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Polytetrafluoroethylene (PTFE)-based substrates are in high demand for high-
frequency (microwave) applications because of their low relative permittivity, 
enabling efficient signal transfer. In this work, PTFE composites have been prepared 
with different content (5 wt.% - 25 wt.%) of soda lime silica glass (SLSG) for substrate 
application. The composites were characterized by their complex permittivity and S-
parameters through the rectangular waveguide (RWG) measurement method over x-
band frequency (8.2 GHz – 12.4 GHz). The RWG set-up was connected to a vector 
network analyser for the characterization. Power loss of the composites due to 
material absorption was calculated using the measured S-parameters. As the content 
of the SLSG increased from 5 - 25 wt.%, complex permittivity ε* rose from 2.18-
j0.0035 to 2.56-j0.0047 in the frequency range considered. In addition, |S11| reduced 
from 0.623 and 0.700 to 0.418 and 0.441, whereas |S21| varied from 0.780 and 0.713 
to 0.906 and 0.895 for 5 wt.% and 25 wt.% SLSG contents at 8.2 GHz and 12.4 GHz, 
respectively. The calculated power loss increased from 2.94 dB to 3.29 dB and 4.01 
dB to 4.88 dB for the same filler contents and frequency. Furthermore, the S-
parameters were simulated using the finite element method (FEM) via COMSOL 
software and compared with the measured values. The comparison revealed a mean 
relative error of < 0.1, denoting the accuracy of the RWG method. Also, the electric 
field distribution across the waveguide length was visualized. Thus, the optimal 
performance of the composite was found at 5 wt.% SLSG filler content for microwave 
substrate application. 
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1. Introduction 
 

The congestion of the lower frequencies (0.3-1 GHz) in the electronics and communication sectors 
due to the exponential development of smart and data-consuming mobile phones and antennas 
necessitates the opening up of higher frequencies to sustain the current drive to meet the 
requirements of immediate and future technological challenges [1]. In response to this challenge, 
substrate materials with low complex permittivity, high mechanical strength and excellent thermal 
properties are being developed [2–5]. Polymer dielectric materials are mostly preferred for 
microwave substrate application due to their desired electrical and mechanical properties [3, 6, 7]. 
However, polytetrafluoroethylene stands out among the polymers because of its excellent properties 
such as lowest and steady complex permittivity (~2.02-j0.0021) over a large spectrum of high 
frequencies, chemical inertness, and high operating temperature (~260℃) [8–10]. However, it has a 
high coefficient of thermal expansion and very low thermal conductivity, thus limiting its ability to 
function as a stand-alone dielectric material for microwave substrate application [11-12]. Thus, a 
suitable modifying filler needs to reinforce the PTFE for optimal performance. 

Numerous research works on PTFE-based composites with excellent dielectric, mechanical, 
thermal and moisture absorption properties have been reported [11–18]. These works of literature 
developed composites with excellent dielectric, mechanical, thermal and moisture absorption 
properties for high-frequency applications. However, none of the consulted works analysed the S-
parameters (S11 and S21) and power loss due to materials absorption of the composites developed 
for the microwave substrate application. The S11 and S21 are line parameters that describe the 
nature of reflection and transmission of electromagnetic waves in a high-frequency network, in 
addition to defining the microwave signal reflection and absorption loss behaviour of a material [19]. 
The incorporation of the analysis of the S11 and S21 and power trend loss among other properties 
provides a holistic assessment of the suitability of the composites for substrate application at 
microwave frequencies.  

Thus, this work studied and analysed the S-parameters and power loss due to material absorption 
of the PTFE/Glass composites at the x-band for substrate application. Soda lime silica glass (SLSG) 
was chosen as the reinforcing glass filler due to its suitable dielectric properties and excellent tensile 
strength. Although, few works were reported on the dielectric properties of PTFE/soda lime silica 
glass composite, however, none studies the effects of filler content on the S-parameters and power 
loss due to material absorption on the composites [20, 21]. In addition, a finite element method 
(FEM) implemented in COMSOL software was used to simulate the S-parameters and compare them 
with the ones obtained from measurement. Furthermore, the mean relative error between 
measurement and simulation was calculated to ascertain the accuracy of the RWG measurement 
method. 
 
2. Methodology  
2.1 Materials 
 

PTFE purchased from Fujian Sannong New Materials Co., Ltd, China and soda lime silicate glass 
(SLSG) waste were used as the preparatory materials to fabricate the PTFE/SLSG composites. The 
SLSG powder was prepared via milling and, then mixed with PTFE using a high-speed shear mixer for 
10 min, before being pressed hydraulically for 5 min at 10 MPa.  Weight percentages of the SLSG filler 
in the composites were 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.% and 25 wt.%, respectively. 
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2.2 Scattering Parameters 
 

The S11 and S21 of the composites were measured in the 8.2-12.4 GHz microwave frequency (X-
band) using a rectangular waveguide (RWG) measurement technique. The RWG setting was 
connected to a vector network analyser for the measurement. Also, the mean complex permittivity 
given in Eq. 1 was characterised over the same frequency. 

 
𝜀∗ = 𝜀′ − 𝑗𝜀′′                   (1) 

 
where, 𝜀′ and 𝜀′′ are the relative permittivity and loss factor, respectively. 

 
2.3 Finite Element Method (FEM) Simulation of Reflection and Transmission Coefficients 
 

In this study, the finite element method (FEM) implemented in COMSOL Multiphysics® version 
3.5 (COMSOL, Inc., Burlington, MA, USA) was also used to calculate the magnitude of S11 and S21 
based on the RWG model geometry shown in Figure 1. Generally, the S11 and S21 are determined in 
FEM simulation using four essential steps [22]: (a) discretizing the region of solution into a finite 
number of elements, (b) deriving the governing equation for a given region, (c) assembling all the 
elements in a given region, and (d) solving the systems of equations derived. Furthermore, the 
simulation process was implemented using the steps defined in Figure 2 with the mean complex 
permittivity values, shown in Table 1, obtained from RWG measurement as inputs. The simulated 
and measured results were, then compared for validation, and electric field distribution across the 
waveguide regions was, also visualized. 

 
 

 
Fig. 1. RWG model geometry 

 
                  

 

Fig. 2. FEM simulation process 
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 Table 1 
Mean complex permittivity of the composites at X-band frequency 

SLSG (wt.%) 𝜀∗ = 𝜀′ − 𝑗𝜀′′ 

5 2.18-j0.0035 
10 2.28-j0.0038 
15 2.40-j0.0041 
20 2.47-j0.0043 
25 2.56-j0.0047 

 
    

2.4 Material Absorption 
 

The intrinsic capacity to attenuate electromagnetic energy by materials can be determined by 
calculating the power loss due to absorption using the |S11| and |S21|. Typically, the energy absorbed 
is dissipated as heat via phase cancelling, causing dimensional instability of the material. Hence, the 
determination of the absorption capability of composite materials is paramount, especially for 
microwave substrate applications, where little or no power loss is desired. Thus, from a waveguide 
measurement perspective, the power loss due to ohmic loss and measurement error for an empty 
waveguide can be calculated via Eq. (2) using the measured |S11| and |S21|. 
 

𝑃𝑙𝑜𝑠𝑠(𝑎𝑖𝑟) = 1 − |𝑆11|2
𝑎𝑖𝑟

− |𝑆21|2
𝑎𝑖𝑟

     (2) 

while the material power loss for a sample in the same waveguide can be expressed as Eq. 3:  
 

𝑃𝑙𝑜𝑠𝑠(𝑠𝑎𝑚𝑝𝑙𝑒) = 1 − |𝑆11|2
𝑠𝑎𝑚𝑝𝑙𝑒

− |𝑆21|2
𝑠𝑎𝑚𝑝𝑙𝑒

     (3) 

 
Hence, the power loss due to absorption can be obtained from the difference in the power losses 

of the loaded and empty waveguide using the following Eq. 4 [23].  
 

𝑃𝑜𝑤𝑒𝑟 𝑙𝑜𝑠𝑠 (𝑑𝐵) = 10𝑙𝑜𝑔10𝑃𝑙𝑜𝑠𝑠(𝑠𝑎𝑚𝑝𝑙𝑒) − 10𝑙𝑜𝑔10𝑃𝑙𝑜𝑠𝑠(𝑎𝑖𝑟)   (4) 
 
3. Results  
3.1 S-parameters 
 

The reflection and transmission coefficients were investigated for filler content and frequency, 
while the result is presented in Figures 3 and 4. It can be seen in Figure 3 that the |S11| increased 
with filler loading and reduced with frequency. At 8.2 GHz, the |S11| varied from 0.623, 0.647, 0.671, 
0.684, and 0.700 to 0.418, 0.427, 0.436, 0.439, 0.441 at 12.4 GHz for 5 wt.%, 10 wt.%, 15 wt.%, 20 
wt.%, and 25 wt.% SLSG contents, respectively. Figure 4 shows the variation of |S11| with SLSG filler 
content for the composites at specified frequencies. A similar trend was reported by Ahmad et al. 
[24], where the |S11| was found to increase with more filler content.  This notable change arises from 
impedance mismatch between the input and RWG impedances, as described by the following Eq. (5) 
and Eq. (6). 
 

𝑆11 =
𝑍𝑖𝑛−𝑍0

𝑍𝑖𝑛+𝑍0
                            (5) 
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𝑍𝑖𝑛 = 𝑍0√
1

𝜀𝑟
tanh (𝑗𝜔𝑙 √𝜀𝑟

𝑐
)       (6) 

where Zin and Z0 are the input and RWG impedances, respectively, l is the sample thickness with ω 
being the angular frequency. It is clear from Eq. 7, for non-magnetic materials, that input impedance 
is proportional to the frequency of operation. Thus, as the frequency increases, Z_in gets more 
prominent, reducing the impedance mismatch, which further decreases the |S11|. 
 

 

Fig. 3. Variation of |S11| with SLSG filler content and frequency 
 

 
Fig. 4. Variation of |S11| with SLSG filler content and frequency 

 
The |S21| depicted in Figure 5 also decreases with more filler content due to higher impedance 

mismatch, while it increases with frequency because at higher frequencies 𝑍𝑖𝑛~𝑍0, improving the 
signal transmission for the PTFE/rBRS composites. Thus, at 8.2 GHz |S21| appreciated from 0.780, 
0.761, 0.739, 0.727, and 0.713 to 0.906, 0.902, 0.898, 0.896, and 0.895 at 12.4 GHz for 5 wt.%, 10 
wt.%, 15 wt.%, 20 wt.%, and 25 wt.% SLSG filler content, respectively. A similar result was reported 
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[25]. Figure 6 shows the variation of |S21| with SLSG filler content for the composites at specified 
frequencies. 
 

 

Fig. 5. Variation of |S21| with SLSG filler content and frequency 
 

 
Fig. 6. Variation of |S21| with SLSG filler content at certain frequency 

 

3.2 Comparison of Measured and Simulated |S11| and |S21| 
 

The comparison between the measured and simulated values of |S11| and |S21| is illustrated in 
Figures 7 and 8. The |S11| decreased with SLSG filler content and increased with frequency. Whereas, 
the |S21| increased with frequency and decreased with SLSG filler content, as indicated by both the 
measured and simulated data. Although the experimental and computational values of |S11| and 
|S21| exhibited a similar curve, there is a noticeable difference between them. This difference may 
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be attributed to the ideal nature assumed in the simulation environment, where no stray radiation 
or reflection exists between the sample holder and the waveguide adapters [19]. The mean relative 
error given in Table 2 was calculated using Eq. 7 and Eq. 8 and indicated a good agreement between 
measurement and simulation as both |S11| and |S21| achieved mean relative errors of < 0.1. 

 

𝑀𝑒𝑎𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 |𝑆11| =
1

201
∑ (

|𝑆11(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)−𝑆11(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑)|

𝑆11(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)
)201

𝑖=1      (7) 

 

𝑀𝑒𝑎𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 |𝑆21| =
1

201
∑ (

|𝑆21(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)−𝑆21(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑)|

𝑆21(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)
)201

𝑖=1      (8) 

 

 

Fig. 7. Comparison of measured and simulated |S11| with SLSG filler content 
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Fig. 8. Comparison of measured and simulated |S21| with SLSG filler content 
 

               Table 2 
Mean relative error for measured and simulated |S11| and |S21| 

 
SLSG (wt.%) 

Relative Error 

|S11| |S21| 

5 0.033 0.007 
10 0.037 0.005 
15 0.021 0.012 
20 0.028 0.009 
25 0.030 0.009 
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3.3 Visualisation Electric Field Distribution 
 
The electric field distribution across the length of a rectangular waveguide (RWG) is shown in 

Figure 9. It can be noticed that the RWG length of 40 cm was divided into three regions: I, II, and III. 
Regions I and III are air media, while region II contains the dielectric sample. In addition, the length 
of the regions was 20 cm, 0.6 cm, and 19.4 cm, respectively. Furthermore, input and output ports 
were located in regions I and III. As the electromagnetic waves propagate along the z-axis of the RWG, 
it is seen to diminish in intensity as it passes from Region I through the dielectric sample (Region II) 
to Region III of the RWG. The reduction in intensity is due to absorption by the dielectric sample. 

 

 

Fig. 9. Visualisation of electromagnetic field distribution across a rectangular waveguide 
 

3.4 Power Loss 
 
Figure 10 shows the variation of power loss due to absorption for the PTFE/SLSG composites. The 

power loss increased in conjunction with SLSG filler content and frequency. Khamis et al. reported a 
similar finding [23]. In addition, the PTFE/SLSG composites showed a respective increase of 2.94 dB 
to 3.29 dB for 5 wt.% SLSG content and 4.01 dB to 4.88 dB for 25% SLSG volume fraction at X-band. 
All composites exhibit a similar trend.  The increased power loss with SLSG filler loading is attributed 
to the higher magnitude of dielectric loss.  The loss is responsible for material absorption; therefore, 
increasing the SLSG content resulted in higher values of the dielectric loss, resulting in decreased 
signal transmission because of more absorption. A similar trend was observed in [26]. Furthermore, 
the power loss values at specified frequencies are given in Table 3.  
 

 Table 3 
   Power loss (dB) at specified frequencies 

 
SLSG 

(wt.%) 

Frequency (GHz) 

9 10 11 12 

5 3.22 3.48 3.56 3.87 
10 3.28 3.58 3.70 4.04 
15 3.27 3.62 3.82 4.18 
20 3.28 3.67 3.89 4.39 
25 3.41 3.85 4.10 4.54 
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  Fig. 10. Variation of power with SLSG filler content and frequency 
 
4. Conclusions 
 

The S-parameters of the PTFE/SLSG composites were studied and analysed. The S11 showed an 
increasing nature with SLSG filler content and decreases with frequency. However, the S21 displayed 
an increasing trend with frequency and decreased with SLSG filler content. In addition, the 
comparative studies of the measured and simulated values of S11 and S21 exhibited a similar trend 
with a mean error of <0.1, indicating the accuracy of the measurement method. Also, the electric 
field distribution in the RWG was visualised, showing a diminishing pattern in the field after passing 
through the dielectric sample. Furthermore, the power loss due to material absorption increased 
with both frequency and SLSG filler content. However, the composites recorded low power loss, 
thereby making them suitable for microwave substrate application. 
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