Synthesis and Characterization of Sn/Ag Nanoparticle Composite as Electro-Catalyst for Fuel Cell
DOI:
https://doi.org/10.37934/jrnn.1.1.1221Keywords:
Sn/Ag nanoparticles, electro-catalyst, polymer electrolyte membrane fuel cell, linear sweep voltammetryAbstract
In this research, Sn/Ag nanoparticle composite was produced by using chemical reduction method with the aids of sodium borohydride as reducing agent and sodium succinate as protective agent. The XRD, EDX, and TEM analyses showed that the Sn/Ag nanoparticle composite was formed with an average particle size of 4.37 + 0.44 nm. For the application, LSV analysis was done on Sn nanoparticle and Sn/Ag nanoparticle composite samples, and the analysis showed current produced from Sn/Ag nanoparticle composite (4.10 × 10-6 A) is higher than Sn nanoparticle (3.47 × 10-6 A) at the potential of -0.83V.
Downloads
References
Sharma, G.; Kumar, D;. Kumar, A.; Al-Muhtaseb, A.H.; Pathania, D.; Naushad, M.; Mola, G.T. Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review. Mater. Sci. Eng. C 2017, 71, 1216-1230. doi.org/10.1016/j.msec.2016.11.002
Ahmad, M.; Shameli, K.; Zargar, M. Synthesis and antibacterial activity of silver/montmorillonite nanocomposites. Res. J. Biol. Sci. 2009, 4(9), 1032-1036. doi.org/10.2147/IJN.S16043
Jazayeri, S.D.; Ideris, A.; Zakaria, Z.; Shameli, K.; Moeini, H.; Omar, A.R. Cytotoxicity and immunological responses following oral vaccination of nanoencapsulated avian influenza virus H5 DNA vaccine with green synthesis silver nanoparticles. J Control Release 2012, 1, 116-123. doi.org/10.1016/j.jconrel.2012.04.015
Balavandy, S.K.; Shameli, K,; Abidin, Z.Z. Rapid and green synthesis of silver nanoparticles via sodium alginate media. Int. J. Electrochem. Sci. 2015, 1, 486-497.
Ismail, S.; Jalilian, F.A, Talebpur, A.H.; Zargar, M.; Shameli, K. Chemical composition and antibacterial and cytotoxic activities of Allium hirtifolium Boiss. BioMed Res. Int. 2013, 2013, 1-9. doi.org/10.1155/2013/696835
Khandanlou, R.; Ahmad, M.; Fard-Masoumi, H.R.; Shameli,K.; Basri, M. Rapid adsorption of copper (II) and lead (II) by rice straw/Fe3O4 nanocomposite: optimization, equilibrium isotherms, and adsorption kinetics study. Pols one 2015, 10(3), doi.org/1-9. 10.1371/journal.pone.0120264
Miyabayashi, K.; Higashimoto, M.; Shen, Z.; Miyake, M. Site specific deposition of Ag on the corners of Pt nanocubes. Chem. Lett. 2011, 40, 705-707. doi.org/10.1246/cl.2011.705
Chavan, S.; Talange, D. Modeling and performance evaluation of PEM fuel cell by controlling its input parameters. Energy 2017, 138, 437-445. doi.org/10.1016/j.energy.2017.07.070
Özgür, T.; Yakary?lmaz, A.C. A review: Exergy analysis of PEM and PEM fuel cell based CHP systems. Int. J. Hydrog. Energy 2018, 43(38), 17993-18000. doi.org/10.1016/j.ijhydene.2018.01.106
Shao, M.; Chang, Q.; Dodelet, J.; Chenitz, R. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem. Rev. 2016, 116(6), 3594-3657. doi.org/10.1021/acs.chemrev.5b00462
Shao, M. Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J. Power Sources 2011, 196(5), 2433-2444. doi.org/10.1016/j.jpowsour.2010.10.093
Wang, C.; Daimon, H.; Sun, S. Dumbbell-like Pt?Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction. Nano Lett. 2009, 9(4), 1493-1496. doi.org/10.1021/nl8034724
Esfandiari, A.; Kazemeini, M.; Bastani, D. Synthesis, characterization and performance determination of an Ag@Pt/C electrocatalyst for the ORR in a PEM fuel cell. Int. J. Hydrog. Energy 2016, 41(45), 20720-20730. doi.org/10.1016/j.ijhydene.2016.09.097
Zhang, Y.; Li, X.; Li, K.; Xue, B.; Zhang, C.; Du, C.; Wu, Z.; Chen, W. Novel Au catalysis strategy for the synthesis of Au@Pt core–shell nanoelectrocatalyst with self-controlled quasi-monolayer Pt skin. ACS Appl. Mater. Interfaces 2017, 9(38), 32688-32697. doi.org/10.1021/acsami.7b08210
Zhang, H.; Song, Y.; Liang, Z.; Zhang, X.; B. Xu, Guo, J. A novel Sn/SnO/graphene triple core-shell heterogeneous catalyst for oxygen reduction reaction. Inorg. Chem. Commun. 2018, 96, 101-105. doi.org/10.1016/j.inoche.2018.07.046
Cheng, Y.; Tian, Y.; Tsang, S. Yan, C. Ag nanoparticles on boron doped multi-walled carbon nanotubes as a synergistic catalysts for oxygen reduction reaction in alkaline media. Electrochim. Acta 2015, 174, 919- doi.org/924. 10.1016/j.electacta.2015.05.183
Xiao, D.; Ma, J.; Chen, C.; Luo, Q.; Ma, J.; Zheng, L.; Zuo, X. Oxygen-doped carbonaceous polypyrrole nanotubes-supported Ag nanoparticle as electrocatalyst for oxygen reduction reaction in alkaline solution. Mater. Res. Bull. 2018, 105, 184-191. doi.org/10.1016/j.materresbull.2018.04.030
Linge, J.M.; Erikson, H.; Kozlova, J.; Sammelselg, V.; Tammeveski, K. Oxygen reduction reaction on electrochemically depositedsilver nanoparticles from non-aqueous solution. J. Electroanal. Chem. 2018, 810, 129-134. doi.org/10.1016/j.jelechem.2018.01.009
Stamenovi?, U.; Gavrilov, N.; Pašti, I.A.; Otoni?ar, M.; ?iri?-Marjanovi?, G. Škapin, S.D.; Mitri?, M.; Vodnik, V. One-pot synthesis of novel silver-polyaniline-polyvinylpyrrolidone electrocatalysts for efficient oxygen reduction reaction. Electrochim. Acta 2018, 281, 549-561. doi.org/10.1016/j.electacta.2018.05.202
Chen, Y.; Liu, S.; Yu, L.; Liu, Q.; Wang, Y.; Dong, L. Efficient carbon-supported Ag-MFe2O4 (M = CO, Mn) core-shell catalysts for oxygen reduction reactions in alkaline media. Int. J. Hydrogen Energy 2017, 42, doi.org/11304-11311. 10.1016/j.ijhydene.2017.03.088
Fu, T.; Huang, J.; Lai, S.; Zhang, S.; Fang, J.; Zhao, J. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction. J. Power Sources 2017, 365, 17-25. doi.org/10.1016/j.jpowsour.2017.08.066
Hernández-Rodríguez, M.; Goya, M.; Arévalo, M.; Rodríguez, J.; Pastor, E. Carbon supported Ag and Ag–Co catalysts tolerant to methanol and ethanol for the oxygen reduction reaction in alkaline media. Int. J. Hydrog. Energy 2016, 41(43), 19789-19798. doi.org/10.1016/j.ijhydene.2016.07.188
Cao, J.; Guo, M.; Wu, J.; Xu, J.; Wang, W.; Chen, Z. Carbon-supported Ag@Pt core–shell nanoparticles with enhanced electrochemical activity for methanol oxidation and oxygen reduction reaction. J. Power Sources 2015, 277, 155-160. doi.org/10.1016/j.jpowsour.2014.12.017
Ruiz-Camacho, B.; Martínez Álvarez, O.; Rodríguez-Santoyo, H.H.; López-Peréz, P.A.; Fuentes-Ramírez, R. Mono and bi-metallic electrocatalysts of Pt and Ag for oxygen reduction reaction synthesized by sonication. Electrochem. Commun. 2015, 61, 5-9. doi.org/10.1016/j.elecom.2015.09.023
Cheng, Y.; Li, W.; Fan, X.; Liu, J.; Xu, W.; Yan, C. Modified multi-walled carbon nanotube/Ag nanoparticle composite catalyst for the oxygen reduction reaction in alkaline solution. Electrochim. Acta 2013, 111, 635-641. doi.org/10.1021/jp022505c
Lim, E.J.; Choi, S.M.; Seo M.H.; Kim, Y.; Lee, S.; Kim, W.B. Highly dispersed Ag nanoparticles on nanosheets of reduced graphene oxide for oxygen reduction reaction in alkaline media. Electrochem. Commun. 2013, 28, 100-103. doi.org/10.1016/j.elecom.2012.12.016
Huang, X.; Zhang, H.; Guo, C.; Zhou, Z.; Zheng, N. Simplifying the creation of hollow metallic nanostructures: One-pot synthesis of hollow palladium/platinum single-crystalline nanocubes. Angew. Chem. Int. Ed. 2009, 48(26), 4808-4812. doi.org/10.1002/anie.200900199
Chee, S.; Lee, J. Synthesis of sub-10-nm Sn nanoparticles from Sn(II) 2-ethylhexanoate by a modified polyol process and preparation of AgSn film by melting of the Sn nanoparticles. Thin Solid Films 2014, 562, 211-217. doi.org/10.1016/j.tsf.2014.04.061
Wang, L., Chen, L., Yan, B., Wang, C., Zhu, F., Jiang, X., Chao, Y.; Yang, G. In situ preparation of SnO2@polyaniline nanocomposites and their synergetic structure for high-performance supercapacitors. J. Mater. Chem. A 2014, 2(22), 8334-8341. doi.org/10.1039/C3TA15266A
Kelgenbaeva, Z.; Omurzak, E.; Ihara, H.; Iwamoto, C.; Sulaimankulova, S.; Mashimo, T. Sn and SnO2 nanoparticles by pulsed plasma in liquid: Synthesis, characterization and applications. Phys. Status Solidi A 2015, 212(12), 2951-2957. doi.org/10.1002/pssa.201532502.
Chen, P-J.; Jeng, H-T. Phase diagram of the layered oxide SnO: GW and electron-phonon studies. Sci. Rep. 2015, 5(16359). doi.org/10.1038/srep16359.
Singh, J.; Girothia, A.; Mandre, K.; Kaurav, N.; Okram, G. Trioctylphosphine and oleylamine induced thermoelectric power of Ag nanoparticles. J. Phys. Conf. Ser. 2014, 534(012035). doi:10.1088/1742-6596/534/1/012035