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Microplastics are classified into two groups: any plastic pieces or particles already 5.0 
mm in size or smaller. Primary microplastics include clothing microfibers, microbeads, 
and plastic pellets (nurdles), and the other is secondary microplastics, which form 
when bigger plastic materials degrade (break down) in the environment due to natural 
weathering processes. Secondary microplastics originated from drinking bottles, 
fishing nets, plastic bags, microwave containers, tea bags, and tyres. Both varieties 
persist at high environmental levels, particularly in aquatic and marine habitats. A 
water sample was taken from the Tampoi River near Universiti Teknologi MARA 
Campus Dengkil. In-situ and laboratory testing were analyzed to characterize the water 
sample. The parameters conducted for the evaluation were pH value, turbidity, total 
suspended solids, ammonia-nitrogen (NH3-N), biochemical oxygen demand (BOD), 
chemical oxygen demand (COD), nitrite-nitrogen (NO2-N), nitrate-nitrogen (NO3-N) and 
enumeration of bacteria (Escherichia coli). During the electrocoagulation treatment, 
two types of polypropylene microplastic – fine polypropylene and coarse 
polypropylene were inserted in the samples. Later, the Fourier Transform Infrared 
(FTIR) was done for the polymer before and after treatment. The changes in the 
chemical structure of each polymer in FTIR demonstrated the changes in peak after the 
incubation periods: the chemical O-H bond and C=C bond have been detected for both 
types of polypropylenes. 

  

1. Introduction 
 

Microplastics are plastic fragments under 5 mm (0.20 in) long. They pollute ecosystems through 
cosmetics, clothing, food packaging, and industrial activities [1]. Microplastics are smaller than larger 
plastic waste, like bottles, and come in two types. Primary microplastics, such as clothing microfibers, 
microbeads, and plastic pellets, are originally 5.0 mm or smaller before entering the environment. 
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Secondary microplastics form when larger plastics break down through weathering. Sources include 
water bottles, fishing nets, plastic bags, containers, tea bags, and tyres. Both types are prevalent, 
especially in aquatic environments. Textiles contribute 35% of ocean microplastics due to the 
washing of polyester, acrylic, or nylon-based clothes [2].  

Microplastics accumulate in the atmosphere and ecosystems, often ingested and incorporated 
into organisms' bodies. Plastics can take centuries to degrade. Toxic chemicals from runoff and the 
ocean can biomagnify up the food chain. Microplastics reduce soil ecosystem viability, and their 
environmental cycle remains unclear, though research is ongoing [3]. Sediment scans in China [4] 
found plastics in layers predating their development, suggesting microplastics in ocean surveys are 
likely underestimated. Microplastics have been detected in remote high mountain regions, indicating 
widespread dispersion [5]. In addition to primary and secondary treatment processes required for 
removing microplastics, tertiary treatment is also necessary [6]. Electrochemical procedures like 
electrocoagulation (EC), electrodecantation, and electroflotation offer a cost-effective tertiary 
treatment without chemicals or microbes [7]. EC uses metal electrodes to produce coagulants, 
making it simple and reliable. These processes are environmentally friendly, have low capital costs, 
are energy efficient, minimize sludge, can be automated, and are cost-effective. 

This study meticulously examines polypropylene and water quality parameters in the Tampoi 
River near Universiti Teknologi MARA Dengkil, Selangor. It evaluates WQI characteristics to meet the 
Malaysian DOE standards, ensuring minimal contamination. The electrocoagulation process will be 
used for further treatment. Experiments and tests were conducted in the Environment Laboratory at 
UiTM Shah Alam, focusing on the river's physical and chemical properties. 
 
2. Methodology  
2.1 Experiment Method 

 
This research involves two major tests, including the Water Quality Index (WQI) testing and the 

electrocoagulation treatment for the sample [8]. Both fine and coarse polypropylene were used. 
Coarse polypropylene, in pallet form, was purchased from Sigma Aldrich. Fine polypropylene was 
created by grinding the coarse form using a blender. 
 
2.2 Analysis of River Water Sample 
 

The raw sample from Sungai Tampoi (near UiTM Dengkil) underwent in-situ pH and temperature 
testing. Further tests will be conducted in the laboratory. The WQI parameters measured include pH, 
turbidity, total suspended solids, ammonia nitrogen (NH3-N), biochemical oxygen demand (BOD), 
chemical oxygen demand (COD), nitrite (NO2-N), nitrate (NO3-N), and bacteria enumeration (E. coli) 
[9].  
 
2.3 In-situ Testing 
 

The pH of water, indicating its acidity or alkalinity, is important for treatment processes and 
aquatic life. The pH measurement was done using a portable pH Meter on a raw river sample [10], 
with readings taken after the electrocoagulation test at 30, 60, 90, 120, and 150 minutes. Turbidity, 
which measures water clarity, is caused by suspended materials like clay and organic contaminants, 
especially during rain events. It was measured using a HACH 2100P Turbidimeter [10]. A comparative 
experiment will be conducted with another water sample for both types of polypropylenes in sample 
preparation. 



Malaysian Journal on Composite Science and Manufacturing 

Volume 16, Issue 1 (2025) 167-183 

169 
 

2.4 Laboratory Testing 
 

Total suspended solids, ammonia-nitrogen, biochemical oxygen demand (BOD), and chemical 
oxygen demand (COD)were measured. The sample cell was filled with 10 ml of sample water. 
Additionally, 10 ml of raw river sample was added to another sample cell to prepare the blank sample. 
Both samples were free of contaminants, and their cells had been cleaned of any fingerprints using 
tissue paper and analyzed using a HACH DR2800 Spectrophotometer [11]. This experiment includes 
samples with preparation details for ammonia-nitrogen, BOD, and COD [12]. After the 
electrocoagulation treatment, the analysis was conducted again, with measurements recorded at 30, 
60, 90, 120, and 150-minute intervals. 

 
2.8 Escherichia Coli (e-Coli) 
 

The Colilert test for E. coli was performed according to [12]. Samples were incubated at 35°C for 
24 hours. If no yellow colour appears, the test fails; yellow equal to or greater than the comparator 
indicates total coliforms.  
 
2.9 Reactor Coagulant Process 
 

The electrocoagulation treatments in this study were conducted in a custom-built reactor. The 
setup employed a basic electrolysis concept (Figure 1) involving two DC power units, a series of 
cathodes and anodes, and an electrolyte for ion transport between the electrodes. Figure 1 shows 
the schematic diagram of the electrocoagulation reactor used in this experiment. The reactor, made 
from 9 mm thick acrylic, contains ten vertical aluminium electrodes, each 2 mm thick. These 
electrodes serve as the anode and cathode. The electrocoagulation design retention time is set at 
150 minutes (see Table 1). Both types of polypropylenes were treated using an electrocoagulation 
reactor. Effluent will be collected every 30 minutes in a beaker for WQI testing and removed from 
the out-flow valve at the reactor's bottom. The process occurred at room temperature in a 
laboratory. Table 1 details the time intervals for this study. 

 

 
Fig. 1. Schematic of electrocoagulation reactor 
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Table 1 
Details of parameters and time intervals conducted in this study 

Types 
of 
PP 

Parameters Time interval 
(minutes) 

Fine pH 
value 

TSS 
(mg/L) 

BOD 
(mg/L) 

COD  
(mg/L) 

NH3-N 
(mg/L) 

NO2-N 
(mg/L) 

NO3-N 
(mg/L) 

Turbidity 
(NTU) 

E.Coli 
(MPN) 
 

30 60 90 120 150 

Coarse pH 
value 

TSS 
(mg/L) 

BOD 
(mg/L) 

COD  
(mg/L) 

NH3-N 
(mg/L) 

NO2-N 
(mg/L) 

NO3-N 
(mg/L) 

Turbidity 
(NTU) 

E.Coli 
(MPN) 
 

30 60 90 120 150 

 
2.10 Calculation to Calculate the Percentage Removal in % After Electro-Coagulant Process 
 

The percentage removal after the electrocoagulation process is calculated using Eq. (1): 

 

% removal = 
(𝑃0−𝑃1)

P0
 × 100          (1) 

 
Where,  
P0 = Initial percentage of result 
P1 = Final percentage of result 
 
3. Results and Discussion 
 

The river's characteristics were assessed before and after electrocoagulation with the 
introduction of microplastics. The findings were compared to the guidelines set by the Malaysian 
Department of Environment [13]. 

 
3.1 Characteristics of Raw Sample River Water  
 

Table 2 presents the characteristics of the raw river sample. The pH value measured is 7.03, which 
meets the DOE standard [13]. The initial measurements for the river sample indicate a turbidity of 
11.1 NTU, TSS of 8 mg/L, ammonia nitrogen of 1.34 mg/L, BOD5 of 7.84 mg/L, COD of 40 mg/L, and 
e-coli levels of 549.3 MPN. 

 
Table 2 
Raw river sample 

Parameters Raw river sample 

pH 7.03 

Temperature (⁰C) 26.3 

Turbidity (NTU) 11.1 

TSS 8 

Ammonia-nitrogen (mg/L) 1.34 

BOD1 (mg/L) 7.84 

BOD5 (mg/L) 6.86 

COD (mg/L) 40 

Nitrite (Abs) 0.015 
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Nitrate (Abs) 0.024 

E-coli (MPN) 549.3 

 
3.2 Result After the Electrocoagulation Process 
 

This section presents the results of the electrocoagulation process applied to two types of 
polypropylene textures: coarse and fine PP. The experiment parameters analyzed include pH, 
turbidity, total suspended solids (TSS), ammonia nitrogen, biochemical oxygen demand (BOD), 
chemical oxygen demand (COD), nitrate-nitrogen, nitrite-nitrogen, and E. coli. The removal 
percentages for these parameters were also calculated. 

 
3.3 pH 
 

Figure 2 shows the pH values over time when using fine-grind polypropylene microplastic, 
increasing from 6.2 to 6.35 between 30 and 150 minutes at 30-minute intervals. Figure 3 
demonstrates pH values using coarse polypropylene, rising from 6.2 to 6.48 over the same period. 
The pH neutralization results from the electrolysis process at the cathode, where hydrogen evolution 
makes the nearby area alkaline [14]. This stabilizes the river water's pH during electrocoagulation. 
Results show the pH nearly reaches neutral and would remain stable with extended treatment time, 
as no chemicals are added. It has been found that longer treatment times significantly neutralize pH 
in aqueous solutions [15]. Both pH graphs increase linearly, approaching a neutral value of 7. 
 

 
Fig. 2. Graph of pH vs time of fine PP 

 

 
Fig. 3. Graph of pH vs time of coarse PP 
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3.4 Turbidity 
 

Figures 4 and 5 illustrate the turbidity levels following electrocoagulation over 30, 60, 90, 120, 
and 150 minutes, respectively. In fine polypropylene (Figure 4), turbidity values are measured at 9.46 
NTU, 8.04 NTU, 6.42 NTU, 5.5 NTU, and 5.49 NTU, respectively. The turbidity values recorded for 
coarse polypropylene (Figure 5) are 23.4 NTU, 15.3 NTU, 14.3 NTU, 9.19 NTU, and 7.92 NTU. Both 
graphs exhibit a gradual decrease over time. During electrocoagulation, multiple physicochemical 
phenomena occur simultaneously. The electric current passing through the solution, facilitated by 
electrodes, dissolves aluminium cations from sacrificial anodes. These cations then neutralize 
contaminants in the solution due to opposite charges. Concurrently, aluminium cations react with 
OH- ions in the water, forming insoluble aluminium hydroxide (Al(OH)₃), which can adsorb pollutants. 
Additionally, hydrogen gas bubbles generated at the cathode lift pollutants to the surface, enabling 
removal via sweep coagulation [16]. Consequently, the percentage removal for fine and coarse 
polypropylene is 75.59% and 66.15%, respectively. This demonstrates efficient contaminant removal, 
achieving more than 50% reduction. 
 

 
Fig. 4. Graph of turbidity vs time of fine PP 

 

 
Fig. 5. Graph of turbidity vs time of coarse PP 
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3.5 Total Suspended Solid (TSS) 
 

Figure 6 displays the total suspended travel for fine-grind PP over 30, 60, 90, 120, and 150 
minutes, with 8, 7, 6, 3, and 1 mg/L results. Figure 7 shows coarse PP results of 6, 5, 2, 1, and 0 mg/L. 
Both graphs indicate a decline, confirming the effectiveness of this treatment. During 
electrocoagulation, aluminium cations (Al3+) from sacrificial anodes neutralize water contaminants. 
H2 gas bubbles from the cathode help remove contaminants through brown bubbles [16]. The 
removal rates for fine and coarse polypropylene are 87.5% and 100%, respectively, demonstrating 
high efficiency. 
 

 
Fig. 6. Graph of total suspended solid vs time of fine PP 

 

 
Fig. 7. Graph of total suspended solid vs time of coarse PP 

 
3.6 Ammonia-nitrogen 
 

Figure 8 and Figure 9 present the ammonia-nitrogen levels over time. Both graphs indicate a 
decrease during the experiment. For fine PP, the results obtained are 1.16 mg/L, 1.06 mg/L, 1.01 
mg/L, 0.98 mg/L, and 0.97 mg/L, demonstrating that ammonia-nitrogen can be effectively reduced 
using an electro-coagulant reactor. The coarse PP results are 0.03 mg/L, 0.02 mg/L, 0.02 mg/L, 0.01 
mg/L, and 0 mg/L, showing that coarse PP types tend to eliminate ammonia-nitrogen in river water. 
The electrocoagulation process using aluminium electrodes produces Al3+ at the anode and OH- at 
the cathode. These react to form aluminium hydroxide, which facilitates the ammonia oxidation 
reaction that generates water and nitrogen. The performance of aluminium hydroxide in removing 
ammonia-nitrogen improves with more electron generation [17]. The percentage removal for fine 

8
7

6

3

1
y = -0.06x + 10.4

R² = 0.95290

2

4

6

8

10

30 60 90 120 150To
ta

l S
u

sp
en

d
ed

 S
o

lid
 (

m
g/

L)

Time (min)

6

5

2

1

0

y = -0.0533x + 7.6
R² = 0.9552

-1

0

1

2

3

4

5

6

7

30 50 70 90 110 130 150

To
ta

l S
u

sp
en

d
ed

 S
o

lid
 (

m
g/

L)

Time(min)



Malaysian Journal on Composite Science and Manufacturing 

Volume 16, Issue 1 (2025) 167-183 

174 
 

and coarse polypropylene is 16.38% and 100%, respectively. The removal efficiency for coarse PP is 
high at 100%, while it is lower for fine PP, possibly due to lower aluminium hydroxide generation in 
the electrolyte. However, extending the processing time beyond 50 minutes may result in higher 
removal rates for fine polypropylene. 
 

 
Fig. 8. Graph of ammonia-nitrogen against time for fine PP 

 

 
Fig. 9. Graph of ammonia-nitrogen against time for coarse PP 
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Fig. 10. Graph of BOD vs time of fine PP 

 

 
Fig. 11. Graph of BOD vs time of coarse PP 
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percentage removal for fine and coarse polypropylene is 66.7%. This removal rate is considered 
efficient as it exceeds 50%. According to the graph trend, extending the treatment process beyond 
150 minutes would likely result in additional removal. 
 

 
Fig. 12. Graph of COD vs time of fine PP 

 

 
Fig. 13. Graph of COD vs time of coarse PP 
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Fig. 14. Graph of nitrite vs time of fine PP 

 

 
Fig. 15. Graph of nitrite vs time of coarse PP 
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Fig. 16. Graph of nitrate-nitrogen vs time of fine PP 

 

 
Fig. 17. Graph of nitrate-nitrogen vs time of coarse PP 
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Fig. 18. Graph of E-coli vs time of fine PP 
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Fig. 19. Graph of E-Coli vs time of coarse PP 
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Fig. 20. Analysis of fine-grind polypropylene 
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Fig. 21. Analysis of coarse polypropylene 
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Table 3 
Functional group of microplastic polypropylene 
Polymer materials Before Treatment in an 

Electrocoagulation Reactor 
After Treatment in an 
Electrocoagulation Reactor 

Wavenumber 
(cm-1) 

Functional groups Wavenumber 
(cm-1) 

Functional groups 

Fine Polypropylene (PP) 3202.85 
 
 
 
 
 
1630.91 

O-H stretch 
(alcohol) 
 
C=C stretch 
(alkanes) 
 

3274.62 
 
 
 
 
1634.75 

O-H stretch 
(alcohol) 
 
C=C stretch 
(alkanes) 

Coarse Polypropylene 
(PP) 

3201.15 
 
 
 
 
 
1640.03 

O-H stretch 
(alcohol) 
 
C=C stretch 
(alkanes) 
 

3289.83 
 
 
 
 
 
1644.38 

O-H stretch 
(alcohol) 
 
C=C stretch 
(alkanes) 
 

 
4. Conclusion  
 

In summary, understanding water quality is vital for the relationship between the river and our 
daily activities. Monitoring ensures that water meets public health standards. This study found that 
adding microplastic polypropylene to the Water Quality Index (WQI) yielded positive results. Changes 
in each polymer's chemical structure in FTIR showed different peaks after incubation. Both fine and 
coarse polypropylene textures saw an increase in O-H and C=C bonds. 
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