furthermore, due to impact there are extreme 
changes in energy transfer among the projectile, target resulting energy dissipation and damage 
dissemination mechanisms for different impact loading velocities in application [3]. Besides, impacts 
lead to significant damages sometimes barely visible impact damages (BVID) which reduce stiffness, 
residual strength, service life, and functionality of the components with time.  Therefore, it is very 
crucial to poster these types of damages and to be able to predict damages to get the remaining 
lifespan under dynamic loadings [4] [5]. Following the perspective existing researches mainly focus 
on the experimentation and application of finite element analysis for numerical modeling through 
simulation besides limited and on-going attempts on the application of artificial intelligence (AI) i.e., 
machine learning (ML) to characterize properties of FRCs including impact performance and damage 
prediction. So, application of machine learning in the research of FRCs is an exciting foundation of 
review to predict impact performances and damages. As the extensively deployed experimental 
testing and analytical models through numerical simulation to predict the induced damage modes 
subjected to impact loadings by means of finite element analysis (FEA) can waste of tests, 
components [6] besides real time issue, limited accuracy and high computational cost in capturing 
the complex relationships between material properties and damage mechanisms. Though, the 
application of machine learning tools in the research areas of structural applications is not new and 
quite familiar which is broadly reviewed in [7].  

Presently, data-driven algorithm methods  have gained popularity in fatigue studies as it can 
process huge experimental data [8].  Similarly, data science and machine learning techniques (one of 
the branches of artificial intelligence) have been rapidly growing over the time and being 
implemented in material science to solve different problems by using a range of statistical and 
probabilistic approaches. On the other hand, machine learning allows machines to learn 
automatically from experience and to identify correlations and patterns  between input and output 
data sets [9] which is shown as role of machine learning in FRCs composites in Fig. 1. Nowadays it has 
become an imperative tool which is widely used in a variety of studies including prediction of material 
properties, design factors, effect of manufacturing processes, uncertainty quantification, damage 
identification and structural health monitoring [10]. Combining internet of things and finite element 
(FE) simulations in the edge using physics-informed neural networks (NNs) or other machine learning 
techniques for digital twin modeling permits the identification of failures of composites [11]. But, 
accurate prediction of impact performance and damage remains a complex task, often hindered by 
the complicated chemistry of material properties, fabrication processes, and loading conditions. 
Considering those factors, this review encompasses a spectrum of predictions of FRCs performance 
and damage by machine learning approaches which included supervised learning for classification 
and regression tasks; unsupervised learning for uncovering hidden patterns; deep learning for 
extracting complex features; blended and others approaches to guide the formation of composites 
with enhanced impact resistance and improved performance. Precisely, this review comprehensively 
examines the current state of the art in machine learning based prediction of impact performance 
and damage in FRCs to explore a wide range of employed algorithms, types of impact scenarios, 
damage characteristics with different modes, evaluation with validation of models, effectiveness of 
approaches followed by challenges and future prospects of research. 
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Fig. 1. Role of machine learning in fiber reinforced polymer composites [9] 

 
2. Methodology  

 
This section presents the methodology used in the review. In these steps, we followed some 

guidelines to select the best and most influential articles related to the topic. The Google Scholar, 
Scopus database, Science Direct, PubMed, IEEE, Springer Link was used as a screening tool to find the 
appropriate article papers for the study. Here, following keywords were used in order to find articles 
that matched the desired topic. The keywords were combined using Boolean operators, resulting in 
the following search:  

 
(low velocity impact) AND (machine learning)  
(low velocity impact) AND (fiber reinforced composite) AND (machine learning) 
(low velocity impact damage) AND (fiber reinforced composite) AND (machine learning) 
 
Other filters like year, area, articles etc. were also used to narrow down which showed the 

substantial results where Google Scholar, Science direct, Scopus and Springer link shows the 
maximum share. From the search of those databases the first screening has been completed then 
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the abstracts of the selected articles were reviewed. Those did not discuss something related to the 
subject matter were excluded. Finally downloaded papers of the subject matter are uploaded in 
reference manager software Mendeley and checked for duplicates where sixteen duplicate articles 
were excluded to keep the best fitted one for further synthesizing and reviewing which is given in 
subsequent sections of the presented paper. It may be noted that, the surveys mainly and mostly 
included journal articles which is one hundred and four; besides three conference papers, two 
proceedings paper, three books are also included here. The details of published research papers 
history in different journals, conference, proceedings is shown in Table 1 where it has been found 
that the maximum fourteen articles have been published in Composite Structures journal; in the 
same time Composites Part B: Engineering and Composites Science and Technology journal published 
eight and seven articles respectively.  Articles were chosen with the highest level of research outputs 
and that have been extensively peer-reviewed from 2010 and onwards which is shown in Fig. 2; 
where it has been found that the number of publication in the specified area have been significantly 
increased in the recent years. Notably it is to be mentioned here; so far 28 more research articles 
have been published in 2024 which are included in this review paper.  

 
Table 1  
Publication distributions 
No. Name Number 
1 Composite Structures 14 
2 Composites Part B : Engineering 8 
3 Composites Science and Technology 7 
4 International Journal of Impact Engineering 3 
5 Frontiers in Materials 2 
6 Materials 3 
7 Journal of Nondestructive Evaluation 2 
8 Journal of Nondestructive Evaluation 2 
9 IEEE Sensors Journal 2 
10 Mechanical Systems and Signal Processing 2 
11 Journal of Materials Science 2 
12 Applied Composite Materials 5 
13 JMST Advances 1 
14 Hybrid Advances 1 
15 Structures 2 
16 Structural and Multidisciplinary Optimization 1 
17 Reviews on Advanced Materials Science 1 
18 Journal of Materials Research and Technology 1 
19 Russian Journal of Nondestructive Testing 1 
20 Defence Technology 1 
21 Journal of Engineering Design and Technology 1 
22 International Journal of Mechanical Sciences 2 
23 Aerospace Science and Technology 2 
24 Heliyon 1 
25 Polymers and Polymer Composites 1 
26 AIP Advances 1 
27 Composites Part A : Applied Science and Manufacturing 1 
28 Engineering Structures 3 
29 Neural Computing and Applications 1 
30 NDT and E International 1 
31 Applied Composite Materials 1 
32 Chinese Journal of Aeronautics 1 
33 Polymers 3 
34 Journal of Brazilian Society of Mechanical Sciences and Engineering 1 
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35 Journal of Composites Science 1 
36 Engineering Applications of Artificial Intelligence 1 
37 AIAA Journal 1 
38 Photonic Sensors 1 
39 Journal of Mechanical Science and Technology 1 
40 PLOS ONE 1 
41 Structural Health Monitoring 1 
42 Optical Fiber Technology 1 
43 Thin-Walled Structures 2 
44 International Journal of Precision Engineering and Manufacturing 1 
45 Archives of Computational Methods in Engineering 1 
46 Composites Communications 1 
47 Computer Networks 1 
48 Computer Science Review 1 
49 Construction and Building Materials 1 
50 Engineering Fracture Mechanics 2 
51 International Journal on Interactive Design and Manufacturing 1 
52 Materials Today Communications 1 
53 Progress in Aerospace Sciences 1 
54 Results in Engineering 2 
55 Materials Today Proceedings 2 
56 33rd Technical Conference of the American Society for Composites 1 
57 AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 1 
58 IEEE 5th International Conference on Cybernetics, Cognition and Machine Learning 

Applications (ICCCMLA) 
1 

59 Book/Book Chapter 3 
Total 112 

 

 
Fig. 2. Publication trend of related research articles 

3. Machine Learning Approaches in Predicting Impact Performance and Damage  

The field of machine learning (ML) has surged to the forefront of fiber-reinforced composites 
(FRCs) research, particularly in predicting impact performance and damage. Driven by a thirst for 
knowledge in this area, researchers have embraced diverse machine learning models and tailored 
protocols to specific objectives, guided by the type of input data. Notably, these techniques fall into 
three broad categories: supervised learning (utilizing labelled data for classification and regression), 
unsupervised learning (revealing hidden patterns in unlabelled data), and reinforcement learning 
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(adapting in dynamic environments) [12] represented in the Fig. 3. Existing research paints a vibrant 
picture of machine learning's potential in FRCs analysis. From various software applications, as 
detailed in [13], to bridging the gap between microscopic and macroscopic design parameters using 
artificial intelligence (as discussed in [14]), machine learning demonstrates its versatility in tackling 
complex challenges. Furthermore, well-trained machine learning based constitutive models excel at 
predicting the mechanical behavior of polymers, outperforming classical models in capturing nuances 
like hardening, softening, creep, and relaxation [15]. While open-source data makes machine learning 
tools accessible and reduces computational costs [9], the quality and accuracy of datasets remain 
paramount. Encouraging FRCs researchers to share reliable data from their endeavours is vital for 
fuelling the advancement of machine learning in this domain [13]. Notably, the successful pairing of 
machine learning with finite element analysis showcased in [13] demonstrates the effectiveness of 
such collaborations in generating precise predictions of fiber characteristics from material 
composition. This review meticulously delves into specific machine learning approaches applied to 
predict mechanical properties and damage induced by various impact velocities, including low 
velocities. By dissecting the data, algorithms, inputs, outputs, and achievements of these studies a 
critical analysis is reviewed as per title classification of different machine learning approaches. So, 
the current review shows effective evidence of application of machine learning in FRCs impact and 
damage prediction though there are challenges particularly in data quality and collaboration efforts. 

 

 
Fig. 3. Classification of machine learning algorithm [13] 

 
3.1 Supervised Approaches 
 

There are different supervised approaches which are employed in impact performance and 
damage predictions. Supervised methods showed the best results for damage classification and 
characterization tasks and consequently mostly used while regression or classification method is 
preferable for acustic emission  methodology while CNN is preferable for scanning methods like 
thermography [16]. The findings of different deployed supervised approaches are reviewed below. 
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3.1.1 Neural network (Deep learning) 
 

Neural Networks are a dominant class of functions with an extensive range of applications in 
machine learning and data science as well. Originally presented as simplified models of neurons in 
the brain, nowadays the biological inspiration plays a less prominent character. The acceptance of 
neural networks owes to their capacity to combine generalization with computational tractability 
while neural networks can approximate most rational functions to arbitrary accuracy. Their structure 
is still simple enough so that they can be trained proficiently by gradient descent [17]. It can be used 
to learn experiential knowledge from historical data by a number of processing units, which operate 
in parallel. Activation functions such as sigmoid and the hyperbolic tangent functions are usually used 
to these units to comprehend nonlinear computations. A neural network usually has one input layer, 
one output layer, and one or more hidden layers. By fine-tuning the number of hidden layers and the 
number of units in each layer, different models can be trained to solve different issues [18].  Neural 
network based approaches are found quite familiar and mostly employed approach in existing 
literature especially artificial neural network (ANN) and convolutional neural network (CNN) which is 
a member of deep learning. Besides these; there are other deep learning techniques i.e., long short 
term memory networks (LSTM), recurrent neural networks (RNNs), generative adversarial networks 
(GAN), radial basis function networks (RBFN), multilayer perception (MLP) are also found in 
literature. 

 
3.1.1.1 Artificial Neural Network (ANN)  

 
Artificial Neural Networks (ANNs), mimicking the human brain's structure with neuron-like 

computational units (shown in Figure 4). It is made up of a more than one layer perceptron, which is 
typically categorized into three layers: input, hidden, and output. Neurons in the hidden layer receive 
input signals from the input layer. These signals disseminate through the network, with connection 
weights and threshold values adjusted in response to training data. This learning occurs in both the 
hidden and output layers. The output layer makes the final predicted results by integrating the hidden 
layer’s processed information. During the early stages, the weight function (𝑤!") consists of 
multiplying and summing corresponding inputs (𝑥!), followed by a bias (𝑏!) to obtain 𝑦!  which is 
shown in Eq. (1). This process assists the neural network to learn and predict based on the input data 
as showed in Figure 4 [19].  

 

𝑦! =&𝑤!"𝑥!

#

!$%

+ 𝑏! 																																																																																																																																														(1) 

 
The output parameter 𝑧 i can be obtained by applying activation function 𝑓 on 𝑦 is shown in Eq. 

(2)  
 

𝑧! 	= 	𝑓(𝑦!)																																																																																																																																																												(2) 
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Fig. 4. Illustration of multi-layer perceptron (Artificial Neural Network) [19] 

 
ANN have emerged as a potential tool for predicting the impact properties performance and 

damage of FRCs [12] which is shown in Table 2 and Table 3. From which Table 2 shows that the 
application of ANN relies on mainly carbon and glass epoxy composites with the data of experiments, 
simulation though data augmentation process have been deployed sometimes to increase the 
required number of data. During model application the dataset is categorized mainly in the ratio of 
70%, 15% and 15% respectively for training, testing and validation respectively. The model accuracy 
found overall 90% with highest of 96%.  In the ANN model application the input and output with 
targeted attributes are composite construction properties, impact or damage properties and their 
prediction related. On the other hand Table 3 shows the ANN model development information where 
the model details reveals that mainly sigmoid function is used with Levenberg-Marquardt 
optimization algorithm to avoid model over fitting by regularization technique and optimize the 
required parameters as well. Besides, there are maximum 64 neurons, 10 hidden layers, different 
input and output numbers, learning rates shown in the table. Apart from this, errors and model 
performance indicators like R square, MSE have been calculated to validate the model by mostly k-
fold cross validation besides ensemble, train-test-split and performance metrics calculation method. 
The findings in the study listed in the Table 2 and Table 3 delves into their strengths and limitations, 
highlighting their impact on various aspects of FRC performance and damage assessment which are 
summarized below.  
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Table 2 
Artificial Neural Network (ANN) application for impact performance and damage prediction in FRCs 

Ref. Composite Tool Dataset Accuracy Input Output Target Velocity 
[25] Glass fiber reinforced 

polymer (GFRP) 
ANN 70% +15%+15% 

(training + validation + 
testing) 

- Immersion time and the 
elastic modulus 

Indentation 
properties 

Effect of adding nano- 
particles on 
mechanical properties 

- 

[21] Composites plate ANN 31-Experiment 89.85% Characteristics of 
projective experiments 

Damage depth and 
size 

Projective damage 
prediction 

- 

[20] E glass epoxy plate and 
Pipe 

ANN - High Thermography readings Temperature and 
thermal images 

Characterize surface 
defects 

- 

[24] Glass fiber-reinforced 
epoxy beams 

ANN 140+10 
(training + testing)-Simulation 

- Delamination scenarios Delamination 
location and size are 

Delamination 
severity and location 
prediction 

- 

[33] CFRP plate ANN 384-
Experiment+Augmentation 

- Experimental image 
results 

Impact localization Prediction of LVI 
location 

Low 

[30] Carbon fiber epoxy ANN 64296 
(50%+50)- 
(training + forecasting)-
Experiment + Augmentation 

- Temperature, pressure, 
impregnation distance, 
viscosity 

Dynamic impact 
energy absorption 
property 

Prediction of impact 
energy 

Low 

[29] Carbon/epoxy plate ANN 200- Experiment+ Simulation 96% Absorbed energy for 
different configuration 

Absorbed energy 
prediction 

Prediction of the 
absorbed energy 

Low 

[22] Carbon fibre composites LSTM 
(ANN) 

1000-Simulation 90% Lamination information Locations and sizes 
of delamination 

Identification of the 
delamination 

- 

[23] Carbon, E-Glass Epoxy ANN 70% +15%+15% 
(training + validation + 
testing) 

- Longitudinal stress In-Plane shear stress Predict biaxial failure - 

[31] Carbon, epoxy BP-ANN 752,000-
Experiment+Simulation; 
training: validation: 
testing=7:2:1 

High Five stress tractions Corresponding 
fracture angle 

Accelerate 
Calculation process of 
Puck inter-fiber failure 

Low 

[32] Glass fiber reinforced 
polymer (GFRP) 

ANN 70% +15%+15% 
(training + validation + 
testing) 

- Ply orientation, sample 
thick- ness, height of fall, 
impact energy 

Energy observation 
and peak force 

Predict impact 
parameters 

Low 

[27] 3D-printed sandwich 
beams 

DNN- 
(feed-
forward) 

92000-Experiment, 70% 
+15%+15% 
(training + validation + 
testing) 

- Thickness, diameter, 
angle of chiral unit cell, 
duration of tests 

Resultant stresses 
and strains 

Predict mechanical 
responses and design 
optimization 

- 

[28] E-Glass, Epoxy YUKI-
Deep-
ANN 

Simulation - Mechanical 
Properties 

Crack Properties Assess behavior and 
characterization 

- 
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Table 3 
Artificial Neural Network (ANN) model development 
Ref. Model Details Optimization 

Algorithm 
Performance Indicator Error 

[20] Neurons 10, hidden layer 10, output layer 2 Levenberg-Marquardt Average percentage 
difference 

18.7, 24.1, 24.8 (depth, width, and length) 

[21] Hidden layer 6 Levenberg–Marquardt Average percentage 
difference 

9.37% 

[22] Dropout 0.1 - 0.6, sigmoid & tanh function, one hot encoding Back propagation Through 
Time (BPTT) 

Cross entropy loss - 

[23] Neurons 2, Hidden layer  5 Nelder-Mead simplex 
algorithm 

RMS - 

[24] Input 5, Output 3, Hidden layer 1 Gradient descent with 
momentum and adaptive LR 

MSE -0.55 to 1.1 & -8.8 to 20 

[25] Neurons 5, Input 2, Hidden layer 1, Output 1, 1000 epochs, Sigmoid 
function, Learning rate 0.01 

Levenberg-Marquardt MSE - 

[26] Tangent sigmoid function, Input 9, 1000 epochs Levenverg-Marquardt MSE, R square 99% Average 0.55% & 1.36% 
[29] Tangent sigmoid function, few iterations, initial population size 200, 

Neurons limit [6, 100], number of hidden layers [1,2] 
Levenberg–Marquardt MSE, RMSE 0.18J(Carbon/epoxy), 0.33 J (Glass/epoxy) 

[30] Tangent sigmoid function, output range −1 to + 1, no rule for optimal 
number of hidden layers and neurons, best configuration 50 neurons 
in single hidden layer 

Levenberg–Marquardt R-squared (R2adj) of 
97.46%, 
MSE 

0.02 kJ, 

[33] Hidden layers 2 between 24 nodes and 10 nodes - - Mean error 2.06 mm, Median error 3.13 
mm 

[33] Sigmoid function, learning rate 0.2 & 0.01 - MSE = 0.983, R square = 
0.975 

Relative error of about 10% - 90% 

[31] Hidden layer 3 Inverse MAE= 0.1168 Delamination area’s length and width= 
5.56%, 11%; Peak impact force and 
maximum displacement = 11.7%, 6.9%. 

[34] Hidden layer 2, (32 & 64 neurons), Sigmoid, ReLU, Leaky ReLU 
function, improved Adam adaptive optimizer, MSE, Batch 
Normalization function, learning rate 0.001,0.0001 

Inverse model (GAN) R square =0.97 - 
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Well-trained ANNs excel at capturing the complex non-linear relationships between design 
parameters and mechanical properties. Their predictive accuracy and computational efficiency 
surpass many traditional methods, as demonstrated in [14]. Notably, [20] showcases an ANN coupled 
with thermal imaging, acting as a live NDT tool for monitoring composite health by revealing de-
bonding as the primary defect type. Similarly, a cloud model-ANN hybrid model achieves a 
remarkable 89.85% accuracy in predicting and evaluating damage degrees in composite plates [21]. 
Again in pinpointing defects with precision ANN's prowess extends beyond property prediction to 
defect detection. ANN-based LSTM models deliver impressive defect localization results, boasting 
accuracy rates near 97%, 90%, and 99.6% for size, horizontal position, and depth, respectively [22]. 
Furthermore, a method shows promise for complex geometries and diverse materials, although 
further validation is needed. But in navigating the limits of accuracy challenges remain while a 1-5-5-
1 ANN exhibits lower RMS error in predicted failure surfaces compared to analytical methods like 
Tsai-Wu failure theory [23], which underscores the need for further research on applying machine 
learning to analytical prediction methods. Similarly, [24] highlights the discrepancy between ANN's 
delamination detection accuracy in numerical and experimental evaluations, calling for performance 
improvements. Despite these limitations of optimizing design and performance, ANNs offer valuable 
insights for design optimization. For instance, FEM, ANN, and experimental data synergy in [25] 
reveals that Nano-clay and silica composites exhibit superior environmental resistance, with 
optimized mechanical properties achievable at specific Nano-clay concentrations. Likewise, [26] 
demonstrates that ANN can successfully analyse various stacking sequences and predict their ballistic 
limits, opening doors for weight-efficient ballistic performance improvements.  Apart from this, DNNs 
effectively predict mechanical responses compared to conjugate gradient-trained DNNs while RSM-
derived polynomial models capture the compressive properties of the beams successfully [27]. Again, 
machine learning technique optimizes Deep-ANN and fine-tuned Gradient Boosting hyper 
parameters where YUKI-Deep-ANN and YUKI- Gradient Boosting highlighted superior stability and 
accuracy in predicting natural frequencies [28]. 

On the other hand, the versatility of ANNs extends to low-velocity impact scenarios. As noted in 
[29], they can accurately predict absorbed energy and composite behavior under such loads, 
provided sufficient training data is available. Back-propagation ANNs also showcase effectiveness in 
predicting impact energy absorption for blend composites, offering an alternative to traditional 
methods for optimizing processing parameters for impact resistance [30]. Furthermore, the proposed 
ANN based new fracture angle search method under LVI for carbon fiber composite is faster, accurate 
compared with Puck’s method and SRGSS algorithm [31] while there are extreme changes in the 
behavior of fibers and matrix after LVI in GFRP which are predicted by ANN [32]. On the other hand, 
the fusion of multi-frequency image data with ANNs paves the way for even more precise damage 
localization, as demonstrated in [33].  

In conclusion, ANNs offer a powerful avenue for understanding and predicting the complex 
interplay between design, performance, and damage in FRCs. Their ability to interpret non-linear 
relationships, pinpoint defects, and optimize design parameters makes them essential tools for 
advancing FRC technology. The future lies in exploring advanced ANN architectures like Recurrent 
Neural Networks for sequence-based data processing and further refining training data acquisition 
and utilization.  
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3.1.1.2 Convolutional Neural Network (CNN)  
 

Convolutional neural network (CNN) is another emerging supervised deep neural network (DNN) 
architecture that is developed from the fully connected feed forward network to avoid fast growth 
in parameters. The concept is to present convolutional and pooling layers before providing input to 
a completely connected network. Each neuron in the convolutional layer only associate to partial 
neurons of the earlier adjacent layer [18]. It also works as human brains (shown in Fig. 5) like ANN 
which is followed by feed forward neural networks that operate by extracting local features from raw 
input data in a layer-by-layer for predictions [35]. CNNs consist of convolutional layers, nonlinear 
layers and pooling layers. The convolutional layers handle fresh input data and produce invariant 
local features. The non- linear layers apply the activation function such as linear function or gradient 
based back propagation. The pooling layers pull the most important features by pooling operations 
such as max and average pooling. Supposing the input data as x1,x2....,xn the convolutional process 
can be described as: 
 
ci = φ((uxi:i+m−1) + b)                                                                                                                                           (3) 

 
where, xi:i+m−1 is a concatenation vector, b and φ is bias and non-linear activation function. u is a filter 
vector where: u ∈ Rmd. A coming map could be given as follows from the beginning through the 
ending: 

 
cj = c1, c2, . . . , ci−m+1                                                                                                                                                                                                                (4) 

 
where, index j represents the jth filter [36]. 

 

 
Fig. 5. Convolutional neural networks (CNN) 

 
CNN outperforms regarding damage detection and prediction. Previous studies regarding impact 

performance and damage prediction (shown in Table 4 and Table 5) of composites reveals that, CNNs 
excel at extracting local features from raw data through their layered architecture. This makes them 
ideal for characterizing materials like CFRP, GFRP composites and others. Apart from this Table 4 
shows the CNN and deep transfer learning application for impact performance and damage 
prediction in FRCs where it has been found that the study are mainly carbon fiber composite related 
where transfer feed forwarded network is widely applied beside CNNs. Experimental, simulation, 
field, literature data are mainly used for the study to predict impact induced damages where above 
90% accuracy achieved for most of the cases. Furthermore, information related to CNNs and feed 
forward transfer learning model development have been shown in Table 5 where different model 
details reveals that different convolution layer, pulling layer, number of epochs, padding, kernel size, 
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stride, learning rate and function are employed to achieve desired results of impact image prediction 
based on input data of images. Beside those parameters different algorithms like batch, Adam, L2 
and BPTT are mainly applied for regularization as optimizer. Accuracy, Precision, Recall and F1 score 
are calculated as performance indicators by confusion matrix besides ensemble, train-test-split and 
performance metrics calculation method to validate the model. Lastly, available errors for different 
factors are shown in the table. Following the perspective, the findings in the study listed in the Table 
4 and Table 4 highlighting various aspects of FRC’s damage classification and prediction are 
summarized below
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Table 4 
Convolutional Neural Network (CNN) and deep transfer learning application for impact performance and damage prediction in FRCs 

Reference Composite Tool Dataset Accuracy Input Output Target Velocity 

[43] Carbon fiber 
reinforced 
composites 

Deep Neural 
Network 
learning 
(CNN) 

162 (cracking) + 
4500 (breakage & 
delamination)-
Acustic Emission 

99% AE raw time series 
and frequency-
domain sequence 
data 

Damage 
classification 

Technique for 
time series 
classification 

- 

[44] Short carbon 
fiber- filled 

CNN - High Microstructural 
image and Young’s’ 
modulus 

Stress component Prediction of 
full-field stress 
maps 

- 

[41] Fiber- reinforced 
polymer (FRP) 

CNN 149- Literature+ 
simulation 

93% Materials 
characteristics and 
impact test 
parameters 

Post impact test 
parameters 

Damage 
prediction 

- 

[38] CFRP Cascade 
Region CNN 

2500+500 
(training + 
testing)-Field 

94.5% Damage data Damage 
identification 

Damage 
prediction 

- 

[45] Carbon/epoxy 
composite 
laminate 

CNN 60+20 
(training + 
testing)- Literature 
+ simulation 

 Image Data Impact 
characterization 

Structural health 
monitoring 

- 

[40] Composite 
laminate 

CNN - 87%-96% Image data Damage severity, 
types 

Damage 
recognition 

- 

[46] CFRP Deep 
learning 
(CNN) 

- 96.2%-
98.36% 

Image data Damage pattern BVID detection Low 

[47] CFRP Deep 
learning 
(CNN) 

- 99.75% Image data for 
different energy 

Image classification Classification of 
BVID 

Low 

[48] Carbon fiber 
reinforced 
plastics 

Deep 
learning 

70%+30% 
(training + testing) 

- Scan data of 
damages 

Depth classification Defects depth 
estimation 

Low 
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(LSTM, CNN, 
CNN- LSTM) 

[42] Composite 
laminate 

CNN 7:2:1 
(training: testing: 
validation) 

90%-96% NDT image data Compressive 
residual strength 

Prediction of 
compressive 
residual strength 
after impact 

Low 

[49] CFRP Auto-
Regressive 
(AR) 

- - Impact test data Delamination 
identification 

Detection of LVI 
delamination 

Low 

[50] Composite 
stiffened panel 

PNN (T-Bi-
LSTM)  

1500  - Stacking sequence Discrete feature 
thickness 

Predict the 
buckling load 

- 

[51] CFRP Bi-LSTM 613 (80% training 
+20% testing) 

95% Damage Images Damage Images Classify BVID - 

[52] Composite 
laminate 

CNN (VQ- 
VAE) 
 

Simulation data - Damage images Damage images Forecast 
damages 

Low 

[53] Carbon fiber 
composite 

LSTM  
(RNN) 

9600- simulation 
data 

90% Damage images Damage images Identify 
lamination 
defects 

- 

 
Table 5 
Convolutional neural network (CNN) model development 

Reference Model Details Optimization 
Algorithm 

Performance 
Indicator 

Error 

[37] Kernel size [1,N/16], Receptive field N/8, connected hidden layers 128 
and 8 neurons in softmax classifier with λ = 4, Final output dimension 
8, Training epoch 100, Initial learning rate is 0.001, Decay rate 0.5. 

Adam with batch size 
64 

Accuracy, Recall - 

[38] Convolution kernel size 3 × 3, 1 × 1 expanded to 2, 1;—total 128 
convolution kernels, Intersection over Union (IoU) thresholds 0.5, 0.7, 
and 0.9 

Stochastic Gradient 
Descent 

Precision, recall, 
Kappa coefficient 

- 

[39] Neurons 80, 40, 64, 32, 16; 2 Convolution layer 1;  Pooling layer 2; 
GRU layer 1; Hidden layer 3; Output layer 2, 150 Epochs 

Neural Network 
Intelligence 

Precision, recall,F1 
score 

Verification loss value 
0.004 

[40] Convolution layer 1,3 & 5;Kernel size 3 x 3, 5 x 5, 10 x 10, Padding 0,1 
& 2; Stride 1,2; Pool size 2 x 2, 3 x 3;Stride [11],[22]; Learning rate 
0.0001 

Back-propagation Damage classification 
time 

- 

[41] 1, 2, 4, 6 convolutional layers, combinations of 4, 8, 16, 32, 64, 128, 
256 nodes. Kernel sizes 3 × 3 to 15 × 15; epochs 200; 2 max pooling 
with 0.5; ReLU 

Adam (L2) with batch 
size 32 

Loss function 7% 
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[42] ReduceLROnPlateau function; Convolution layer 2,3;Kernel size 
3,5,7,11; Kernel number 8,16; 

Back propagation Accuracy - 

[48] Softmax function, three-layer and four-layer CNN neural network Batch normalization Accuracy, Precision, 
Recall and F1 score 

Avg. depth relative error 
reduced to 8% 

[54] Convolutional layers 4, Pooling layers 4, Output layers 2, 5000 epochs Gradient descent Reliability indexes Average error within 3% 
[47] ResNet function, 50 layers, Final connected layer 5, Learning rate 

0.001,Epochs 100 
Class Activation Map 
(CAM) 

Cross Entropy, 
Accuracy 

 

[55] Convolution layer (Filter 3 × 3 &2 x 2; 16,32,48,64 Filters), ReLU layer, 
Max-pooling Layer (Filter 2 × 2, strides 2), SoftMax function 

Batch Normalization Accuracy - 

[43] Ssliding filters length and stride 1; Convolutions lengths 10, 20, and 
40; Number of filters per layer 32 × 4 = 128 ; RELU function; Batch size 
= 8; Learning rate = 0.001; Epochs = 100 

Gradient descent Accuracy, Precision, 
Recall, Specificity and 
F1 score 

- 

[56] Initial learning rate 0.01-1;Learning rate drop period 1-5;Epochs 10-
30; Filter size for first, second, third convolution layer 3-10, 2-5, 2-5 

L2 regularization Confusion matrix Max. & avg. error 7.5-
10% & 1.1-3.3% 

[57] ReLU and Sigmoid function; Convolutional layer 2; Kernel size 3 x 3; 
Max pooling layer 3 x 3; Trainable layers 18 

Batch normalization Accuracy, Precision, 
Recall and F1 

- 

[50] SELU activation function, 201-2304 iterations, Adam optimizer R square, MSE - 
[52] 15-channel delamination fields (for the delamination forecast 

network),16-channel inter-laminar damage arrays (for the matrix 
damage forecast network), 7 and 15 layers 

- MSE 40 % less error 

[53] Dropout range between 0.1 and 0.6, one hot encoding, voting BPTT Cross entropy - 
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For instance, [37] showcases a 3D terahertz characterization system powered by a CNN, providing 
a general method for quality control and inspection throughout the composite's lifecycle. Similarly, 
the Cascade Region-CNN algorithm in [38] effectively detects damage in CFRP composites from 
diverse data sources like C-scan and A-scan signals. Again, it works for high accuracy damage 
detection with deep learning. Like, one-dimensional CNNs trained on A-scan signals demonstrate 
impressive accuracy in damage detection for fiber-reinforced polymer composites, with LSTM 
variants outperforming other models in recall accuracy [39]. Furthermore, transfer learning 
approaches like AlexNet-based CNNs achieve high accuracy (87%-96%) in identifying in-service 
damage severity, offering promising capabilities for real-world applications [40]. Furthermore, CNNs 
in predicting impact damage and exploring model refinements also hold promise for predicting 
impact damage in FRCs. The model proposed in [41] predicts impact damage for given stacking 
configurations, with further improvements achieved through aggregating multiple CNNs. However, 
the authors highlight the need for investigating the influence of input parameters and increasing data 
volume for further model refinement. Besides, CNNs application beyond feature extraction there are 
application towards automated damage assessment. The ability of CNNs to automatically extract 
damage features from NDT images is a significant advantage. Research findings in [42] demonstrates 
the effectiveness of CNNs in replacing manual feature extraction, paving the way for faster and more 
accurate damage assessment. Further explorations of network architectures and hyper-parameter 
optimization hold promise for further performance improvements.  

In summary, CNNs offer a powerful toolbox for FRC damage identification and prediction. Their 
ability to extract features, classify damage, and predict impact behavior makes them invaluable tools 
for advancing NDT and design optimization methodologies. So, CNN innovatively can replace the 
process of manually extracting damaged features from NDT images as it can extract almost all impact 
damage features and the experiment proved that the highway structure has a better effect on the 
prediction results where the number of convolution layers and the number, size of convolution 
kernels has a slight effect on the results. 
 
3.1.1.2.1 CNN based recurrent Neural Network (RNN) and other transfer learning 

 
Deep learning and neural networks based transfer recurrent learning requires a large number of 

samples and computational resources in order to train the model [35]. Again, in constitutive model 
construction; deeper neural networks can consider the subtle connections between different 
parameters, thereby enlightening deeper relationships among the data [58]. On the other hand, deep 
learning's ability to leverage pre-trained models known as transfer learning; offers significant 
advantages while deep learning algorithms are more effective for delamination detection and 
localization in a continuous structural health monitoring method [59]. In [60], a deep learning model 
for CFRP composite damage detection outperforms SVR and back-propagation neural networks, 
achieving better accuracy and faster training times. As for example, CNN based multilevel LSTM 
achieves exceptional accuracy in defect prediction with over 97% for defect size, over 90% for defect 
horizontal position and 99.6% for depth prediction for carbon fiber composites [53]. Similarly, 
attention mechanism enhanced spatiotemporal-based transfer deep learning approach effectively 
categorizes BVID (barely visible impact damages) in CFRP into their respective energy groups, with or 
without the attention module where the lesser the ratio between higher and lower impact energy 
higher the possibility of misclassification between them [51]. This highlights the potential of transfer 
learning for real-world applications where data availability might be limited. Again, deep 
convolutional neural networks (CNNs) excel at extracting intricate features from images. The 
InceptionTime model in [43] demonstrates this strength by effectively classifying three tensile 
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damage types in carbon fiber composites (fiber breakage, matrix cracking, and delamination) with an 
impressive 99% accuracy. This paves the way for automated and precise damage assessment using 
deep learning techniques. Besides, deep learning extends beyond damage detection, venturing into 
stress prediction. The CNN-based cGAN model in [44] accurately predicts the full-field stress 
distribution in composites under specific conditions. However, further research is needed to explore 
its applicability to other stress and strain components and diverse failure criteria.  On the other hand, 
the physics-informed CGAN model in [61] efficiently designs composite layups, demonstrating its 
potential for material design problems with changeable architectures. This opens doors for 
innovative and optimized composite structures. Additionally, fully connected neural networks 
(FCNNs) showcase versatility in other areas. As demonstrated in [62], FCNNs can determine optimal 
stacking sequences and predict global deformations of composite laminates in bird strike scenarios. 
Similarly, CNN based parallel neural network T-Bi-LSTM demonstrates better competence in mining 
comprehensive stacking sequences of composite stiffened panel than Bidirectional Long Short-Term 
Memory network (Bi-LSTM) [50]. This highlights their potential for broader application in various 
loading conditions and structural challenges.  

In summary, memory based multilevel recurrent transfer learning offers a transformative 
approach to FRC analysis and design optimization. Its ability to achieve high accuracy in damage 
detection, predicts stress distribution, design optimal layups, and predict global deformations under 
impacts. But, ensuring data availability, mitigating computational demands, and interpreting complex 
model decisions remain areas for improvement.  

 
3.1.1.2.2 Hybrid convolutional Neural Networks (CNN) for LVI  
 

There are some hybrid approaches found in the literature to adapt low-velocity impact induced 
damage classification, identification and prediction. Hybrid deep learning models combining CNNs 
with LSTMs leverage the strengths of both approaches. As demonstrated in [48], a CNN-LSTM model 
reduces error in ultrasonic detection of damage in CFRPs under low-velocity impact. Investigating the 
use of polymer sheets for creating artificial defects can further enhance accuracy. Lastly, there are 
some challenges and opportunities for future advancements have been identified in literature 
despite their successes. Like, layup angle and thickness uncertainties, impact strength variations, and 
boundary condition complexities add noise to model inputs, requiring consideration in future 
research [54]. Again, CNN based surrogate auto encoder model titled VQ-SM has better performance 
and robustness on the small dataset to provide full-field damage forecasting for composites under 
LVI and improving the performance of the “generative” surrogate model [52]. Similarly, another 
autoregressive approach in [49] successfully identifies delamination-induced damage in composite 
plates using a reduced number of sensors, demonstrating its potential for high-performance 
materials. Additionally, another hybrid model differentiating damage patterns caused by slightly 
different impact energies remains a challenge, as observed in [47]. But data augmentation techniques 
hold promise to address data imbalances and improve training efficiency described in [55].  

3.1.2 Support vector machine (SVM)  

Support vector machine (SVM) is a supervised machine learning algorithm that can be used to 
solve classification and regression problem (shown in Fig.6). The aim of SVM is to maximize the 
margin between different classes by a finest separating hyper plane in the features. To distribute the 
input vectors into feature space, different kernels like linear, polynomial, and radial can be used. 
Kernel function selection is very crucial to achieve a low false alarm rate for binary classification [50]. 
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It maps input features to a converted basis vector and then predicts based on that mapping. In 
regression tasks, a variant of SVM titled as Support Vector Regression (SVR) is used to guess real value 
functions. Unlike traditional regression methods, SVR computes error as the distance between the 
predicted and margin value. The margin zone consists of a predicted value (center) f(x), and width of 
2ε. Error is only considered when predictions drop outside of this interval [19]. A decision function 
f(x) is constructed by Eqn. 5 where 𝜙(𝑥!)	denotes a nonlinear mapping function. w is a weight 
coefficient, and b is a bias coefficient [63]. After solving the function f(x) in SVM, to optimize the 
function 𝜅(x, xi) symbolizes the kernel function, while âi and ai are the Lagrange multipliers shown in 
Eqn. (6). These components are used in the optimization to define the optimal hyper plane or 
regression function [19].  

𝑓(𝑥) =≺ 𝑤,𝜙(𝑥!) ≻ +𝑏                                                                                                                                 (5) 

𝑓(𝑥) =& 5⬚7 𝑎𝑖	 − 	𝑎𝑖;𝜅(𝑥, 𝑥𝑖)
#

!$%
	+ 	𝑏																																																																																																								(6) 

 

 
Fig. 6. Support vector regression (SVR) 

 
SVM is effectively applied for pinpointing impact location with precision. Apart from this the 

application of SVM in predicting impact performance and damage shown in Table 6 and Table 7. In 
Table 6 it has been found that SVM and its different extensions are applied mainly for carbon fiber 
composites where above 90% accuracy achieved to predict impact induced characteristics, void 
contents and location. On the other hand in Table 7 it has been found that  Radial basis function and 
Polynomial function kernel have been widely deployed for the prediction where k-fold cross 
validation, RMSE and confusion matrix are employed as performance parameter. In the listed studies 
of Table 6, 7 it is revealed that, SVM's key strengths lies in its ability to accurately localize impact 
events. 
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Table 6 
Support vector machine (SVM) application for impact performance and damage prediction in FRCs 

Ref. Composite Tool Dataset Accuracy Input Output Target Velocity 

[68] Polymeric 
Sandwich 
structure 

SVM 70%+30% 
(training + 
testing) 

98% Compressive 
tests data 

Stress and 
deformation 

Prediction of 
the nonlinear 
response 

- 

[70] CFRP SVM - 92.30% Impact 
responses 

Damage 
state 

Determination 
of impact 
damage 

- 

[71] CFRP Regression - 99.85% Image data Void 
content and 
location 

Effect of void 
location and 
content 

Low 

[66] FRP 
composite 
laminate 

Extended 
support 
vector 
regression 
(C-XSVR) 

200+50 
(training + 
testing)-
Experiment 

- Images of 
impact 
induced 
damages 

Fiber/matrix 
damage, 
energy 
absorption, 
force 
deflection 
curves 

Prediction of 
impact 
process stages 

Low 

[72] CFRP Least 
Square 
Support 
Vector 
Regression 
(LS-SVR) 

- - Impact 
responses 

Impact 
location and 
energy of 
impact 

Impact 
localization 
and severity 
estimation 

Low 

 
Table 7 
Support vector machine (SVM) model development 

Reference Model Details Performance Indicator 
[63] Ranges of threshold factor and weight coefficient [0.5, 0.95] and 

[0.5, 1]; Weight coefficient 0.99; Population size 30; Maximum 
number of iterations 100 

30 times under 5-fold cross 
validation for RMSE 

[65] Radial basis function (RBF) kernel, Polynomial function kernel R square = 0.976 RMSE = 0.174% 
[73] Jacobian polynomial kernel function R-square, root mean square error 

(RMSE), Relative error 
[72] A classifier with two classes, single input, single output, Bayesian 

Inference 
Performance Index (PI), Euclidian 
distance 

[68] C=50-2300, Hyper-parameter (Lambda) = 1e7, Epsilon («)= 0.1, 
Kernel option = 800-1600, Kernel =Gaussian, Radial basis function 
kernel 

Correlation coefficient, Root 
mean square error 

[70] Radial basis function (RBF) kernel, Polynomial function kernel 4-fold cross-validation, accuracy, 
precision, recall, average 
precision 

 
For instance, [64] showcases an SVM model that predicts impact location within 2 inches of the 

actual point using only four Fiber Bragg Grating Sensors (FBGSs), demonstrating its potential for real-
time damage assessment. Similarly, the BDSS-SVR approach achieves satisfactory localization 
accuracy (average error 3.065 mm) with a minimal number of impact features, making it a robust 
method for feature selection in low-velocity impact scenarios [63]. However, challenges remain. The 
need for separate v-SVR models for each coordinate can be time-consuming, prompting further 
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research into multi-output SVR models combined with BDSS for improved efficiency. Again, for 
porosity detection and reliability assessment SVMs extend beyond impact localization, offering 
valuable insights into other critical aspects of FRC health. Terahertz time domain spectroscopy 
combined with SVR analyses porosity in GFRP samples, paving the way for non-destructive on-line 
detection of this crucial parameter [65]. Furthermore, the ENV (experimental-numerical-virtual) 
modelling framework in [66] utilizes SVMs for impact analysis, enabling reliability/risk assessments 
for FRP laminates, potentially preventing catastrophic failures. Besides, SVMs are applied for 
delamination detection as part of structural health monitoring (SHM) and impact energy estimation. 
Meanwhile, LS-SVR algorithms coupled with advanced signal processing techniques estimate impact 
energy with high accuracy (mean error of 3 J) for various impact scenarios in carbon epoxy 
composites [67]. Furthermore, beyond localization SVMs are applied for classification and feature 
selection where researches revealed that classification-based SVM models (one presented in [68]) 
can reconstruct the non-linear compressive response of composite structures with high accuracy 
(over 98%), even with incomplete data. Additionally, one-class SVMs with appropriate pre-processing 
techniques excel at anomaly detection and classification which outperform popular methods like k-
nearest-neighbours (KNNs) in identifying structural defects [69]. Similarly, extreme learning 
machines (ELMs) are also used besides SVMs for damage analysis and prediction. Some previous 
studies compare SVMs with other machine learning algorithms like Extreme Learning Machines 
(ELMs) for delamination prediction in CFRPs. While both methods offer accuracy, SVM demonstrates 
superior performance in classifying the delamination interface; while regression tasks is superior in 
predicting location and size of defects compared to ELM. This highlights the importance of choosing 
the appropriate algorithm based on the specific prediction task.  

Despite having some issues, refining SVMs can be more fruitful for the future of FRCs as SVMs 
offer a versatile toolbox for FRC damage analysis and prediction. However, challenges remain in 
terms of computational efficiency, feature selection optimization, and integration with other 
machine learning techniques.  

3.1.3 Decision trees  
 
Decision trees are widely used non-parametric supervised machine learning models which are 

deployed for classification and regression [Gradient Boosted Regression Trees (GBRT) shown in Fig. 
7 as example] composed of a root node, leaf nodes, and branches [35]. The concept behind decision 
tree learning methods is simple: try out to expand a decision tree by switching a leaf node with a 
decision node for minimizing the overall empirical risk as much as possible [74]. Each node of the 
decision tree presents a feature, each branch presents the conjunction of features that proceed to 
classification, and each leaf node presents a specific class. The decision tree is constructed to exploit 
the information gain of each variable split, which consequences in a variable ranking. ID3 and C4.5 
are recognized algorithms to shape decision trees spontaneously [18]. The variation with regression 
trees is that decision trees predict categorical values where regression trees predict continuous 
values. In those types of algorithms, data stream is in the form of:  

 
(X, y) = (x1, x2, x3, . . . , xk, Y)                                                                                                                              (7) 

where x1, x2, x3..., xk are the predictor variables and Y is the target variable [36]. 
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Fig. 7. Gradient boosted regression trees (GBRT) 

 
Previous studies regarding application of decision trees and also their ensemble methods reveals 

that, decision trees hold promise in predicting ballistic impact resistance and energy dissipation (few 
examples shown in Table 8). As demonstrated in [75], they outperform support vector and random 
forest regression in accurately predicting these parameters for unidirectional FRCPs. However, this 
approach currently overlooks the influence of crucial factors like fiber types, matrix materials, and 
micro-structural topologies, requiring further refinement for comprehensive analysis. Besides, they 
are applied for online monitoring with gradient boosting as it is a powerful decision tree-based 
learning method which offers impressive accuracy and efficiency for online prediction of 
compression-after-impact (CAI) strength in carbon/glass hybrid laminates subjected to multiple 
impacts [76]. This opens doors for its application in online structural integrity monitoring of high-
performance composite structures, paving the way for proactive maintenance strategies. Again, 
decision tree-based multi-task learning schemes offer a unique perspective. As shown in [77], they 
outperform single-task learning in terms of accuracy, performance, and effectiveness. This new 
approach, with a common layer for shared information, successfully infers dent depth and local 
volume, demonstrating their high correlation with impact damage in CFRP laminates. This highlights 
the potential of multi-task learning for problems with multiple inter-related objectives.  

Despite successes in previous researches, decision trees face limitations. The relatively smaller 
number of research studies compared to other machine learning algorithms suggests a need for 
further exploration. Additionally, refining decision tree models to consider the influence of diverse 
factors like fiber types and micro-structural topologies is crucial for broader applicability in FRC 
analysis. So it can be concluded as, decision trees offer a valuable tool for understanding and 
predicting the behavior of FRCs under various loading conditions. Their potential for accurate ballistic 
resistance prediction, online CAI strength monitoring, and multi-task learning for uncovering hidden 
correlations makes them a promising avenue for future research.  

 
3.1.4 Bayesian networks  

 
Bayesian network is a supervised model that uses probability of statistical learning theorem to 

predict classes within a given set of data which enables the calculation of probabilities for their 
associated variables including classes [12].  Similar to Bayesian networks are Naive Bayes Networks, 
a simplest form of Bayesian Networks.  The computation of the approach is generally based on the 
assumption that all the attributes are conditionally independent given the value of the class C. Here, 
independence stands for probabilistic independence, that is A independent of B given C whenever 
for all possible values of A, B and C, whenever Pr(C) > 0 [36]. 

 
Pr(A|B, C) = Pr(A|C)                                                                                                                                            (8) 
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Previous studies revealed that, one of the key strengths of Bayesian network lies in its ability to 
accurately estimate the probability densities for each model input parameter. This allows researchers 
to identify physically meaningful relationships between design variables and mechanical properties, 
even when limited data is available [78]. However, further exploration beyond open-hole tensile tests 
is necessary to validate its applicability to a wider range of mechanical scenarios. Again, Bayesian 
optimization is also applied for precision impact damage localization as it can be seamlessly 
integrated with other analysis techniques, amplifying their capabilities. For instance, the fusion of 
Discrete Wavelet Transform (DWT) and short-time Fourier Transform, when trained with Bayesian-
optimized hyper-parameters, achieves impressive accuracy in impact location and damage extent 
estimation for smart composites [45]. Data augmentation further enhances accuracy, highlighting 
the potential of this approach for real-time damage assessment. Again, to optimize design for 
strength and efficiency the power of Bayesian optimization extends beyond damage prediction to 
guiding the design of optimal composite laminates. Frameworks in [79] utilize it to identify stacking 
sequences that maximize strength while remaining efficient to manufacture. Additionally, [80] 
demonstrates how combining classical laminate theory with Bayesian optimization can lead to 
superior layup angles for carbon fiber composites, optimizing both mechanical properties and 
production time by utilizing non-conventional angles.  

In summary it can be concluded that, Bayesian optimization can be successfully employed 
integrating with complex multi-scale models and incorporating heterogeneous material properties 
remain areas for further research. Additionally, balancing computational efficiency with accurate 
model fitting requires further optimization strategies. So it can be summarized as, Bayesian 
optimization is able to unveil probabilistic relationships between design parameters and mechanical 
properties. Combined with its potential for precise damage prediction and optimal design makes it a 
valuable asset for advancing FRCs technology.  

3.1.5 Hybrid  

Besides different individual classification and regression-based supervised machine learning 
approaches of damage and properties prediction, there are a number of researches found where 
hybrid approach combining both of them is employed to propose the best-fitted model which is 
shown in Table 8 and Table 9. From which, Table 8 shows the hybrid machine learning application for 
impact performance and damage prediction in FRCs where the approaches are mainly employed for 
carbon fiber composite laminate and neural network is applied combined with support vector 
machine, decision tress, K nearest neighbours, regression and some ensemble methods. These 
approaches mainly applied to predict different characters and damages of composites which are 
induced for impacts based on different inputs of composite properties achieved from experimental 
data and simulation data. On the other hand Table 9 shows the information (model details and 
performance indicator) of applied hybrid models which revealed that mostly as usual structure of 
model with k-fold cross validation besides ensemble, train-test-split and performance metrics 
calculation method have been deployed as discussed in the earlier individual sections of machine 
learning approach. 
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Table 8 
Hybrid machine learning application for impact performance and damage prediction in FRCs 

Ref. Composite Tool Dataset 
 

Accuracy Input Output Target Velocity 

[76] Carbon/ 
glass laminate 

XGBoost 
+ 
SHapley Additive 
exPlanation 

80%+20% 
 

- Impacts, DBIP, 
impact energy 

CAI strength Compression-after-
impact (CAI) 
strength prediction 

- 

[83] Composite 
laminate 

ANN, RF - 90% Natural vibration 
frequencies with 
delamination 

Delamination 
parameters 

Assessment of the 
delamination 

- 

[90] CFRP Radial Basis 
Function 
interpolation 

- High Impact responses Damage pattern Impact localization - 

[96] CFRP Decision tree based 
multi-task learning 

75%+25% 
 

70%-80% Impact tests 
results and 
damage images 

Impactor shape and 
delamination extent 

Predicting impact 
damage-related 
information 

Low 

[87] CFRP Regression and 
random forest 

- 80% Stacking 
sequence, 
impactor shape, 
and impact 
energy, damage 
image 

Impactor shape, 
delamination area 
and length 

Impact damage 
prediction 

Low 

[86] CFRP PCA, Pearson 
correlation, K-
means++ clustering 

- - Damage images Damage images Damage 
classification and 
evolution 

Low 

[81] Composite PCA and DT 2124- Simulation 
(80%+20%) 

- Defect depth, 
size, and 
thickness 

Defect character Prediction of defect 
& characterization 

- 

[91] CFRP ANN 
and  DT (XGBoost) 

Training +Testing 
+ Validation 

- Peak amplitude, 
duration, rise 
time, ringing 
count, energy, 
RMS voltage, 
average signal 
level, and peak 
frequency 

Residual 
Compressive 
Strength 

Prediction of 
residual 
compressive 
strength 

- 
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[92] Composite ANN, GA 5000- Simulation 
(70%+15%+ 
15%) 

- Stacking 
sequence 

Peak stress Optimization for 
stacking sequence 

- 

[82] CFRP Kullback–Leibler& 
Renyi divergence, 
Hellinger distance 

- - Damage image Damage image Image segmentation 
o 

Low 

[85] Carbon fiber, 
Polyurethane & 
Epoxy 

PCA, SVM, KNN,DT, 
RF, NN 
 

25-Experiment 
(70%+30%) 

Ada: 
87.83%, 
90.54% 
NN: 97.29%, 
98.52% 

Damage image Damage image Impact damage 
estimation & 
localization 

- 

[95] Composite DT, Ensemble DT, 
KNN,SVM 

5 groups each of 
20%- Simulation  

DT: 81.1- 
85.4 
SVM: 
85.9,86.2 
KNN 86.0, 
86.3 
(%) 

Stacking 
sequence 

Loading types and 
locations 

Design of a 
piecewise-
integrated bumper 
beam 

- 

[93] Textile 
Composite 

ANN, 
SVM 

420-Experiment 
 

- Properties of 
fabric and thread 

Mechanical 
properties 

Predict physical 
properties 

- 

[89] Carbon fibre 
composites 

Gaussian Process 
Regression, ANNs & 
Multiple Linear 
Regression  

3000-Simulation  - Micro & meso 
scale properties 

Stiffness matrix Uncertainty 
quantification of 
mechanical 
properties 

- 

[94] Fiber-Metal 
Laminate  

ANN, 
GA 

9000- Simulation 
(80%+10%+ 
10%) 

 Core density, 
thickness, applied 
load 

Sandwich structure 
properties 

Multi-objective 
optimization 

- 

[19] Kevlar and 
carbon with 
Epoxy 

Linear & polynomial 
regression, SVR, 
ANN 

33-Experiment 
(80%+20%) 

80%,  
89%, 
94% 
96% 

Impact energy, 
laminate 
thickness 

Impact force, 
displacement & 
absorbed energy 

Evaluate impact 
behavior 

- 

[88] E-glass and 
epoxy 

Ensemble tree, SVR, 
ANN, K-NN 

700- Simulation 
(80%+20%) 
 

96-99% Mechanical 
properties 

Damage Properties Predict damage 
properties 
 

- 
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Table 9 
Hybrid machine learning model development 

Reference Model Details Performance Indicator 
[76] DT: Number of estimators =30, 50, 100, 300, 500; Maximum depth of 

tree = 3, 4, 5, 6, 7; ANN: Learning rate = 0.01, 0.05, 0.07, 0.1, 0.2 
5-fold cross-validation; MSE 
= 1.7355, 3.2729; R-Square = 
0.9977, 0.9960 

[97] NN: Multi-layer, 10 neurons, 3 hidden layers, 1 output layer; RF: Single 
decision tree; 10 principal components 

RMSE 

[84] NN: 2 hidden layers (76 and 36 neurons), Adam optimization & ReLU 
activation function, Learning rate = 0.8; KNN: Number of neighbors 5; 
DT: Tree depth = 5; SVM: Polynomial and RFB kernels (gamma = 0.001 
and C = 100) 

MSE 

[81] Ensemble: Bootstrap aggregating (e.g., Random Forest or Extra Trees) 
and boosting (e.g., XGBoost), 1500 trees (estimators), Learning rate = 
0.1. 

k-fold cross-validation 
R2 = 0.92 to 0.99 

[91] NN: 3, 6, 9, 12, and 15 layers, 10 iterations and 15 neurons; DT: Grid  
search for learning rate, maximum depth of trees, and number of 
estimators 

10-Cross fold validation 
R square = 0.9910, RMSE = 
2.9174 

[92] NN: 2 hidden layer, 14 and 10 neurons, tangent sigmoid and pure linear 
unit function, Levenberg-Marquardt optimization; GA: Number of 
Population 100 Selection 50, Crossover 60 Mutation 5%, Number of 
Generation Value 200 

Validation error = 20.12, FEA 
error = 0.12%, MSE=12.77, R 
square=0.99996 

[85] SVM: Gaussian RBF kernel (gamma = 0.5, c = 1000,8000); 
KNN: K=5,8; DT: depth 10,14;13 estimators, learning rate 0.1; RF: trees 
17,16 ; NN: Adam with ReLU and SoftMax, 8 hidden layer and 5 output, 
learning rate 0.05 and 0.01, epochs 80 then 25and 50 epochs; t-SNE: 
perplexity = 50 and 40, No. of iterations = 2000 

Categorical cross entropy 
loss 

[95] DT: Max. no. of splits 1~1209; Split Criterion: Gini’s diversity index, 
Towing rule, Maximum deviance reduction; Ensemble DT: Max. no. of 
splits 1~1209,   No. of learners 10~500, Learning rate 0.001~1; SVM: 
Kernel function- Gaussian Linear & Quadratic Cubic, Kernel scale 
0.001~1000, Box constraint level 0.001~1000, Multiclass method; KNN: 
Number of neighbors 1~605, Distance metric- City block, Chebyshev 
Correlation, Cosine, Euclidean Hamming, Distance weight- Equal Inverse, 
Squared inverse 

K-fold cross validation 

[93] NN: Leaky ReLU, Population size 50, Cross over 70%, Mutation 30%, 30 
generations, 100 Epochs, No. of neurons 2 (min) and 30 (max), Learning 
rate 0.05, 0.2; SVM: Linear, polynomial, or RBF  kernel 

K fold, gradient descent 
optimization 
RMSE 

[89] GPR: Radial Basis Function (RBF), Mat´ern function (Mat) with ν = 3/2, 
Rational Quadratic (RQ), Exponential Sine Squared (ESS) and Dot 
Product (DP); NN: ReLU, 20 neurons, 2 hidden layer; MLR: Just simple in 
python of scikit learn 

K fold Cross validation, 
R square  ≥ 0.99 and NRMSE 
< 10⁻⁷ 

 
Apart from this, a proposed models based on PCA and DT provides an effective benchmark which 

can be applied in health monitoring of composite materials [81]. On the other hand, Kullback-Leibler 
divergence is proven as the most appropriate measure  compared to  Hellinger distance and Renyi 
divergence  for automatic image segmentation of impact damage in CFRP composite [82].  A 
compelling example of  hybrid model proposed in [83], which combines Random Forests (RF) with 
ANN-based Principal Component Analysis (PCA). This approach, trained on offline data, effectively 
detects delamination and other defects like cracks, cavities, and fiber breaks in laminated plates 
online. This demonstrates the potential of hybrid models for real-time damage assessment, 
encompassing a wider range of damage types than traditional methods. Again, in [84], four machine 
learning algorithms (MPL, KNN, SVM, DT) are combined to predict four out of six damage properties 
in Glass/Epoxy laminates which shows high accuracy (4%-6% error) while PCA outperforms ICA in 
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terms of the amount of variance captured per feature for  impact damage estimation and localization 
in composite sandwich under LVI [85]. But in another study; PCA, Pearson correlation and K-means++ 
clustering shows that, the primary stage is controlled by matrix peeling while the second half of the 
loading shows matrix peeling supplemented by fiber fracture but future studies require to 
characterize the damage evolution by recording the long-waveform AE signals of the CFRP under LVI 
[86]. So these showcase the effectiveness of hybrid models for multi-task learning, where multiple 
damage properties are estimated simultaneously. However, further research is needed to 
incorporate other crucial damage characteristics like high-velocity impact, compression-after-impact, 
and transverse impact for a more comprehensive assessment.  

Besides, the study in [87] utilizes a hybrid approach involving ridge regression, logistic regression, 
and Random Forest (RF) to analyse the relationship between dent surface characteristics and internal 
damage in CFRP laminates. Notably, this model reveals that local volume, dent surface gradient, and 
pure dent depth all contribute to damage characterization. Again, ensemble tree boosting, SVR, ANN, 
KNN for  predicting the damage behavior of E-glass/Epoxy composite shows that, the best-
performing model for higher surface areas of the indenter increased is KNN as it can capture complex 
and nonlinear relationships between the input features and the target variable with better accuracy 
and precision [88]. While, Gaussian Process Regression (GPR) compared to  ANNs, and Multiple Linear 
Regression (MLR) is found superior for underlying the relationships between the micro-scale and 
macro-scale mechanical properties [89]. These highlight the potential of hybrid models to uncover 
hidden relationships and refine existing damage assessment methodologies. Furthermore, the hybrid 
model in [70] combines SVM with a radial basis function (RBF) kernel for impact damage detection in 
CFRP using sensors. This approach achieves an impressive accuracy of 92.30%, showcasing the 
potential of hybrid models for precise damage localization and identification whereas a novel radial 
basis function interpolation approach reduces error by around 90% at different energy levels, with 
an estimated location error below 10 mm [90].  

Following the perspectives, more hybrid algorithm applications are found in the literature to 
predict different impact properties and performances by targeting the design optimization of 
composite materials. Such studies reveal that, impact resistance and residual compressive strength 
of CFRP decreased as the impact energy increased while the rate of decline in residual compressive 
strength slowed with respect to impact energy predicted by ANN and  DT (XGBoost) [91]. Similarly, 
deployment of linear regression, polynomial regression, SVR, ANN suggests that, the impact force 
increased by 118.5 % in CFRP and 175.8 % in Kevlar composite, while the hybrid layer showed a 101.4 
% increase upon impact from 16J but for absorbed energy. While, with the increase of laminated 
layers carbon fiber laminate absorbs 4.8 times more energy and Kevlar fiber and hybrid composites 
absorb 3 times more. On the other hand, application of ANN and GA shows that, the peak stress can 
be reduced by 37.3% with the burst pressure while the burst pressure can be increased by 13.4% by 
optimizing the stacking sequence [92]. Moreover, regarding design optimization earlier researches 
shows that, the application of ANN and SVM finds the optimal accuracy and predictive models shows 
superior performance for physical properties to enhance materials’ design, process optimization, and 
product performance. But further research recommended for image-based analysis and spectral 
imaging to extract rich structural and compositional information from composites [93]. Again, a 
newly elaborated methodology based of ANN and GA demonstrates accuracy for optimum design of 
composite sandwich fabricated from honeycomb core and laminated face sheets [94] while DT, 
Ensemble DT, KNN,SVM application to design piecewise-integrated composite bumper beam shows 
that 3D implementation produces better results compared to 2D [95].  

In summary; integrating diverse algorithms, optimizing hyper-parameters for each component 
and ensuring computational efficiency require further research. Additionally, exploring hybrid 
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models for more complex tasks like damage prognosis and remaining life prediction is a promising 
avenue for future investigation. Lastly, hybrid machine learning models offer a powerful and versatile 
approach for FRCs damage prediction and property estimation. Their ability to combine the strengths 
of individual algorithms expands damage detection capabilities, uncover hidden relationships, and 
achieve high accuracy. 
 
3.2 Unsupervised Approaches  

 
There are a minimum number of attempts (some examples shown in Table 10) found in the 

literature regarding application of unsupervised machine learning approaches for impact 
performance and damage oriented research as they do not have corresponding output and the 
achieved results might not be as much of accurate. This is because of unlabelled input data and 
unawareness of algorithms about exact output in advance though they help to find useful insights 
from the data. Previous literature shows that, K-means is prominently employed approach which 
classifies a set of unlabelled data into different clusters. K represents the number of preferred 
clusters which have a great impact on the algorithm performance. The function of k-means presents 
the distance between data and related centroids. K-means allocate each data to a cluster with the 
centroid that is adjacent to the data. The procedure of updating centroids based on an allotted data 
point will be continual until no data point or centroid varies [18].  For an initial set of k-means m1, 
m2....mn proceed by alternating between two steps [36]:  

 
a. Allocate instances to the clusters whose mean have the least squared Euclidean Distance: 

Si
t = xp : ||xp − mi

t ||2 ≤ ||xp − mj
t||2 ∀j, 1 ≤ j ≤ k                                                                                         (9) 

 
b. Compute the new mean centroids of clusters:  

mi
(t+1) = 1/|Si

(t)| ∑ xj∈Si
(t)xj                                                                                                                              (10) 

   

 
Table 10 
Unsupervised machine learning model development 

Reference Composite Tools Model Details Performance 
Index 

Target 

[98] Carbon fiber 
reinforced laminate 

K means Partitioning-based 
data clustering, T2 
modules, Bivariate 

Correlation 
matrix (R) 

Damage assessment 

[99] Carbon/glass fiber–
reinforced hybrid 

Fuzzy c-
means 

3 Clusters Silhouette 
index, 
Davies–
Bouldin 
index 

Cluster analysis of 
acoustic emission signals 
and tensile properties 

[101] Carbon fibre 
reinforced polymer 

PCA) and 
the K- 
means++ 

3 and 4 Clusters Silhouette 
index, 
Davies–
Bouldin 
index 

Fatigue damage 
monitoring 

[102] Flax/carbon fiber 
hybrid reinforced 
polymer 

K means 4 Clusters - Effect of volume ratio and 
hybrid mode on LVI 
properties 
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Apart from this, earlier researches reveals K-means as a clustering method which divides the 
unlabelled multidimensional dataset into different clusters of similar properties [9]. Another study 
[98] demonstrates how K-means clustering of bivariate data can effectively characterize the 
structural behavior and non-destructively monitor damage in CFRP specimens. This approach 
classifies different damage mechanisms by clustering acoustic emission (AE) signals into relevant 
categories, highlighting its potential for real-time damage assessment. Again, Fuzzy C-means (FCM), 
another valuable unsupervised tool, further expands the possibilities which works as soft cluster 
algorithm to make each input vector for representing the similarity with one vector shared with each 
cluster with a function. The value of membership parameter of this algorithm is between 0 and 1. 
Research in [99] combines FCM with both AE and digital image correlation (DIC) data. This powerful 
combination unlocks insights into the damage process of composites, providing information on both 
internal (AE) and external (DIC) damage manifestations. This opens doors for comprehensive damage 
characterization in a single framework. On the other hand, beyond characterization unsupervised 
methods can even predict impact location. The k-order sum of squares of deviations proposed in 
[100] successfully predicts impact positioning for carbon fiber composites under different energy 
levels. Additionally, [101] utilizes a combination of Principal Component Analysis (PCA) and K-
means++ to identify damage modes in CFRP laminates based on AE and DIC data. The clusters 
obtained align well with microscopic observations of the fracture surface, validating the approach's 
accuracy. Furthermore, K-means can also reveal hidden relationships between material properties 
and damage behavior. In [102], cluster analysis of AE signals in hybrid fiber reinforced polymer 
composites reveals a gradual increase in peak frequency with increasing carbon fiber content. This 
suggests a link between fiber content and damage mechanisms, providing valuable insights for 
material design and optimization.  

Apart from the reviewed studies, it can be summarized that unsupervised learning methods are 
underutilized in research related to predicting the impact performance and damage of fiber-
reinforced composites primarily because the problem is inherently a supervised learning task. 
Supervised methods are better aligned with the research goals, provide more interpretable results, 
and are more effective at making accurate predictions. However, unsupervised learning methods 
could still play a complementary role in data exploration, anomaly detection, and dimensionality 
reduction. So, the application of unsupervised approaches for impact performance and damage 
oriented research can be further explored by selecting appropriate distance metrics, optimizing 
cluster numbers, and integrating with other algorithms to refine predictions. Additionally, exploring 
more complex unsupervised techniques like self-organizing maps and deep clustering holds 
significant potential for uncovering even deeper insights into FRCs damage processes. 
 
3.3 Alternative Approaches  

 
Besides different familiar supervised and unsupervised approaches of machine learning 

application in the area of impact performance and damage, there are some other approaches also 
incorporated by the researchers. Like, outlier analysis (OA) offers a unique perspective on impact 
detection and categorizes impact events. By using machine learning or data-driven methods, OA can 
identify and categorize impact events based on structural response data. This approach can 
differentiate damaged and non-damaged features, classify failure modes, and even detect the 
presence of subtle damage, making it a valuable tool for early damage assessment. Another approach 
i.e., Genetic Algorithm effectively applied for simulating progressive damage for design optimization. 
In [103], a genetic algorithm simulates both intra-laminar damage (tension and compression) and 
inter-laminar damage (delamination) in carbon fiber reinforced polymers under low-velocity impact. 
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This enables researchers to optimize design parameters based on realistic damage scenarios, leading 
to more robust and resilient structures. Again, structure genome (SG) based machine learning offers 
a powerful tool for designing 3D woven lattice structures (WLSs). By analysing existing WLSs and their 
performance data, SG models can accurately predict compression strength and modulus [104]. This 
allows researchers to learn from existing designs and create new optimized WLSs with improved 
performance which pave the way for intelligent material design. Furthermore, the multi-output 
random forest regression model in [105] demonstrates the potential of machine learning for real-
time structural performance monitoring. By considering void content and location; this model 
predicts force-time, displacement-time, and energy-time curves with high accuracy and speed, 
making it a valuable tool for online assessment of low-velocity impact behavior in structures. 
Additionally; logistic regression, combined with the Probability of Detection (POD) criterion, offers a 
unique approach in predicting the visual detection probability of impact damage [106]. This model 
with an accuracy of nearly 85% can account for factors like dent depth and diameter, detection type, 
distance, and personnel qualifications which provide valuable insights into the human factor in 
damage assessment. On the other hand, another comparative study regarding fused deposition 
modeling (FDM) Parameters optimization for Improving tensile strength showed that, the 
performance of the particle swarm optimization (PSO) algorithm works well than response surface 
methodology (RSO) algorithm [107].  

From the above discussion it can be concluded that, the landscape of FRCs damage analysis and 
prediction is expanding beyond the boundaries of conventional machine learning. Outlier analysis, 
genetic algorithms, structure genome models, multi-output regression, and logistic regression offer 
alternative perspectives and valuable insights into impact behavior and damage detection. But, OA 
requires careful selection of features and robust distance metrics, while genetic algorithms can be 
computationally expensive. SG-based models need large datasets for training, and multi-output 
models require careful optimization of hyper-parameters.  
 
3.4 Preview and Summary Discussion 

 
a) Traditional vs ML: There are various researches carried out by the researchers based on the 

application finite element analysis (FEA) and machine learning (ML) to predict impact performance 
and damage of fiber reinforced composites (FRCs) considering data mostly generated from 
experimental test, simulation and sometimes combined including use of data augmentation 
technique. As per reviewed studies, ML models excel in providing fast, accurate predictions for low-
velocity impact damage when trained on high-quality data. They are particularly useful for real-time 
applications and scenarios where computational efficiency is critical while FEA provides detailed, 
physics-based predictions of damage mechanisms but can be computationally expensive and 
requires accurate input parameters. On the other hand, hybrid approaches combining ML and FEA 
offers a promising direction, leveraging the strengths of both methods to improve accuracy, 
efficiency, and applicability in practical settings. So, both FEA and ML models have demonstrated 
efficacy in predicting low-velocity impact damage in fiber-reinforced composites. The choice 
between them, or the decision to employ a hybrid approach, depends on specific requirements such 
as the desired balance between computational resources with efficiency, accuracy, the availability of 
data for model training, real-time predictions and the level of detail required in damage analysis.  

b) Library and framework: Machine learning algorithms aided design of reinforced polymer 
composite and hybrid material systems is widely reviewed in [13], where different libraries with 
frameworks are deployed to apply different machine learning techniques as part of design 
optimization of reinforced and hybrid polymer composites. Among them Tensor Flow, PyTorch, 
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MATLAB are mostly deployed libraries with Scikit-learn, Keras frameworks besides Weka, R-language, 
RapidMiner. Regarding different libraries and frameworks application reviewed studies disclose that, 
the choice of ML libraries and frameworks for FRCs damage prediction depends on the specific 
requirements of the research or application. But in general; TensorFlow library with Keras and Scikit-
learn framework have been ideally applied for large-scale, production-ready deep learning models 
where it shows high computational efficiency and accuracy. Similarly, PyTorch is well-suited with 
Scikit-learn for research like prototyping where it shows good performance with accuracy on smaller 
to medium-sized datasets. Additionally, MATLAB is conveniently used for smaller datasets as 
traditional ML models, especially in multidisciplinary engineering environments which shows less 
efficient for large-scale or deep learning applications compared to others.  

c) Model comparison for consideration: Most machine learning algorithms are used to predict 
the mechanical performances of composites for design optimization besides some applications of 
impact induced damage analysis. Though existing literature shows deployment of different software 
for the implementation of different machine learning approaches but there are some strength, 
weakness of those applied traditional and deep learning models through different software which 
are found in [35]. Finally, on the basis of evidence found in [13], [35]  and in the earlier literatures 
regarding machine learning-based impact performance and damage prediction, design of reinforced 
composites, statistical index analysis based on training and testing scores; summary is presented in 
Table 11. From the Table 11 it is revealed that present literature on impact performance and damage 
prediction for FRCs relies on few machine learning techniques i.e., neural networks (ANN, CNN), 
regression and classification (SVM, DT) besides deep learning and unsupervised learning (mostly K-
means) though they all have certain considerations for applications.  
 
Table 11 
Summary of different ML techniques’ application for impact performance and damage prediction for FRCs 

Sl.  
No 

Technique Type Key features Consideration for applications 

1 Artificial Neural 
Network  
(ANN) 

 
 
 
 
 
 
 
 
Supervised 

Design optimization, 
performance and damage 
prediction 

Exploring advanced architectures for sequence-
based data processing, further refining training data 
acquisition and utilization 

2 Convolutional 
Neural Network 
(CNN) 

Damage identification and 
prediction 

Effects of no. of convolution layers and the number, 
size of convolution kernels 

3 Support Vector 
Machine (SVM) 

Damage analysis and 
prediction 

Computational efficiency, feature selection 
optimization and integration with other techniques 

4 Decision Trees (DT) Performance and prediction Multi-task learning integration for uncovering hidden 
correlations 

5 Bayesian 
Optimization 

Design optimization and 
damage prediction 

Computational efficiency with accurate model fitting 

6 Hybrid techniques Damage detection and 
prediction, property 
estimation 

Optimizing hyper-parameters, computational 
efficiency 
 

7 Unsupervised 
techniques 

- Impact and damage analysis Appropriate distance metrics, optimizing cluster 
numbers and integrating with other algorithms 

8 Deep Learning (DL) - Damage analysis, design 
optimization 

Data availability, computational demands, 
interpreting complex model decisions 

9 Alternative 
techniques 

- Impact behavior, damage 
analysis and  prediction 

Selection of features and robust distance metrics, 
computational cost, large datasets, optimization of 
hyper-parameters 
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d) Model validation: Studies of predicting the impact performance and damage of fiber-
reinforced composites, ML models are typically validated using a most combination of different 
methods like cross validation, train-test-split, performance metrics, and ensemble. Though, the 
cross-validation methods are consistently applied in most studies to ensure that the model's 
performance is not dependent on a single train-test split. But, the choice of validation technique 
depends on the size and nature of the dataset, the complexity of the problem, and the specific goals 
of the research. Robust validation ensures that the models are accurate, reliable, and capable of 
generalizing to new data. It is further to be mentioned regarding validation that, in the application of 
machine learning models the overfitting issue is addressed through a combination of regularization, 
early stopping, feature selection, ensemble methods, and independent validation. These strategies 
ensure that the ML models generalize well to new data and provide accurate predictions of impact 
performance and damage. 

e) Environment and ethics: The reviewed studies show very few environmental or ethical 
implications of using machine learning for FRCs materials design and impact prediction. As for 
example, a study shows that composites containing nano-clays show higher resistance to severe 
environment according to FEM, ANN, and experimental data [25]. On the contrary another review 
study mentioned that, it is tough to guarantee that the ML algorithms will perform well in industrial 
environments [12]. However, the use of ML for FRC materials design and impact prediction has 
significant environmental and ethical implications. Different ML models can contribute by different 
ways to sustainability by optimizing the use of eco-friendly materials, reducing waste, and improving 
energy efficiency. Additionally, ethical considerations such as bias, transparency, job displacement, 
and data privacy must be addressed to ensure responsible and equitable use of ML technologies. By 
leveraging the strengths of different ML models, researchers and practitioners can develop 
innovative solutions that promote sustainability and ethical practices in the design and 
manufacturing of FRCs. 

f) Best fitted model: Review and evidence on performance metrics shows that, deep learning 
technique especially convolutional neural network is best fitted for damage identification and 
prediction as evidence found in present literature that it can extract all images of induced damages. 
While artificial neural network and classification, regression based technique i.e., support vector 
machine are best fitted for property estimation and design optimization because of high performance 
in capturing training data patterns and predicting properties with high correlation coefficients. 
Though, all have some issues like number and size of convolutional layer, computational cost, 
integration with other techniques, hidden co-relations. Besides, the performance of models is 
subjective to different factors, including model type, training dataset size, input parameters (material 
type, material content, and manufacturing processes), and the statistical index used to assess the 
performance [108].  

g) Future model features: To improve the prediction of fiber-reinforced composites (FRCs) impact 
performance and damage requires incorporating a wide range of key factors and features into future 
machine learning (ML) models. Future ML models for predicting the impact performance and damage 
of FRCs should incorporate a comprehensive set of features including material properties (like fiber 
type and properties, matrix properties, interface properties); structural characteristics (like lay-up 
configuration, geometric features, manufacturing defects, reinforcement architecture); loading 
conditions (like impact energy and velocity, loading rate, impact angle and location, multiple 
impacts); environmental factors (like temperature, humidity and moisture, chemical exposure, UV 
radiation, ageing and fatigue) and data-driven insights (like experimental, simulation, sensor, 
historical). Advanced features such as multiscale modeling, damage mechanisms, nonlinear behavior, 
and uncertainty quantification can further enhance the accuracy and robustness of these models. By 
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integrating physics-based knowledge and real-time data; ML models can provide more reliable and 
actionable predictions, enabling the design of safer and more efficient composite structures. 
Additionally, incorporating sustainability and eco-friendly features can support the development of 
environmentally responsible FRCs. 

 
3.5 Challenges & Opportunities  

 
Machine learning (ML) and, to a growing extent, deep learning (DL) is revolutionizing the field of 

composite materials, offering promising tools for predicting their properties and damage behavior. 
While different limitations exist (outlined in[13]), the insights gained from these approaches have 
been valuable [35] for predicting impact performance and damage of FRCs. But, there is need to 
bridge the gap between simulation and reality. Current research primarily focuses on simulated data 
or test specimens, achieving high accuracy in controlled environments. However, studies on real 
structures are scarce and often show lower accuracy. Bridging this gap; through robust ML 
techniques implemented in real-world settings is crucial for improving effectiveness and 
generalizability [109]. Again, machine learning-based damage recognition in composites often relies 
on k-means clustering. While this approach has yielded promising results, future work should 
prioritize ensuring the accuracy of clustering labels and minimizing quantization error. Additionally, 
exploring more advanced methods especially deep learning models that go beyond k-means can 
potentially lead to even more accurate and robust damage detection [110]. On the other hand, 
integrating non-destructive evaluation (NDE) with AI techniques like ML and DL holds immense 
potential for designing and manufacturing high-quality and sustainable fiber-reinforced polymer 
composites [111]. For that, it is necessary to extend the application of data-driven methods in 
multiscale and multi-physics modelling to enhance computational efficiency and interpretability of 
failure mechanisms in composite modelling [112]. This synergy can unlock new possibilities in 
material characterization, leading to the discovery of novel multi-functional composites. Lastly, the 
latest advancements in ML, such as hybrid algorithms, adaptive and reinforced learning, physics-
informed ML, and multi-fidelity modelling, offer exciting opportunities for composite materials 
research. Integrating these techniques can open up countless possibilities for exploring trends, 
patterns, and efficient computational relationships to improve the characterization of existing 
composites and pave the way for the development of new materials with unique functionalities 
[113].  

Present studies have some pressing challenges, limitations which exhibit the future research 
directions. Among different challenges and limitations; quality, consistency and availability of 
dataset, generalization across materials and conditions, selection of hyper parameters issue for 
accuracy and generalization, interpretability and trust issue due to black box nature, integration of 
physics based knowledge, multiscale and multi physics phenomena, uncertainty quantification, 
experimental verification, prediction of overall mechanical properties, computational resources with 
cost and time issue are prominent and demanding. So, despite of promising potential with several 
challenges machine learning and deep learning offer a powerful toolkit for predicting properties and 
damage in composite materials. But, addressing the limited availability of large datasets for 
composites by data augmentation technique, combining physics based model with ML and hybrid 
models, enhancing model interpretability by explainable AI technique, multi-scale modelling, 
fostering collaboration between ML researchers and experimentalists or material designers and 
developing domain-specific AI models tailored to the unique characteristics of composite materials 
are crucial steps towards realizing the full potential of ML in this field [13][35]. 
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As per above discussion on mentioned challenges, few can be summarized under scalability as 
most pressing one in machine learning application in FRCs impact and damage prediction. There are 
significant scalability concerns to more FRCs complex composite structures or real-time damage 
detection systems in industrial settings. These concerns arise from the increasing complexity of the 
structures containing high dimensionality, multiscale phenomena and nonlinear behavior of 
materials, real-time damage detection systems, industrial deployment robustness, data quality and 
availability, compatibility with existing system, computational resources utilization, regulatory 
standards and ethical consideration. The scalability concerns are significant but can be addressed 
through a combination of technical and organizational solutions. Key strategies include optimizing 
model complexity, leveraging edge and cloud computing, improving data quality, and ensuring robust 
integration with existing systems. By addressing these challenges, ML can be effectively scaled to 
meet the demands of industrial applications, enabling more accurate and efficient damage detection 
and prediction in FRCs complex composite structures. Despite of those challenges, the following 
potential opportunities can be breakthroughs to revolutionize the design, analysis, and maintenance 
of FRC structures, enabling safer and more efficient applications across industries. 

i. ML models can be integrated with sensor data to enable real-time monitoring and damage 
prediction in FRC structures which can lead to develop lightweight, edge-computing ML 
models for real-time SHM in aerospace, automotive, and civil infrastructure applications. 

ii. ML can be used to optimize FRC layups, material compositions, and geometries for 
improved impact performance. Combine ML with generative design algorithms can be 
used to create novel FRC architectures with enhanced damage resistance. 

iii. ML can bridge the gap between different length scales (e.g., micro, meso, macro) to 
provide a comprehensive understanding of FRC damage mechanisms by integrating data 
from molecular dynamics simulations, micromechanical models, and macro-scale 
experiments. 

iv. ML can be used to create digital twins of FRC structures, enabling real-time updates and 
predictions based on sensor data and environmental conditions by integrating ML with 
IoT (Internet of Things) and digital twin technologies for predictive maintenance and 
lifecycle management. 

v. ML can identify anomalies in FRC structures (e.g., manufacturing defects, impact damage) 
and predict their progression over time by developing unsupervised or semi-supervised 
ML models for anomaly detection and prognostics in FRCs. 

vi. Combining ML with physics-based models can improve accuracy, interpretability, and 
generalization by developing hybrid models that leverage the strengths of both 
approaches, such as physics-informed neural networks (PINNs) or ML-enhanced FEA. 

vii. ML models that quantify uncertainty can improve decision-making in design and 
maintenance by developing Bayesian ML frameworks or ensemble methods for 
uncertainty-aware predictions in FRC applications. 

viii. ML can optimize the additive manufacturing process for FRCs, ensuring consistent quality 
and performance by using ML to predict and control defects. 

ix. ML can predict the impact of environmental factors (e.g., temperature, humidity) and 
aging on FRC performance and damage by developing models that account for long-term 
environmental degradation and fatigue in FRCs. 

 
 
 
 



Malaysian Journal on Composite Science and Manufacturing 
Volume 16, Issue 1 (2025) 274-315 

308 
 

4. Conclusion 
 

The application of machine learning techniques in predicting impact performances and damages 
of FRCs represents a promising avenue for advancing the field. This review has meticulously explored 
the diverse landscape of machine learning applications in predicting impact performance and 
damages of FRCs. The strengths of regression models, the adaptability of classification techniques, 
the depth of neural networks, and the collective power of ensemble methods provide a rich toolkit 
for researchers and engineers. However, acknowledging the existing challenges, the review has 
emphasized the immense potential of machine learning for not only enhancing characterization and 
prediction accuracy but also optimizing design, guiding manufacturing and real-time health 
monitoring. Lastly, the findings of this whole review can be summarized as 

i. The research trends on the application of ML approaches over traditional FEA to predict 
impact performances and damages tend to increase day by day where supervised 
methods with labeled data from experimentation and simulation with augmentation 
showed the best results for impact damage classification and characterization tasks. 

ii. Different libraries and frameworks mostly Tensor Flow, PyTorch, MATLAB are deployed 
with Scikit-learn and Keras for the impact performance and damage prediction. 

iii. In general SVM, DT, Bayesian tool are mostly applied learning approaches while neural 
based ANN, CNN are deployed significantly. Similarly, a decent number of hybrid 
approaches (mixing of ANN, KNN, DT, SVM, PCA, Ensemble) are reveled besides some 
unsupervised (mainly K-means, Fuzzy C Means) and alternative approaches (OA, GA, SG) 
deployment for predicting performance and damage. Moreover, deployed models are 
mostly validated by consistent cross validation, train-test-split, performance metrics, and 
ensemble technique. 

iv. ANN is found as one of the powerful approaches for understanding and predicting the 
complex relationships between design, performance, and damage in FRCs because it can 
interpret non-linear relationships, pinpoint defects, and optimize design parameters.  

v. CNN is revealed as dominant for FRCs damage identification and prediction which can 
replace the process of manually extracting damages from NDT images in future as it is able 
to extract almost all impact damages. On the other hand, memory based multilevel 
recurrent transfer learning offers a transformative approach to FRC analysis and design 
optimization.  

vi. SVMs are widely deployed for FRC damage analysis and prediction but issues to be 
considered are - Computational efficiency, feature selection optimization, and integration 
with other techniques.  

vii. Decision trees are applied mostly for understanding and predicting the behavior of FRCs 
under various loading conditions besides accurate ballistic resistance prediction, online 
CAI strength monitoring but they need refining in terms of factors like fiber types and 
micro-structural topologies.  

viii. Bayesian optimization is successfully employed to unveil probabilistic relationships 
between design parameters, mechanical properties and precise damage prediction but 
incorporating with complex multi-scale models and heterogeneous material properties 
need further refinement.  

ix. Hybrid machine learning models offer a versatile approach for FRC damage prediction and 
property estimation which can be further explored through damage prognosis and 
remaining life prediction. 
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x. Unsupervised approaches require more exploration to uncover deeper insights of FRCs 
performance and damage processes. On the other hand, application of other different 
alternative techniques has shown perspectives and valuable insights into impact behavior 
and damage detection but require careful selection of features and optimization. 

xi. Most machine learning algorithms have been used to predict the mechanical 
performances of composites for design optimization besides some applications of impact 
induced damage analysis.  

xii. Present studies have some challenges and limitations which exhibit the future research 
directions. Among them; scalability of the application of machine learning models, quality 
with consistency and availability of dataset, selection of hyper parameters and 
generalization; interpretability issue; experimental verification; prediction of overall 
mechanical properties; computational resources with cost and time are prominent. 

xiii. Future models for predicting the impact performance and damage of FRCs can 
incorporate a comprehensive set of features including material properties, structural 
characteristics, loading conditions, environmental, sustainable and ethical factors, data-
driven insights, multiscale modeling, damage mechanisms, nonlinear behavior, 
uncertainty quantification, integration of physics-based knowledge.  
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