Photocatalytic Degradation with Green Synthesized Metal Oxide Nanoparticles – A Mini Review
DOI:
https://doi.org/10.37934/jrnn.2.1.7081Keywords:
Metal oxide, nanoparticles, green synthesis, photocatalysisAbstract
Water pollution is one of the major problems faced by mankind worldwide. With the increase of populations and urbanization, the natural water resources are under great threat due to the release of untreated effluent. An alternative treatment method, photocatalysis, emerged as a promising solution. Photocatalysis process utilizes photosensitive catalyst to degrade the pollutant and one of the most common catalyst being used is metal oxide. To increase the photocatalytic activity, nanosized metal oxide being used instead of its bulk form. In these recent years, metal oxide nanoparticles production has been shifted towards a more environmentally friendly process which is also commonly known as green synthesis. In this review, we discussed on the photocatalytic process and production via green synthesis of common metal oxide nanoparticles being used as photocatalyst.
Downloads
References
P. Ahuja, S. K. Ujjain, R. Kanojia, and P. Attri, Transition Metal Oxides and Their Composites for Photocatalytic Dye Degradation, Journal of Composites Science, 2021, 5.(3), doi: 10.3390/jcs5030082.
S. H. S. Chan, T. Yeong Wu, J. C. Juan, and C. Y. Teh, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water, J. Chem. Technol. Biotechnol., 2011, 86.(9), pp. 1130-1158, doi: https://doi.org/10.1002/jctb.2636.
A. R. Khataee and M. B. Kasiri, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes, J. Mol. Catal. A: Chem., 2010, 328.(1-2), pp. 8-26, doi: 10.1016/j.molcata.2010.05.023.
O. Sahu and N. Singh, "Significance of bioadsorption process on textile industry wastewater," in The Impact and Prospects of Green Chemistry for Textile Technology, 2019, pp. 367-416.
V. K. Saharan, D. V. Pinjari, P. R. Gogate, and A. B. Pandit, "Advanced Oxidation Technologies for Wastewater Treatment," in Industrial Wastewater Treatment, Recycling and Reuse, 2014, pp. 141-191.
Y. Deng and R. Zhao, Advanced Oxidation Processes (AOPs) in Wastewater Treatment, Current Pollution Reports, 2015, 1.(3), pp. 167-176, doi: 10.1007/s40726-015-0015-z.
R. Wahab, I. H. Hwang, Y.-S. Kim, and H.-S. Shin, Photocatalytic activity of zinc oxide micro-flowers synthesized via solution method, Chem. Eng. J., 2011/03/15/ 2011, 168.(1), pp. 359-366, doi: https://doi.org/10.1016/j.cej.2011.01.038.
J. Virkutyte and R. S. Varma, "Green Synthesis of Nanomaterials: Environmental Aspects," in Sustainable Nanotechnology and the Environment: Advances and Achievements, (ACS Symposium Series, 2013, pp. 11-39.
M. Shah, D. Fawcett, S. Sharma, S. K. Tripathy, and G. E. J. Poinern, Green Synthesis of Metallic Nanoparticles via Biological Entities, Materials (Basel), Oct 29 2015, 8.(11), pp. 7278-7308, doi: 10.3390/ma8115377.
A. P. Nikalje, Nanotechnology and its Applications in Medicine, Medicinal Chemistry, 2015, 5.(2), pp. 81-89, doi: 10.4172/2161-0444.1000247.
G. Salas, R. Costo, and M. d. P. Morales, "Chapter 2 - Synthesis of Inorganic Nanoparticles," in Frontiers of Nanoscience, vol. 4, J. M. de la Fuente and V. Grazu Eds.: Elsevier, 2012, pp. 35-79.
K. Parveen, V. Banse, and L. Ledwani, "Green synthesis of nanoparticles: Their advantages and disadvantages," 2016.
M. A. Rauf and S. S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution, Chem. Eng. J., 2009, 151.(1-3), pp. 10-18, doi: 10.1016/j.cej.2009.02.026.
Z. Carmen and S. Daniela, "Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents – A Critical Overview," in Organic Pollutants Ten Years After the Stockholm Convention, T. Puzyn and A. Mostrag-Szlichtyng Eds. Rijeka: IntechOpen, 2012, ch. 3.
C. Byrne, G. Subramanian, and S. C. Pillai, Recent advances in photocatalysis for environmental applications, J. Environ. Chem. Eng., 2018, 6.(3), pp. 3531-3555, doi: 10.1016/j.jece.2017.07.080.
A. Baruah, V. Chaudhary, R. Malik, and V. K. Tomer, "Nanotechnology Based Solutions for Wastewater Treatment," in Nanotechnology in Water and Wastewater Treatment, 2019, pp. 337-368.
A. Ajmal, I. Majeed, R. N. Malik, H. Idriss, and M. A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview, RSC Adv., 2014, 4.(70), pp. 37003-37026, doi: 10.1039/c4ra06658h.
D. Fawcett, J. J. Verduin, M. Shah, S. B. Sharma, and G. E. J. Poinern, A Review of Current Research into the Biogenic Synthesis of Metal and Metal Oxide Nanoparticles via Marine Algae and Seagrasses, J. Nanosci., 2017, 2017.(pp. 1-15, doi: 10.1155/2017/8013850.
A. K. Mittal, Y. Chisti, and U. C. Banerjee, Synthesis of metallic nanoparticles using plant extracts, Biotechnol. Adv., Mar-Apr 2013, 31.(2), pp. 346-56, doi: 10.1016/j.biotechadv.2013.01.003.
E. D. Mohamed Isa, K. Shameli, N. W. Che Jusoh, S. N. A. Mohamad Sukri, and N. A. Ismail, Variation of Green Synthesis Techniques in Fabrication of Zinc Oxide Nanoparticles – A Mini Review, IOP Conf. Ser., Mater. Sci. Eng., 2021, 1051.(1), doi: 10.1088/1757-899x/1051/1/012079.
R. K. Sonker, G. Hitkari, S. R. Sabhajeet, S. Sikarwar, Rahul, and S. Singh, Green synthesis of TiO2 nanosheet by chemical method for the removal of Rhodamin B from industrial waste, Materials Science and Engineering: B, 2020, 258. doi: 10.1016/j.mseb.2020.114577.
E. T. Helmy, A. E. Nemr, E. Arafa, S. Eldafrawy, and M. Mousa, Photocatalytic degradation of textile dyeing wastewater under visible light irradiation using green synthesized mesoporous non-metal-doped TiO2, Bull. Mater. Sci., 2021, 44.(1), doi: 10.1007/s12034-020-02322-0.
V. Prashanth, K. Priyanka, and N. Remya, Solar photocatalytic degradation of metformin by TiO2 synthesized using Calotropis gigantea leaf extract, Water Sci. Technol., Mar 2021, 83.(5), pp. 1072-1084, doi: 10.2166/wst.2021.040.
W. Ahmad, A. Singh, K. K. Jaiswal, and P. Gupta, Green Synthesis of Photocatalytic TiO2 Nanoparticles for Potential Application in Photochemical Degradation of Ornidazole, J. Inorg. Organomet. Polym. Mater., 2020, 31.(2), pp. 614-623, doi: 10.1007/s10904-020-01703-6.
N. M. Ngoepe, M. M. Mathipa, and N. C. Hintsho-Mbita, Biosynthesis of titanium dioxide nanoparticles for the photodegradation of dyes and removal of bacteria, Optik, 2020, 224. doi: 10.1016/j.ijleo.2020.165728.
H. Kaur, S. Kaur, S. Kumar, J. Singh, and M. Rawat, Eco-friendly Approach: Synthesis of Novel Green TiO2 Nanoparticles for Degradation of Reactive Green 19 Dye and Replacement of Chemical Synthesized TiO2, JCS, 2020, doi: 10.1007/s10876-020-01881-w.
P. V.N, V. S, S. B, and P. P.K, Protection of neuronal cell lines, antimicrobial and photocatalytic behaviours of eco-friendly TiO2 nanoparticles, J. Environ. Chem. Eng., 2020, 8.(5), doi: 10.1016/j.jece.2020.104343.
Y. Rufai, S. Chandren, and N. Basar, Influence of Solvents' Polarity on the Physicochemical Properties and Photocatalytic Activity of Titania Synthesized Using Deinbollia pinnata Leaves, Front Chem, 2020, 8.(p. 597980, doi: 10.3389/fchem.2020.597980.
K. Chand et al., Photocatalytic and antimicrobial activity of biosynthesized silver and titanium dioxide nanoparticles: A comparative study, J. Mol. Liq., 2020, 316.(doi: 10.1016/j.molliq.2020.113821.
M. Altikatoglu Yapaoz and A. Attar, Salvia officinalis-derived rutile TiO2NPs: production, characterization, antibacterial evaluation and its effect on decolorization, Materials Research Express, 2019, 6.(5), doi: 10.1088/2053-1591/ab0690.
S. Chakraborty, J. J. Farida, R. Simon, S. Kasthuri, and N. L. Mary, Averrhoe carrambola fruit extract assisted green synthesis of zno nanoparticles for the photodegradation of congo red dye, Surfaces and Interfaces, 2020, 19. doi: 10.1016/j.surfin.2020.100488.
A. R. Prasad, J. Garvasis, S. K. Oruvil, and A. Joseph, Bio-inspired green synthesis of zinc oxide nanoparticles using Abelmoschus esculentus mucilage and selective degradation of cationic dye pollutants, J. Phys. Chem. Solids, 2019, 127.(pp. 265-274, doi: 10.1016/j.jpcs.2019.01.003.
S. A. Devi, K. J. Singh, and K. N. Devi, A Comparative Study on the Photocatalytic Activity of Eucalyptus Leaf Assisted Green Synthesized ZnO and Chemically Synthesized ZnO towards the Degradation of Malachite Green Dye, InFer, 2020, 205.(1), pp. 38-51, doi: 10.1080/10584587.2019.1674995.
M. Rajapriya et al., Synthesis and Characterization of Zinc Oxide Nanoparticles Using Cynara scolymus Leaves: Enhanced Hemolytic, Antimicrobial, Antiproliferative, and Photocatalytic Activity, JCS, 2019, 31.(4), pp. 791-801, doi: 10.1007/s10876-019-01686-6.
T. Varadavenkatesan, E. Lyubchik, S. Pai, A. Pugazhendhi, R. Vinayagam, and R. Selvaraj, Photocatalytic degradation of Rhodamine B by zinc oxide nanoparticles synthesized using the leaf extract of Cyanometra ramiflora, J. Photochem. Photobiol. B, Oct 2019, 199.(p. 111621, doi: 10.1016/j.jphotobiol.2019.111621.
K. Singh, J. Singh, and M. Rawat, Green synthesis of zinc oxide nanoparticles using Punica Granatum leaf extract and its application towards photocatalytic degradation of Coomassie brilliant blue R-250 dye, SN Appl. Sci., 2019, 1.(6), doi: 10.1007/s42452-019-0610-5.
M. Ganesh, S. G. Lee, J. Jayaprakash, M. Mohankumar, and H. T. Jang, Hydnocarpus alpina Wt extract mediated green synthesis of ZnO nanoparticle and screening of its anti-microbial, free radical scavenging, and photocatalytic activity, Biocatal. Agric. Biotechnol., 2019, 19. doi: 10.1016/j.bcab.2019.101129.
C. Chankaew, W. Tapala, K. Grudpan, and A. Rujiwatra, Microwave synthesis of ZnO nanoparticles using longan seeds biowaste and their efficiencies in photocatalytic decolorization of organic dyes, Environ. Sci. Pollut. Res. Int., Jun 2019, 26.(17), pp. 17548-17554, doi: 10.1007/s11356-019-05099-w.
K. Kanagamani, P. Muthukrishnan, K. Saravanakumar, K. Shankar, and A. Kathiresan, Photocatalytic degradation of environmental perilous gentian violet dye using leucaena-mediated zinc oxide nanoparticle and its anticancer activity, Rare Metals, Apr 2019, 38.(4), pp. 277-286, doi: 10.1007/s12598-018-1189-5.
M. D. Jayappa et al., Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: characterization and their applications, Appl Nanosci, Apr 9 2020, pp. 1-18, doi: 10.1007/s13204-020-01382-2.
R. Ishwarya et al., Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity, J. Photochem. Photobiol. B, Jan 2018, 178.(pp. 249-258, doi: 10.1016/j.jphotobiol.2017.11.006.
E. D. M. Isa, K. Shameli, N. W. C. Jusoh, and R. Hazan, Rapid photodecolorization of methyl orange and rhodamine B using zinc oxide nanoparticles mediated by pullulan at different calcination conditions, Journal of Nanostructure in Chemistry, 2020/10/10 2020, doi: 10.1007/s40097-020-00358-6.
M. Sriramulu, Balaji, and S. Sumathi, Photo Catalytic, Antimicrobial and Antifungal Activity of Biogenic Iron Oxide Nanoparticles Synthesised Using Aegle marmelos Extracts, J. Inorg. Organomet. Polym. Mater., 2020, 31.(4), pp. 1738-1744, doi: 10.1007/s10904-020-01812-2.
W. Ahmad et al., Eco-benign approach to synthesize spherical iron oxide nanoparticles: A new insight in photocatalytic and biomedical applications, J. Photochem. Photobiol. B, Apr 2020, 205.(p. 111821, doi: 10.1016/j.jphotobiol.2020.111821.
M. Y. Rather and S. Sundarapandian, Magnetic iron oxide nanorod synthesis by Wedelia urticifolia (Blume) DC. leaf extract for methylene blue dye degradation, Applied Nanoscience, 2020, 10.(7), pp. 2219-2227, doi: 10.1007/s13204-020-01366-2.
S. Qasim et al., Green synthesis of iron oxide nanorods using Withania coagulans extract improved photocatalytic degradation and antimicrobial activity, J. Photochem. Photobiol. B, Mar 2020, 204.(p. 111784, doi: 10.1016/j.jphotobiol.2020.111784.
M. S. H. Bhuiyan et al., Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity, Heliyon, Aug 2020, 6.(8), p. e04603, doi: 10.1016/j.heliyon.2020.e04603.
S. Vasantharaj, S. Sathiyavimal, P. Senthilkumar, F. LewisOscar, and A. Pugazhendhi, Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: Antimicrobial properties and their applications in photocatalytic degradation, J. Photochem. Photobiol. B, Mar 2019, 192.(pp. 74-82, doi: 10.1016/j.jphotobiol.2018.12.025.
N. Madubuonu et al., Biosynthesis of iron oxide nanoparticles via a composite of Psidium guavaja-Moringa oleifera and their antibacterial and photocatalytic study, J. Photochem. Photobiol. B, Oct 2019, 199.(p. 111601, doi: 10.1016/j.jphotobiol.2019.111601.
V. K. Nathan, P. Ammini, and J. Vijayan, Photocatalytic degradation of synthetic dyes using iron (III) oxide nanoparticles (Fe2O3-Nps) synthesised using Rhizophora mucronata Lam, IET Nanobiotechnol, Apr 2019, 13.(2), pp. 120-123, doi: 10.1049/iet-nbt.2018.5230.
M. Harshiny, S. AiswaryaDevi, and M. Matheswaran, Spiny amaranth leaf extract mediated iron oxide nanoparticles: Biocidal photocatalytic propensity, stability, dissolubility and reusability, Biocatal. Agric. Biotechnol., 2019, 21. doi: 10.1016/j.bcab.2019.101296.
I. Bibi et al., Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye, Journal of Materials Research and Technology, 2019, 8.(6), pp. 6115-6124, doi: 10.1016/j.jmrt.2019.10.006.
O. Fawzi Suleiman Khasawneh and P. Palaniandy, Removal of organic pollutants from water by Fe2O3/TiO2 based photocatalytic degradation: A review, Environmental Technology & Innovation, 2021, 21. doi: 10.1016/j.eti.2020.101230.
S. N. A. Mohamad Sukri, K. Shameli, M. M. T. Wong, S. Y. Teow, J. Chew and N. A. Ismail. Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract. J. Mol. Struct., 2019, 1189, pp. 57-65. doi: 10.1016/j.molstruc.2019.04.026.
H. Jahangirian, M. H. S. Ismail, M. J. Haron, R. Rafiee-Moghaddam, K. Shameli and S. Hosseini. Synthesis and characterization of zeolite/Fe3O4 nanocomposite by green quick precipitation method. Dig. J. Nanomater. Biostruct., 2013, 8.(4), pp. 1405-1413.
R. Khandanlou, M. Ahmad, H. R. Fard Masoumi, K. Shameli and M. Basri, Rapid adsorption of copper (II) and lead (II) by rice straw/Fe3O4 nanocomposite: optimization, equilibrium isotherms, and adsorption kinetics study. PloS one., 2015, 10.(3), pp. 1-19. doi: 10.1371/journal.pone.0120264.
Z. Izadiyan, K. Shameli, M. Miyake, H. Hara, S. H. Mohd Taib and E. Rasouli, Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract. Arab. J. Chem., 2020, 13.(1), pp. 2011-2023. doi; 10.1016/j.arabjc.2018.02.019.
R. Khandanlou, M. Ahmad, K. Shameli and K. Kalantari, Synthesis and characterization of rice straw/Fe3O4 nanocomposites by a quick precipitation method. Molecules, 2013, 18.(6), 6597-6607. doi: 10.3390/molecules18066597.
K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: A review, Water Res., Jan 1 2016, 88, pp. 428-448, doi: 10.1016/j.watres.2015.09.045.