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ABSTRACT 

A condition of the heart or blood vessels is referred to as cardiovascular disease (CVD). When it comes to 

cancer, people with CVD are more likely to get it than people without it. The correlation between 

atherosclerosis and particular cancer subtypes, which remains even after adjusting for traditional risk factors, 

could contribute to this link. The motivation for this work is to analyse the steady flow of dispersion of solute 

in blood flow through an artery with the effect of an electric field. Blood is considered a Casson fluid model. 

The velocity of the Casson fluid model is determined by solving momentum and constitutive equations. The 

concentration of solute, dispersion function and mean concentration are obtained by using the Generalized 

Dispersion Model (GDM). The results are validated with the previous solution without the effects of electric 

field and stenosis. The results showed good conformity between the two solutions. An increase in electric 

field increases the velocity, steady dispersion function and mean concentration while reducing the unsteady 

dispersion function and dispersion function. It is observed that the solute dispersion in blood flow affects the 

electric field. Casson fluid is an appropriate fluid to investigate the blood velocity and transportation of the 

drug in blood flow to the targeted stenosed region through a very narrow artery for the treatment of arterial 

diseases.  
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1. Introduction 

According to Shah et al., [1], analysis of the fluid flow's solute dispersion procedure with relation 

to the wide range of applications in the medical sciences is the research field that holds the most 

interest. In a recent development, Chauhan and Tiwari [2] stated that substances like nutrients, 

medications and metabolic components are transported in the circulatory system as a result of the 

dispersion mechanism in physiological conditions. In the circulatory system, nutrition and waste are 

https://doi.org/10.37934/jrnn.9.1.13342
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transported through a complex combination of blood cells, lipoproteins, and ions. Functions of blood: 

transport around the body [3] stated that nutrients digested are taken up by the bloodstream through 

the intestine's tiny capillaries. 

The investigation of flow via a pipe has always piqued the interest of mathematicians, primarily 

because of its direct relevance to the understanding of blood flow via arteries [4]. The mathematical 

modelling of the circulatory system elucidates the impact of multiple parameters on arterial blood 

circulation and the dispersion of solutes resulting from drug administration via the circulatory system 

into the tissues. Developing an accurate model for an artery is a challenging task due to the intricate 

network of arteries in the human body and their unique characteristics. The presence of an 

imbalanced lifestyle has the potential to exert adverse effects on the health of the coronary arteries, 

hence contributing to the development of cardiovascular disease (CVD). Examples of such lifestyle 

factors include smoking, eating fast food, being sedentary, having high cholesterol, and having 

diabetes. Heart disease encompasses a wide range of conditions, most of which are brought on by 

atherosclerosis. Atherosclerosis is a progressive plaque disorder that can begin in childhood and 

worsen with time. Atherosclerosis gradually takes over as a result of the plaque that is created by 

blood cells, fat, cholesterol, and other substances. When the plaque builds up, the arteries get 

narrower. Consequently, less oxygen-rich blood is supplied to the body's vital organs [5]. Therefore, 

research on stenosed arteries can potentially improve the medical treatment of stenosis and contribute 

to fluid mechanic studies regarding the flow in the stenosed arteries. 

As a result of CVD, the overall prevalence of cancer may grow. Hypertension, obesity, smoking, 

diabetes, and an unhealthy diet and lifestyle all contribute to cancer development. Cancer is an 

uncontrolled cell growth. Cells turn cancerous if certain mutations take place in the several genes that 

influence cell growth. Cancer cells remain in the bodily tissue from which they originated. Cancerous 

tissue cells grow and multiply in order to produce additional cells, eventually forming a tumour. 

Hence, investigating the solute dispersion in blood circulation holds significance as it contributes to 

the accumulation of comprehensive understanding regarding the molecular mechanisms behind the 

initiation, progression, and metastasis of cancer inside the human body. The aforementioned 

discoveries have resulted in the development of treatments that are more efficient and focused, as 

well as tactics for medication administration and prevention that have proven to be beneficial. 

Several novel medication delivery methods are being utilized in cancer treatment. Chemotherapy 

is one of the most often used cancer therapies. It employs specific medications to either kill cancer 

cells or prevent cancer cells from developing and spreading to other regions of the body [6]. As a 

result, it is preferable to design chemotherapeutics that may either passively or actively target 

malignant cells, lowering side effects while boosting therapeutic efficacy. The electric field in the 

blood may influence cancer cell alterations. The data generated by this effect will assist the doctor in 

determining the dose rate necessary for the cancer patient's body. 

Yield stress is a useful Casson fluid for emulating blood circulation in tiny vessels. A Casson fluid 

is, as is well known, a shear-thinning fluid with an infinite shear rate, infinite yield stress, and zero 

viscosity. Blair [7] showed that the basic blood shear dynamics in tiny arteries may be described using 

Casson's fluid model. In the investigation of blood circulation properties, Casson [8] investigated the 

applicability of the Casson fluid model and determined that blood exhibits a nonzero yield stress at 

low shear rates. According to Merrill et al., [9], circulatory system characteristics inside tubes with 

diameters varying from 130 1000μm−  can be precisely predicted by the Casson fluid. Therefore, 

Casson fluid can be considered an appropriate model for blood flow analysis. 

Some CVDs are caused by arterial stenosis. The best CVD treatment depends on the patient [10]. 

Medication, surgery, and cardiac rehabilitation are options. Treatment aims to relieve symptoms, 
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reduce the risk of recurrence, and prevent hospital stays, heart attacks, strokes, and heart failure. 

Cardiovascular disease risk factors include obesity, diabetes, high cholesterol, and hypertension [10]. 

Various factors affecting the stenosed artery should be evaluated to reduce complications. Many 

factors affect blood flow and solute dispersion, including stenosis size. Doctors can determine patient 

medicine dosage by considering stenosis height and length. The continuous flow of solute in blood 

flow must be analysed to observe the solute and blood to ensure a realistic representation of drug 

distribution through the stenosed artery and increase drug efficacy by giving patients precise drug 

dosages. Therefore, stenosed artery research is needed to understand blood flow and solute 

dispersion. 

Cancer can result from CVD. One cancer treatment is chemotherapy. Cancer treatment can cause 

many side effects. Side effects of cancer treatment include harming healthy cells or removing organs 

after surgery [11]. Side effects vary by person, medicine, and therapy. Hair loss, vomiting, and 

neutropenia—a reduction in white blood cells, the body's main line of defence—are typical adverse 

results of cancer therapy [11]. However, electric field effects on solute dispersion in stenosed arterial 

blood flow should be considered. This prevents the electric fields from affecting blood flow and artery 

solute dispersion.  

The investigation of Casson fluid flow properties in tubes was conducted by Roy et al., [12]. Roy 

et al., [12] utilized the Casson fluid model to study reactive species dispersion under oscillatory flow 

conditions. Pulsatile pressure gradients inspired this study, which used the Aris-Barton method to 

solve the mathematical equations. Debnath et al., [13] used the Aris-Barton approach to obtain the 

mathematical equations for the transit of a solute via an annular conduit in a Casson fluid with a 

repeating pulsatile pressure gradient due to heterogeneous chemical processes. This research studies 

annulus cross-section solute concentration distribution. Debnath et al., [14] studied the wall reaction 

that affects species transport in annular pulsatile Casson fluid flow. The dispersion coefficient and 

the technique of moments are used to analyse the transport process. Advection, dispersion, and 

exchange coefficients are used to study transport phenomena. Yield stress, wall responses, phase 

exchange rate kinetics, radius ratio, and irreversible absorption rate affect these coefficients. A porous 

channel that conforms to the Darcy-Forchheimer theory was studied by Ali et al., [15] for heat transfer 

properties and mass characteristics of pulsating flow. The study examined Casson fluid hybrid 

nanofluid (HNF) behaviour to understand blood circulation in arteries with stenosis. The 

mathematical solutions are solved numerically using the finite-difference flow solver. This solver uses 

a vorticity stream function. Singh and Murthy [16] studied unstable solute dispersion in circular tube 

pulsatile non-Newtonian flow. The researchers employed Aris's moments technique to investigate 

higher-order moments. The Luo and Kuang (1992) constitutive relation, or K-L Model, describes non-

Newtonian fluids. The analysis immediately produces Casson, Bingham, and Newtonian model 

results.  

Dandu et al., [44] investigated the unsteady magnetohydrodynamic with the effect of radiation 

absorption and diffusion thermodynamics using Casson fluid that inclined the moving plate in 

thermal radiation, heat absorption and homogenous chemical reactions and solved it using 

perturbation technique. Yahaya et al., [45] analysed stagnation flow for two-dimensional 

magnetohydrodynamic (MHD) of incompressible Casson fluid with the effect of homogeneous-

heterogeneous reactions, suction and slip effects, which was solved by using a partial differential 

equation. Omar et al., [46] studied the unsteady Casson fluid model in a porous medium in the 

presence of thermal and chemical radiation by applying the partial differential equation. Azmi et al., 

[47] studied the Casson fluid model in human blood flow in an artery by considering slip velocity at 

the boundary, which was solved by using the finite Hankel transform and the Laplace transform. 

Arifin et al., [48] investigated the two-phase flow in real-life applications using Casson fluid, single-
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wall carbon nanotubes (SWCNTs), and dust particles with the effects of the aligned magnetic field 

effect and Newtonian heating (NH). The Runge-Kutta-Kuttaerg (RKF45) method has been used to 

solve the mathematical equations. Mohamed et al., [49] analysed boundary layer flow and heat 

transfer on slip effects on a horizontal plate using Casson ferrofluid and solved the problem using 

the Runge-Kutta-Fehlberg (RKF45) method. 

In observing the blood circulation in an artery with the influence of temperature, it is preferable 

to add more effect to the blood flow to the artery under investigation to provide a more accurate 

depiction of the actual circumstances. Thus, taking into account the effect of an electric field on blood 

flow helps to better understand the behaviour of blood flow under the influence of temperature. 

Trivedi et al., [17] stated that endothelial cells are exposed to the electro kinetic vascular streaming 

potential (EVSP), a pervasive but unstudied electrical force induced by blood circulation. By 

monitoring the production of nitric oxide and membrane potential under ELF conditions, this study 

evaluated the idea that the EVSP's extremely low-frequency (ELF) electric fields dramatically modify 

endothelial cell characteristics. Shit et al., [18] used blood flow as micropolar fluid in a stenosed artery 

that is overlapped and tapering under an electric potential. Jin et al., [19] examined autonomic 

nervous system responses to electrical stimulation. Interferential current (IFC) frequency and 

amplitude alter blood flow velocity and vessel size. Analysis by Tripathi et al., [20] stated that electro 

kinetic peristaltic multi-layered transport is being studied in a micro-channel with an axial electrical 

field. The equations for mass and momentum preservation in a two-dimensional system with electro 

kinetic body forces are first converted, transitioning from the wave frame to the lab frame. The 

concepts of electric field in connection to electrical potential are made clear by the Poisson-Boltzmann 

equation, the ionic Nernst-Planck equation, and the Debye length approximation. 

The micropolar fluid model was extensively studied by Tripathi et al., [21] to determine the ways 

that microrotation affects blood flow dynamics. This work investigates the effects of electromagnetic 

fields, heat radiation, nanoparticle form, and electric double layer thickness on flow dynamics. 

Cylinders, bricks, and platelets are being studied as nanoparticle morphologies. Approximations of 

vast spatial scale, a small Reynolds number, and Debye-Hückel theory linearization solve the 

governing equations. Ramasamy and Murugan [22] used a low Reynolds number and zeta potential 

to solve the solute convection and dispersion coefficients for the axial movement of solute change in 

a circular tube with an outwardly provided electric field and the pulsatile flow of Carreau fluid. 

Murugan et al., [23] used a generalized dispersion model to solve the dispersion in pulsatile electro-

magneto-hydrodynamic flow in a tube filled with a porous medium using Casson fluid. 

Ponalagusamy and Murugan [24] examined the dispersion solute in pulsatile flow by considering the 

mechanism in a circular conduit using Carreau fluid, which was solved using GDM and the finite 

Hankel transform. 

There exist numerous methodologies that are appropriate for investigating the dispersion of 

solutes, including the Taylor-Aris approach, the Aris-Barton method, and the GDM. In the study 

conducted by Taylor [25], the research focused on the phenomenon of solute dispersion inside a 

solvent in a linear pipe under conditions of steady flow. The solute exhibits diffusion because of the 

interaction between molecule diffusion and velocity variance throughout its cross-sectional area, 

resulting in the solute diffusing with molecular diffusivity, 2 2 48
eff m m

D a u D=  where a  is pipe radius, 

m
u  is mean velocity and m

D  is molecular diffusivity. The solute dispersion theory of Taylor showed 

by Aris [26] is only valid when eff m
D D . Then, Aris [26] introduced the Taylor-Aris dispersion 

method, which describes the impact of axial molecule diffusion. The latter theory was only viable for 

a limited time. The work of Taylor-Aris has been simplified by Gill [27] by the establishment of a 
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distribution for the local concentration, which is derived from a series expansion based on the mean 

concentration and is applicable for all time periods. Then, Gill and Sankarasubramanian [28] 

developed the first GDM to analyze the solute dispersion process. Gill and Sankarasubramanian [29] 

explored scattering in the presence of a wall response using exchange, convection, and scattering 

coefficients. Dash et al., [30] used GDM to analyze unstable solute dispersion in Casson fluid flow. 

Rana and Murthy [31] studied solute dispersion in a small vessel under unsteady flow conditions. 

Two-phase Casson fluid models, power laws, and GDM were used to analyze the dispersion process 

with or without vessel wall solute absorption. Rana and Murthy [32] examined the process by which 

yield stress affects solute mobility in an unstable two-phase Casson fluid. 

GDM was utilized to study solute dispersion in non-Newtonian flow in an inclined channel with 

porous beds by Ratchagar and Vijayakumar [33]. This model investigates the impact of magnetic 

fields and chemicals on the internal and exterior dispersion of solutes in blood flow. Guo et al., [34] 

used high-order GDM terms to study solute transport in turbulent open channel flow. The vertical 

mean and spatial distribution of concentration must be described to analyze turbulent flow in 

channels that are opened. The direct solution of second-to-fourth-order dispersion models considers 

high-order variables. Jaafar et al., [35] utilized the Herschel Bulkley (H-B) fluid model to study the 

way chemical reactions and variable stenosis heights destabilize solute dispersion in a limited artery 

with a cosine-curved stenosis. Solute dispersion functions are calculated by solving the convective-

diffusion equation with the GDM. Chauhan and Tiwari [2] used two non-Newtonian fluids to study 

solute dispersion through absorbent micro-vessels under Herschel-Bulkley and Jeffrey viscosity 

assumptions. The issue was resolved using GDM. GDM is suitable for this study. GDM is reliable for 

solute dispersion and mean concentration in various arteries, according to this literature. Thus, GDM 

is appropriate. 

To the best of the authors' knowledge, despite a physiologically plausible scenario in which drugs 

are transported or solutes are injected into the human circulatory system to treat medical conditions, 

the solute's dispersion during blood circulation through a vessel with the effect of an electric field 

using the Casson fluid model has not received enough attention. Thus, the goal of this research is to 

use the Casson fluid model to examine the steady flow behavior of blood in an artery under the 

influence of an electric field. The present investigation aims to develop a mathematical model of the 

Casson fluid model via blood circulation, resolve the momentum and continuity equation of blood 

flow, solve the unsteady convective-diffusion equation to obtain solute concentration, dispersion 

function, and mean concentration through GDM, and examine the effect of an electric field on solute 

dispersion in blood flow. The momentum equation is solved analytically to determine the blood flow 

velocity. Mathematical equations of the momentum equation have also been generated using the 

Navier-Stokes equation and the Maxwell equation. Additionally, GDM was obtained analytically by 

deriving mathematical formulations of convective diffusion coefficients, and GDM was then used to 

determine the dispersion function and mean concentration. Due to their very broad expressions, the 

momentum equation and convective diffusion coefficient are not discussed in detail. 

 

2. Materials and Methods 

2.1 Mathematical Formulation 

 

Casson fluid was utilized to imitate blood. Micro-channels are modelled as a flow of fluids 

because blood can be isolated plasma fluid and cells can be injected with core fluid when it flows 

through microchannels [36]. The blood flow is measured using the system of polar cylindrical 
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coordinates ( ), ,r ψ z , where the radial and axial coordinates designated by r  and z  respectively and 

the azimuthal angle denoted by ψ . Figure 1 shows the geometry of pipe flow for Casson fluid model 

where L  is the length of conduit, 0
R  is the artery's radius, ψ  is the azimuthal angle, p

r  is the radius 

of the plug region in circular pipe, δ  is stenosis height, u  is the velocity of fluid flow, z
E  is electric 

field and z  is the axial coordinate for circular pipe. 

 

 
Fig. 1. The geometry of pipe flow for Casson fluid model with the effect 

of electric field 

 

2.2 Governing Equations 

The momentum equation which governs the flow is given as follows [37] 

 

( )
1

0,
e z

dpd
μ rτ σρ E

r dr dz

 
− + = 

 
  (1) 

 
where the variables of ,μ  τ , p , 

e
ρ , σ  and 

z
E  are the viscosity of fluid, the shear stress, the fluid 

pressure, the fluid density in electric field, the conductivity of electricity and the electric field. The 

boundary condition for momentum equation is given as 

 

finite at 0.τ r= =   (2) 

 

The constitutive equation is defined as  

 

( )
21

 if ,

0                          if ,

y y

y

τ τ τ τdu
μ

dr
τ τ


− 

− = 
 


  (3) 

 

where u , y
τ , μ  are the velocity of the fluid flow, the yield stress and the coefficient of viscosity for 

the Casson fluid model. The slip boundary condition for constitutive equation is given by Verma et 

al., [38] 
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( ) at ,
s

u u r R z= =   (4) 

where 

 

( )
2 2 2

0 2
0 0

1 exp ,
δ k ε z

R z R
R R

  
= − −    

  

  (5) 

 

where ( )R z  is the stenosed segment's radius, δ  is the stenosis height at the central point and k  is 

the constant in parameters and radius, 
0 0

/ε R L= . Consider the geometry of stenosis in Figure 1 in 

Eq. (5) as below 

 

( ) 2

0

1 ,bz
R z

ae
R

−= −   (6) 

 

where 
0

/a δ R=  and 2 2 2

0
/b k ε R=  are the variables in ( )R z . Non-dimensional for Eq. (6) as below 

 

( ) ( )2
1

1
1 ,

b z
R z a e

−

= −   (7) 

 

where 
1

a δ=  and 2

1 0
b bR=  are variables in ( )R z . 

 

The mean velocity is stated as below 

( )
( ) ( )

( )

2
0

2
.

p

p

r R z

m p

r

u u r rdr u r rdr
R z

 
 = +
 
 
    (8) 

 

Then, two-dimensional unsteady convective-diffusion equation is expressed as follows: 

 
2

2

1
.

m

C C
u D r C

t r r rz z 

      
+ = +  

     
  (9) 

 

Simplify Eq. (9), it yields 

 
2

2

2
,

m

C C
u D C

t z z 

   
+ = + 

   
  (10) 

 

where 

 

2 1
.r

r r r

  
=  

  
  (11) 

 

According to Gill and Sankarasubramanian [28], the initial condition of convective diffusion 

coefficient is given by 
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( )
0
 if ,

2, ,0

0   if ,
2

s

s

z
C z

C r z
z

z




= 
 


  (12) 

 

where 
0

C  is the concentration referenced and 
s

z  is the solute's length. The boundary condition 

following Gill and Sankarasubramanian [28] is 

 

( ), , 0,C r t =   (13) 

 

for symmetry at the central circular pipe 0r = , the boundary condition is 

 

( )0, , 0
C

z t
r


=


  (14) 

 

and for the solute concentration gradient at the wall ( )r R z= , the boundary condition is given by 

 

( )( ), , 0.
C

R z z t
r


=


  (15) 

 

2.3 Non-dimensional Variables 

 

The non-dimensional variables are as follows 

 

( )00 0

0 0 0 0 0 0 0 0

0

2 2 2
0 0 0 0 0 0 0

,  ,  ,  ,  ,  ,  ,  ( ) ,  

,  ,  , ,  ,  ,  ,

y s
y s

z m m s m
z p s

τ R R zτR pμu ur z u
r τ p z u τ u R z

R μu R R u μu u R

E r D z D z D tH C
E r H C z z t

ε R H C R u R u a





= = = = = = = =

= = = = = = =

 (16) 

 

where 
0

u  is the fluid characteristic velocity. Here, ,r  τ , p , 
0

R , ,z z  ,u ,
y
τ ,

s
u  ( )R z , 

z
E , p

r , C , 
s

z , 

ε  and t  are radial coordinate, shear stress, pressure gradient, radius of artery in outer region, radial 

direction, velocity, yield stress, slip velocity, stenosed radius respectively in non-dimensional 

variables, electrical field in non-axial coordinate, radius of artery in plug flow region, solute 

concentration, solute length, electrical permittivity and time. 

 

2.4 Method of Solution 

 

The non-dimensional momentum equation obtained by substituting Eq. (16) into Eq. (1), it yields 

 

( )
1

0.
e z

dpd
μ rτ σρ εE

r dr dz

 
− + = 

 
  (17) 
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Integrate Eq. (17) with respect to r , it yields 

 

1
,

2 e z

dpr
τ σρ εE A

μ dz

 
= − + 

 
  (18) 

 

where 
1

A  is a constant of integration. By substituting Eq. (16) into Eq. (2), the non-dimensional 

boundary condition of momentum equation is given as 

 

finite at 0.τ r= =   (19) 

 

Substituting Eq. (19) into Eq. (18), it yields 

 

.
2 e z

dpr
τ σρ εE

μ dz

 
= − 

 
  (20) 

 

Substituting p
r r=  and y

τ τ=  into Eq. (20) to form yield stress, y
τ , it yields 

 

.
2

p

y e z

r dp
τ σρ εE

μ dz

 
= − 

 
  (21) 

 

Substituting Eq. (16) into Eq. (3), the non-dimensional constitutive equation of Casson fluid is 

given by 

 

( )
21

 if ,

0                          if .

y y

y

τ τ τ τdu
μ

dr
τ τ


− 

− = 
 


  (22) 

 

Substituting Eq. (20) and (21) into Eq. (22), it yields 

 

1
2 .

2 2 2 2

p p

e z e z e z e z

r rdp dp dp dpdu r r
σρ εE σρ εE σρ εE σρ εE

dr μ μ dz μ dz μ dz μ dz

        
 − = − + − − − −       
         

 (23) 

 

Simplify Eq. (23), it becomes 

 

2

1
2 .

2
e z p p

dpdu
σρ εE r r r r

dr dzμ

   − = − + −    
  (24) 

 

Integrate Eq. (24) with respect to r , it becomes 

 
3

22

22

41
,

2 32

p

e z p

r rdp r
u σρ εE rr A

dzμ

 
  

− = − + − +  
   

 

  (25) 
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where 
2

A  is a constant integration. Substituting Eq. (16) into Eq. (4), the non-dimensional of slip 

boundary condition of constitutive equation is given as 

 

( ) at .
s

u u r R z= =   (26) 

 

Substituting Eq. (26) into Eq. (25), the non-dimensional of the expression of velocity in the outer 

non-plug core is given by 

 

( ) ( ) ( )
( )

3 3

2 2

2 2

2

8 81
2 2 ,

3 34

p p

e z p p s

r R z r rdp
u r σρ εE R z r r R z rr u

dzμ

 
  

= − − + − − + +  
   

 

 (27) 

 

where /dp dz  is the non-dimensional of axial pressure gradient. By evaluating p
r r=  in the Eq. (27), 

the non-dimensional of velocity of fluid in the plug flow region is given as follows 

 

( ) ( ) ( )
( )

3

22

2 2 2

2

8 81
2 2 .

3 34

p p

p e z p p p s

r R z rdp
u r σρ εE R z r r R z r u

dzμ

 
  

= − − + − − + +  
   

 

 (28) 

 

The non-dimensional of mean velocity in Eq. (8) is given by 

 
( )2

0 0

R zπ

m

urdrdθ
u

rdrdθ
=     (29) 

 

and has been solved using integral method. It forms 

 

( ) ( ) ( )
( )

43
2 2

2 2

1 4 16 1
.

3 7 218

p

m e z p p s

rdp
u σρ εE R z r R z r R z u

dzμ R z

  
= − + − − +  

    

 (30) 

 

By applying Eq. (10) into Eq. (16), it is simplified as follows 

 
2

2

2 2

1
,

C C
u C

t z Pe z 

   
+ = + 

   
  (31) 

 

where  

0 0 .
m

R u
Pe

D
=   (32) 

 

Here, Pe  is the Peclet number for the flow in a circular pipe which is given by Dash et al., [30]. By 

using approach of Gill and Sankarasubramanian [28] and by assuming the solution of Eq. (31) as a 

derivative series expansion involving 
1

i i

m
C z   is shown as follows 
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( ) ( ) ( )
( )1

1
1 1

,
, , , , ,

i

m

m i i
i

C z t
C r z t C z t f r t

z



=


= +


   (33) 

 

where 
m

C  is the mean concentration of the solute over a cross-sectional area of the geometry, ( ),
i

f r t  

is the dispersion function associated with 
1

i i

m
C z  . By applying Eq. (12)-(15) into Eq. (16), the non-

dimensional of initial and boundary conditions of convective-diffusion equation are obtained as 

 

( )
1 if ,

2, ,0

0 if ,
2

s

s

z
z

C r z
z

z




= 
 


  (34) 

 

( ), , 0,C r t =   (35) 

 

( )0, , 0,
C

z t
r


=


  (36) 

 

( )( ), , 0.
C

R z z t
r


=


  (37) 

 

Using the initial condition Eq. (34) into Eq. (39), it yields ( )0
,0 1f r = . Multiplying the solution in 

Eq. (39) with r  and integrating it from 0  to ( )R z  with the respect to r , it yields 

 

( ) ( )
( )

1 1

0

, 2 , , .

R z

m
C z t C r z t rdr=    (38) 

 

According to Gill and Sankarasubramanian [28], the GDM is a derivative series expansion which 

given as  

 

( ) ( ) ( )1 1
1 1

, , ,
i

m m
i i

i

C C
z t K t z t

t z



=

 
=

 
   (39) 

 

where ( )i
K t  is the transport coefficient given by 

 

( ) ( ) ( ) ( )
( )

2
1

0

2 1, 2 , ,  1,2,3,... ,

R z

i i
i i

δ f
K t t f r t u r rdr i

t r −


= + − =
    (40) 

 

with the Kronecker delta, ( )1
K t  and ( )2

K t  are the longitudinal convection coefficient and 

longitudinal diffusion coefficient from the Eq. (40). In terms of simple diffusion, the coefficient ( )2
K t  

reflects the entire dispersion process. It is known as the effective axial diffusivity. ij
δ  is given by 
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0 if ,

1 if .ij

i j
δ

i j

 
= 

=
  (41) 

 

The dispersion function of ( )1
,f r t  plays an important role in calculating the mean concentration, 

( )1
,

m
C z t . The dispersion function is given as follows 

 

1 1 1
( , ) ( ) ( , ),

s t
f r t f r f r t= +   (42) 

 

where 
1

( )
s

f r  is the steady state dispersion function and 
1

( , )
t

f r t  is the dispersion function in the 

unsteady state that characterises the solute's time-dependent dispersion. The dispersion function at 

steady state is given by 

 

( )( )1 _1
0 if 0s

p m p

f
r u r u r r

r r r

 
− − =      

  (43) 

 

and the dispersion function in outer region is given as follows 

 

( )1 _1
( ) 0 if ( ).s

m p

f
r u r u r r R z

r r r

 
− − =      

  (44) 

 

Eq. (43) and Eq. (44) are solved using Eq. (44) to get 1s
f

−
 and 1s

f
+
 

 

1 (0) 0s
df

dt
=   (45) 

 

1 ( ) 0.s
df

R z
dr

=   (46) 

 

The steady dispersion function in the plug flow region, 1s
f

−
 and outer flow region, 1s

f
+
. Thus, it 

yields 

 

( )

2 2 2 4 3
2 2 2 22

1 _ 2

1 2 1
( ) ( ) ( )

48 12 21 32672

p p

s p p

Ar r Ar r
f CI Ar r R z Ar r R z Ar R z

R z
= − + + − +  (47) 

 
3

2

4 2 474
3 2 22

1 2

2 2 4 4

1158 1 1 2
( ) ( )

64 147 18 28224 12 21672 ( )

1 1 1
( ) log( ) log( ),

32 336 336

p p

s p p p p

p p p

Ar Ar rAr
f CI Ar r Ar r Ar r R z Ar r R z

R z

Ar R z Ar r Ar r

+

= − + − − + + −

+ − +

 (48) 

 

where 
2

1

8
e z

dp
A σρ εE

dzμ

 
= − 

 
 and 
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( ) ( )

7

4 6 3 42 4
4

2

15 ( )13 7 ( ) ( ) 1
log log ( ) .

7056 360 539 96 336 3365280 ( )

pp p p p

p p

r R zr r r R z rR z
CI A r r R z

R z

 
 

= + − + − − + 
 
 

 (49) 

 

The general solution of 
1

( , )
t

f r t  is given as  

 
2

1 0
1

( , ) ( ),mλ t

t m m
m

f r t A e J λ r


−

=

=   (50) 

 

where 

 
( )

0 12
00

2
( ) ( ) .

( )

R z

m m s

m

A J λ r f r rdr
J λ

= −    (51) 

 

The mean concentration is obtained using Inverse Fourier Transform (IFT) [39]. It is given as 

follows 

 

( ) 1 1
1

2 21
, .

2 2 2

s s

m

z z

z z
C z t erf erf

ξ ξ

    
    

− +    = +
    
    
     

  (52) 

 

The manuscript does not include the full mathematical formulas for the mean concentration due 

to the intricacy of the calculations, which required the use of Mathematica to solve. This is due to the 

expressions are very large. 

 

3. Results and Discussion 

The current work investigated the effects of a Casson fluid model and an electric field on solute 

dispersion in blood passing through an artery, which is a circular, straight conduit. The GDM has 

been used in the research to achieve this. Samples of blood are extracted using the Casson fluid model. 

Including the electric field in the study helps to provide a more thorough understanding of the 

advances in medical treatments. The velocity, u , steady dispersion function, 
1s

f , unsteady dispersion 

function, 
1

,
t

f  dispersion function, 
1

f  and mean concentration, 
m

C  have been analysed. A graphic 

comparison of Newtonian and non-Newtonian systems has been presented. The behaviour of the 

fluid influencing the solute dispersion process has also been studied in more detail in the plug core 

area, p
r . 

 

3.1 Velocity in Blood Flow 

 

The effect of electric field, 
z

E  and plug core region, p
r  are computed graphically in this section. 

After the momentum equation is solved and the yield stress is established, the velocity results are 

produced and explained by varying various factors within the flow analytic expression. 



 Journal of Research in Nanoscience and Nanotechnology  

Volume 9, Issue 1 (2023) 13-34 

26 
 

The Casson fluid's velocity in relation to the electric field is illustrated in Figure 2, and the result 

has been validated by Dash et al., [30]. The result for Casson fluid without the effect of an electric field 

shows a good result with the Casson fluid’s velocity in the previous study [30]. It is depicted that the 

velocity in relation to the electric field in the present study is in good agreement with the velocity 

shown in Dash et al., [30]. In the present study, when the electric field and height of stenosis is absence 

( )0,  0
z

E a= = , the density of electric field, 
e

ρ  and radius of stenosed, ( )R z  are 1
e
ρ =  and ( ) 1.R z =   

 

 
Fig. 2. Validation of present velocity with Dash et al., [30] 

 

Figure 3 illustrates the differencing of velocity, u  for varied values of electric field, 
z

E  in the blood 

flow with 0.02,a =  2.5,b =  0.5,z =  0,
s

u =  0.1,
y
τ =  2,dp dz =  1

e
ρ =  and 1ε =  with varying electric 

field of 0,  0.2,  0.4,  0.6,  0.8.
z

E =  The electric field affects the blood velocity, and as the electric field 

increases, the velocity tends to increase. Blood flow is accelerated when an electrical field is applied 

perpendicular to its direction, which causes a discernible shift in the axial velocity distribution. The 

circulatory function is impacted by the rate of blood circulation and the size of blood vessels. 

Additionally, electrical stimulation can induce changes in physiology by initiating sympathetic tone 

through the contraction of muscles. Electrical stimulation has been found to augment venous return 

by increasing venous and muscle tension through sympathetic tone. This effect is advantageous in 

reducing the likelihood of pulmonary embolism and the occurrence of cardiac vein thrombus, as 

demonstrated by Jin et al., [19]. Then, it is anticipated that as the electrical field increased, the axial 

velocity increased. 

Figure 4 illustrates the differencing of velocity, u  for varied values of plug core region, p
r  in the 

blood flow with 0.02,a =  2.5,b = . 0.5,z =  0,
s

u =  1,
z

E =  2,dp dz =  1
e
ρ =  and 1ε =  with varying plug 

core region of 0,  0.02,  0.04,  0.06,  0.08.
p

r =  It can be noted that the plug flow region is skewed slightly 

towards the inner wall of the annulus. The plug core region is almost the entire annulus region, with 

the velocity in the plug core region being almost zero. The occurrence of stenosis hinders the 

circulation of blood in the constricted arteries, leading to alterations in yield stress. A rise in the 

frequency of the pulse results in a significant augmentation of the velocity of plug flow. According to 

Nagarani and Sarojamma [40], when the yield stress is inclined, there is a substantial diminution in 

the magnitude of velocity, leading to a large flow of the plug. Thus, the plug core region is inclined 

with the decreased velocity. 
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Fig. 3. Variation of velocity, u  for varied values of 

electric field, z
E  in the blood flow with 0.02,a =  

2.5,b = . 0.5,z =  0,
s

u =  0.1,
y
τ =  2,dp dz =  

1
e
ρ =  and = 1ε  

Fig. 4. Variation of velocity, u  for varied values of 

plug core region, p
r  in the blood flow with 0.02,a =  

2.5,b = . 0.5,z =  0,
s

u =  1,
z

E =  2,dp dz =  1
e
ρ =  

and = 1ε  

 

3.2 Steady Dispersion Function 

 

The dispersion function throughout the steady flow of Casson fluid through the blood vessel is 

investigated in this study. The dispersion function depends on the impact of an electric field on blood 

circulation through the artery. Gill and Sankarasubramanian [29] proposed the GDM in order to 

determine the transport coefficient. 

The steady dispersion of Casson fluid with the effect of an electric field is illustrated in Figure 5, 

and the result has been validated by Dash et al., [30]. Without the effect of an electric field, the result 

of Casson fluid’s steady dispersion shows a good result in the present study [30]. It is depicted that 

the steady dispersion in relation to the electric field in the present study is in good agreement with 

the steady dispersion shown in Dash et al., [30]. In the present study, when the electric field and height 

of stenosis is absence ( )0,  0
z

E a= = , the density of electric field, e
ρ  and radius of stenosed, ( )R z  are 

1
e
ρ =  and ( ) 1.R z =  

 

 
Fig. 5. Validation of present steady dispersion with Dash et al., [30] 

 

Figure 6 illustrates the differencing of steady dispersion function, 1s
f  for varied values of electric 

field, z
E  in the blood flow with 0.0001,a =  4,dp dz =  0,b =  0.05,z =  0.1,

y
τ =  1

e
ρ =  and 1ε =  with 

varying electric field of 0,  0.2,  0.4,  0.6,  0.8.
z

E =  In this instance, the electric field impacts the 

dispersion function, causing the dispersion function to decrease. Physiological changes caused by 

electrical stimulation include an increase in blood flow and an effect on the peripheral circulation. 
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Electrical in vascular stenosis leads dispersion function to progressively grow. Due to the fact that the 

solute can migrate to the artery wall more quickly and effectively, it is crucial to increase the 

dispersion in the middle and decrease it close to the wall for better medicine outcomes. 

Figure 7 illustrates the differencing of steady dispersion function, 1s
f  for varied values of plug 

core region, p
r  in the blood flow with 0.0001,a =  4,dp dz =  0,b =  0.05,z =  1,

z
E =  1

e
ρ =  and 1ε =  

with varying plug core region of 0.02,  0.04,  0.06,  0.08,  0.1.
p

r =   From the figure, it shows that at the 

centre of the artery, the steady dispersion function of the solute increases as the plug core region 

increases, and the reverse behaviour occurs at the inner wall of the artery. The Casson fluid is 

classified as a non-Newtonian fluid due to its characteristic of exhibiting yield stress. This unique 

property renders it particularly suitable for applications involving restricted arterial conduits. The 

decline in the flow rate of the Casson fluid can be attributed to the increased fluid viscosity and the 

corresponding fall in the dispersion function value. The irregular and improper expansion of arterial 

walls can be attributed to stenosis or atherosclerosis, which occurs due to the excessive build-up of 

cholesterol and fat and aberrant tissue proliferation. According to Jaafar et al., [41], the effective axial 

diffusion exhibits a gradual and consistent reduction as the plug core region increases. 

 

  

Fig. 6. Variation of steady dispersion function, 1s
f  for 

varied values of electric field, z
E  in the blood flow 

with 0.0001,a =  4,dp dz =  0,b =  0.05,z =  

0.1,
y
τ =  1

e
ρ =  and = 1ε  

Fig. 7. Variation of steady dispersion function, 1s
f  for 

varied values of plug core region, p
r  in the blood 

flow with 0.0001,a =  4,dp dz =  0,b =  0.05,z =  

1,
z

E =  1
e
ρ =  and = 1ε  

 

3.3 Unsteady Dispersion Function 

 

The dispersion phase throughout the unsteady flow of Casson fluid through an artery and 

velocity are investigated in this study. Gill and Sankarasubramanian [29] proposed the GDM in order 

to determine the transport coefficient. The dispersion function depends on the electric field. 

Figure 8 illustrates the differencing of unsteady dispersion function, 1t
f  for varied values of 

electric field, z
E  in the blood circulation with 0.0001,a =  4,dp dz =  0,b =  0.05,z =  0.01,

y
τ =  1

e
ρ =  

and 1ε =  with varying electric field of 0.1,  0.5,  1,  1.5,  2.
z

E =  The increasing of time causes an 

increase in unsteady dispersion function. When time is at zero, the unsteady dispersion function 

shows the maximum results. Meanwhile, as time increased, the unsteady dispersion function 

increased near zero. Jaafar et al., [35] have observed that the distribution of solutes in blood flow is 

influenced by two processes: red blood cell bending and migration to the core. This observation aligns 

with the findings of Patel and Sirs [42]. 
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Figure 9 illustrates the differencing of unsteady dispersion function, 1t
f  for varied values of plug 

core region, p
r  in the blood circulation with 0.0001,a =  4,dp dz =  0,b =  0.05,z =  1,

z
E =  1

e
ρ =  and 

1ε =  with varying plug core region of 0.01,  0.02,  0.03,  0.04,  0.05.
p

r =  As the plug core region 

increases, the unsteady dispersion function decreases. Non-Newtonian Casson fluid with yield stress 

is appropriate for narrow arteries. Since Casson fluid viscosity increased and dispersion function 

decreased, flow rate decreased. Simplified transport of solutes, like oxygen mixing with haemoglobin 

to generate oxyhaemoglobin, can complicate diffusion studies. Due to cell congestion, the plug flow 

has all the oxygen, and the boundary has limited oxygen [43]. The presence of many materials, 

particularly red blood cells, in the plasma results in blood being a concentrated suspension. As a 

result, red blood cell agglomeration and deformation may affect the lateral combining of any solute 

added to the bloodstream, which in turn can affect the rate of axial dispersion. According to Nagarani 

et al., [43], the dispersion coefficients drop with the increased plug core region. 

 

  

Fig. 8. Variation of unsteady dispersion function, 1t
f  

for varied values of electric field, z
E  in the blood 

flow with 0.0001,a =  4,dp dz =  0,b =  0.05,z =  

0.01,
y
τ =  1

e
ρ =  and = 1ε  

Fig. 9. Variation of unsteady dispersion function, 
1t

f  

for varied values of plug core region, p
r  in the blood 

flow with 0.0001,a =  4,dp dz =  0,b =  0.05,z =  

1,
z

E =  1
e
ρ =  and = 1ε  

 

3.4 Dispersion Function 

 

Figure 10 illustrates the differencing of dispersion function, 
1

f  for varied values of electric field, 

z
E  in the blood flow with 0.0001,a =  4,dp dz =  0,b =  0.05,z =  0.01,

y
τ =  1

e
ρ =  and 1ε =  with 

varying electric field of 0,  0.2,  0.4,  0.6,  0.8.
z

E =  The increasing value of the electric field tends to 

decrease the dispersion function. A graded membrane depolarization caused by electrical fields with 

biological characteristics depends on factors that are important for clinical practice (blood pressure 

and pulse rate) [17]. Therefore, as the electric field increased, the dispersion function declined. 

Figure 11 illustrates the differencing of dispersion function, 
1

f  for varied values of plug core 

region, p
r  in the blood flow with 0.0001,a =  4,dp dz =  0,b =  0.05,z =  1,

z
E =  1

e
ρ =  and 1ε =  with 

varying plug core region of 0.01,  0.02,  0.03,  0.04,  0.05.
p

r =  The decrease in the dispersion function is 

observed with an inclination in the plug core region. Remarkably, the dispersion function reaches its 

greatest value when the plug core region is zero. The extent of solute dispersion is contingent upon 

the core radius of the plug, whereby an inclined core region of the plug leads to a corresponding 

inclined solute dispersion. The dispersion function exhibits its highest magnitude when the plug core 
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radius is zero, indicating that solute dispersion is maximized when there is no plug core present in 

the flow stream. 

 

  
Fig. 10. Variation of dispersion function, 

1
f  for 

varied values of electric field, 
z

E  in the blood flow 

with 0.0001,a =  4,dp dz =  0,b =  0.05,z =  

0.01,
y
τ =  1

e
ρ =  and = 1ε  

Fig. 11. Variation of dispersion function, 
1

f  for varied 

values of plug core region, p
r  in the blood flow with 

0.0001,a =  4,dp dz =  0,b =  0.05,z =  1,
z

E =  

1
e
ρ =  and = 1ε  

 

3.5 Mean Concentration 

 

The results of the mean concentration are useful to help the physiologist predict the correct dose 

needed for effectiveness. The mean concentration of Casson fluid is seen to increase when the drug 

reaches the bloodstream faster than it is extracted from the body. When a drug is extracted from the 

body, the average dose decreases continuously because the drug is removed from the body faster 

than it reaches the body. 

Figure 12 illustrates the differencing of mean concentration, 
m

C  for varied values of electric field, 

z
E  in the blood circulation with 0.0001,a =  10,dp dz =  0,b =  0.05,z =  0.01,

y
τ =  1

e
ρ =  and 1ε =  

with varying electric field of 0,  0.2,  0.4,  0.6,  0.8.
z

E =  The mean concentration increases with an 

increase in the electric field. As the solute concentration increased, the heart pumped blood at a high 

rate. With a higher mean concentration of solute at the highest-pressure gradient, solute dispersion, 

such as medication, reaches its maximum efficacy. Thus, the mean concentration increased when the 

effect of the electric field increased. 

Figure 13 illustrates the differencing of mean concentration, 
m

C  for varied values of plug core 

region, p
r  in the blood flow with 0.0001,a =  10,dp dz =  0,b =  0.05,z =  1,

z
E =  1

e
ρ =  and 1ε =  with 

varying plug core region of 0.01,  0.02,  0.03,  0.04,  0.05.
p

r =  The increase in the plug core region tends 

to decrease the mean concentration. The maximum mean concentration is the effective dose for the 

therapeutic concentration, and the therapeutic benefits as well as side effects of the drug can be 

expected by knowing the maximum concentration. In small-diameter arteries in round pipes, the 

average concentration of solute is higher. Therefore, as the plug core region increased, the mean 

concentration decreased. 

 



 Journal of Research in Nanoscience and Nanotechnology  

Volume 9, Issue 1 (2023) 13-34 

31 
 

  
Fig. 12. Variation of mean concentration, 

m
C  for 

varied values of electric field, 
z

E  in the blood flow 

with 0.0001,a =  10,dp dz =  0,b =  0.05,z =  

0.01,
y
τ =  1

e
ρ =  and = 1ε  

Fig. 13. Variation of mean concentration, 
m

C  for 

varied values of plug core region, p
r  in the blood flow 

with 0.0001,a =  10,dp dz =  0,b =  0.05,z =  

1,
z

E =  1
e
ρ =  and = 1ε  

 

4. Conclusions 

This study utilizes a novel methodology to analyse the effect of an electric field on solute 

dispersion within the Casson fluid model of blood circulation in arteries. This technique is grounded 

in the physiological realism of the cardiovascular system and aims to further understand the mixing 

process and drug distribution to tissues via arterial blood vessels. The effect of an electric field on 

velocity, stable and unsteady dispersion function, dispersion function, and mean concentration has 

been thoroughly examined. It has been determined that these characteristics significantly affect this 

quantity. The analytical solution of the dispersion function and mean concentration have been 

obtained by using GDM. 

The results indicated an inclined electric field tends to be inclined in velocity, steady and unsteady 

dispersion function, and mean concentration. The reasoning is that the height of stenosis impacts the 

flow region of the blood flow. As the solute concentration increases, the heart pumps blood at a high 

rate. With a mean concentration of solute at the highest pressure gradient, solute dispersion reaches 

its maximum efficacy. Nonetheless, as the dispersion function decreases, the electric field increases. 

Not to mention, the dispersion function also decreases due to the lack of solute particles to diffuse 

efficiently across the artery axially. However, when the plug core region is considered in the problem, 

the solute dispersion behaves differently depending on the value of the plug core region. In an 

inclined plug core region, it decreases the velocity of flow, steady and unsteady dispersion functions, 

and mean concentration. This is due to the plug core region acting in the opposite direction of the 

solute, causing the impact of velocity, steady and unsteady dispersion function, and mean 

concentration to be reduced. Meanwhile, as the plug core region increases, the dispersion function 

increases. Similar to the electric field, the dispersion function also decreases due to the lack of solute 

particles to diffuse efficiently across the artery axially. Hence, in subsequent investigations, this study 

can be expanded to encompass two distinct models. It is important to acknowledge that the velocity 

and flow rate of the two-fluid blood flow model exhibit greater magnitudes compared to those of the 

single-fluid blood flow model. 
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