

Journal of Advanced Research in Social and Behavioural Sciences

Journal homepage: www.akademiabaru.com/arsbs.html
ISSN: 2462-1951

Impact of Simulation Based "Death Scenarios" in Teaching Undergraduate Medical Students about Multidisciplinary Team Function in Patient Care

Afshan H. Khattak^{1,*}, Iftikhar Qayyum², Murtaza R. Khan³, Haleema Kamila³, Muhammad Sami Khan³, Mustafa Ikram³, Mamoon Khan³, Saad Irfan³

- ¹ Department of Medical Research, Peshawar Medical College, Warsak Road, Peshawar 24680, Pakistan
- Department of Medical Research, Rehman Medical College, Hayatabad 25100, Peshawar, Pakistan
- Peshawar Medical College, Warsak Road Peshawar 24680, Pakistan

ARTICLE INFO

ABSTRACT

Article history:

Received 18 January 2018 Received in revised form 6 February 2018 Accepted 28 March 2018 Available online 26 May 2018

Experiencing the death of a patient is one of the most challenging aspects of training for medical students. Exploring what students learn from this difficult experience is useful for a multitude of educational objectives. Role of death and dying in experiential learning of medical students is well documented. Death is a multidimensional subject with significant variation in different cultures and religions. Teaching about death and life-saving skills to undergraduates poses a serious ethical dilemma. Critical patients need to be protected from novice practice. Advent of clinical skills labs with simulated patients has made it easy to teach care of critical patients to medical undergraduates. Our research question was, "How does imminent death of a simulated patient influence learning about and acting as a multidisciplinary medical team among preclinical medical students?" Clinical scenarios aided by simulated patients depicting imminent death of the patient were used to study development and performance of a medical team. We could not find similar researches done in Pakistan or other SAARC region countries. This is a double blind, randomized, controlled interventional study. Experimental (n = 40) and control (n=40) groups were trained in life saving skills in a skills lab. Experimental group was taught using scenarios depicting death of patients while control group was taught using scenarios with critical patients, only. Both groups were tested for effective team function in resuscitating a simulated patient. Scores for attributes of effective teamwork were compiled and analyzed in SPSS V-21. No significant difference was seen in Pre and Post-test scores for experimental and control groups. Teamwork attribute scores were significantly higher for experimental group compared with control group, (p value - < 0.001) for all attributes tested. Simulated case scenarios depicting death of the patient are an effective tool to teach medical undergraduates about effective teamwork.

Keywords:

Death, simulation, life-saving skills, medical education, skills lab

Copyright © 2018 PENERBIT AKADEMIA BARU - All rights reserved

E-mail address: Afshan H. Khattak (palwasha.bibi@gmail.com)

^{*} Corresponding author.

1. Introduction

Death and dying are unique experiences for medical students. Most remember patients whose deaths they witnessed as medical students. Research has shown that death of a patient is a complex subjective experience for medical students [1]. Increased level of anxiety in medical students around dying patients is well documented [1]. Several medical curricula in the west address death and dying as a separate subject. There is limited exposure to actual patients during pre-clinical years. A review of the Index Medicus using 'Death' as a search keyword from 1960 to 1971 showed not a single article about an undergraduate curriculum teaching death and dying in medical schools in United States [2]. Barton was one of the first medical teachers who regularly met with his undergraduate students in small groups. He published his experiences on educational value of death at undergraduate level [3].

Liston reported that about half the medical schools in the United States had included some amount of formal teaching on death and dying in their undergraduate curricula between late '60s and 1973 [4]. By 1980, 104 out of 114 (92%) medical schools in the United States had formal, planned out courses followed by formative assessments about death and dying [5]. In England, in 1983 only four of 62 medical schools reported the absence of a programme for medical students on death and dying but the exposure to the topic of death and dying was limited to only an hour in a five-year course [6] . Advocates of patient exposure in pre-clinical years recommend that death and dying should be taught for better educational outcomes in terms of empathy and effective communication with patients and families [7].

Death is a complex medical, social, cultural and spiritual issue. This is the reason that several learning outcomes can be taught using death [9,10]. It is one of the major social and cultural stimuli for groups to come together and act in unison. This makes death a hypothetical stimulus for effective teamwork. Experiencing the death of a patient leads students to seek encouragement through colleagues. Clinical exposure to dying patients brings about a change in students' perceptions to view death as a part of life instead of being something traumatic [9]. Students appreciate the professional environment of the hospital and assume team positions in formalizing the death of a patient, as they feel more responsible for their patients [9]. Objective measurements of patientcare attitudes and knowledge parameters have shown that medical students who reported personal or professional experiences with death had positive attitudes and knowledge scores that were statistically significant compared with those who did not report such experiences [10]. Such studies call for innovations in teaching medical students about death and dying. Innovations that can help inculcate useful clinical care attributes such as empathy and teamwork, especially when dealing with critical patients and their families.

Simulation labs and clinical skill centers are very useful in teaching about death to medical students. Benefits of scenario based and simulation enhanced teaching include exposure of students and trainees to critical life and death situations without jeopardizing actual patient care in hospitals. Role of death and dying patients in experiential learning of medical students is well documented¹¹. Teaching about life saving skills [12] and effective teamwork [13] in undergraduate medical curricula has received serious consideration over past decade. Failure of ability to function as an effective team was cited as the leading cause of preventable medical errors in several studies [12,13]

Keeping this background in view, we began with the question; How does imminent death of a simulated patient influence learning about and acting as a multidisciplinary medical team among preclinical medical students? Limited data exists to support the role of patient's death as a tool in teaching multidisciplinary teamwork at undergraduate level.

2. Materials and Methods

This is an experimental study. A double blind, randomized, interventional protocol was followed. Institutional Ethical Committee for Undergraduate Medical Research reviewed and cleared the study protocol in 2016. Six "Skill Stations" were designed to teach life-saving skills in critical situations. Learning outcomes, visual aids such as mounted photographs and flow charts, verbal cue cards and simulation material were discussed and documented for each skill station. Table 1 gives the detail of each skill station.

Teaching scenarios and assessment rubrics were vetted in three rounds among principal investigator and the "Skills Committee" comprising of one physician, one cardiologist, two surgeons and three senior clinical medical students. Visual aids were inspected from varying visual angles and distances and in consort with the teaching scenarios by the same committee and approved after revision. Simulation materials were tested and approved as well. Dresses and linen around simulations was designed to resemble our teaching hospital. All intravenous fluids and medications were purchased from local companies. Stethoscopes, thermometers, BP apparatuses and other clinical gadgets were placed on practice stations, as and when required to make the simulated set up look like actual hospital setting, (see Table 1).

80 pre-clinical students from first year were enrolled, after informed consent, for training to become peer tutors on skill stations. First, they were randomly assigned to skill stations to get trained as peer tutors for that skill. Then they were further randomly assigned to two groups, an experimental group, who were taught using scenarios depicting imminent death of a patient; and a Control group, who were taught using scenarios with critical patients but death was not mentioned during testing. Students and the evaluation team were both blinded to assignment in experimental or test groups. All students took pre-tests with multiple choice questions about life saving skills. They were taught by an AHA certified instructor for total of eight hours per skill station over a one month period. One session was thirty minutes in duration and comprised of theoretical teaching. Both groups took post-tests at the end of the eight-hour theoretical teaching sessions.

This was followed by scenario based testing and demonstration of skill around props and simulations. Four sessions were planned. Each session included practice and testing with cue cards and simulations/props. Experimental group was tested using simulated patients who faced death and died at the end of exercise. Control group was given patients with critical life-threatening illnesses but death was not mentioned in scenario scripts. The simulated patients in scenarios given to control group did not die at the end of exercise. Both groups practised in separate spaces and were instructed to not "leak" the testing scenarios to other students. Remedial sessions were given for students not meeting required standards. A total of fifty hours of teaching were recorded over twenty-six days.

A final exit test of skill performance was given at the end. Clinical scenarios depicting life threatening situations were presented to both experimental and control groups. Both groups were asked to treat and possibly resuscitate simulated patients as a five to seven-member "Code Team" working together to treat the patient. Score cards, (Table 3), were developed, de-novo, after systematic literature search in Pub Med, Pub Med Central, Google Scholar, Pakmedinet and Embase using, "Multidisciplinary Medical Teamwork" as keywords [15-17]. Both groups were observed by the evaluation committee members and scored for skills representative of multidisciplinary medical team function (Table 3).

Table 1Detail of "Skill Stations" used to train Peer Tutors in Skills Lab

Learning Outcomes	Visual Aids	Verbal Cue Cards	Simulations/ Prop Material
Identifies need for CPR	BLS algorithms from	Single-rescuer CPR	Leardal Resusci-Anne
Calls for helsp	American Heart		(pediatric model)
Clears airway	Association	Two-rescuer CPR	QCPR
Performs rescue breaths on adult			
victim	Illustrations of Heimlich	Heimlich required	Compression board
Performs effective CPR on adult	maneuver		
victim			
Performs Heimlich manoeuvre on	Compression number and		
adult choking victim	depth in Effective CPR		
PEDIATRIC BLS	Visual Aids	Verbal Cue Cards	Simulations/Prop Materia
			Leardal Resusci-Anne
Identifies need for CPR in a child	Paediatric BLS algorithms	5-year-old child	(adult model)
Calls for help	from American Heart	found in a park.	
Clears airway while maintaining C-	Association and American	Needs single-	Compression boards
spine stability	Academy of Paediatrics	rescuer CPR	
Performs rescue breaths			
Performs effective CPR	Illustrations of choking in	Child seized in	
Uses two-finger technique in infant	child and back blow	school and found	
Performs back blows and chest	manoeuvre	unconscious. Two-	
thrusts maneuver on child/infant		rescuer child CPR	
choking victim	Compression number and		
	depth in Effective child	Choking 2-year old	
	CPR	requiring back	
		blows	
		4-year-old victim of	
		drowning	
ABCDE of TRAUMA	Visual Aids	Verbal Cue Cards	Simulations/Prop Materia
			Resusci-Annie
Performs ABCDE assessment in	Illustration of trauma	Motor vehicle	Leardal QCPR
acute trauma victim	victim survey points	accident victim	Resusci-Baby
Clears airway while maintaining C-	, , ,	requiring C-spine	Leardal QCPR
spine stability	C-spine collar	stabilization and	Ambu-bag
Performs rescue breaths		fluids	Oxygen tubing
Performs ambu-bagging upon	Parts of ambu bag		
indication		Bomb blast victim	
Describes indications for	Endotracheal tube and	requiring IV fluids	
endotracheal intubation	laryngoscope	and disability	
Performs effective CPR on trauma		survey with	
victim	Color coded IV cannulas	prevention of	
Prioritizes IV sites		exposure	
Selects appropriate fluid for	Board for patient		
resuscitation	transport	Gun shot injury	
Performs "Disability" survey	Detient Toron () 1/2	victim requiring	
	Patient Transport Kit	endotracheal	
		intubation and	
		blood transfusion	

Recognizes signs of impending shock recognizes signs of impending shock resuscitation Performs IV cannulation with asseptic precautions Recognizes phlebitis SUTURING SKILL Learning Outcomes Differentiates mono vs. poly filament suture material and needle for simple surgical wounds Describes indications for three common suture techniques Performs supple continuous and mattress sutures on props RAPID INTERPRETATION OF ECG Learning Outcomes ABOND Interpretation of QRS complex ABOND Interpretation of CRS complex ABOND Interpreta			T	
Shock Prioritizes IV sites in adults and children Selects appropriate IV fluid in shock resuscitation Performs IV cannulation with aseptic precautions Recognizes phlebitis SUTURING SKILL Learning Outcomes Differentiates mono vs. poly filament suture material and needle for simple surgical wounds Describes indications for three common suture techniques Performs IV continuous and mattress sutures on props RAPID INTERPRETATION OF ECG Learning Outcomes Calculates heart rate and analyzes rhythm from ECG strip Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Prioritizes IV fluid in shock requiring rapid IV access and fluid infusion Algorithm Management of Shock Visual Aids Verbal Cue Cards Simulation/Prop Material Simulation/Prop Material Simulation/Prop Material Simulations: Monofilament sutures Polyfilament sutures Types of suture needles Simple continuous sutures Mattress sutures Non-suture materials for wound repair Suture scissors Toothed and non-toothed forceps Derma-bond material Simulation/Prop Material ECG paper Derma-bond material Simulation/Prop Material ECG Strips with: Normal sinus rhythm Tachycardia Bradycardia A child in pain Tachycardia Bradycardia A child in pain Tachycardia Bradycardia A child in pain Tachycardia Bradycardia Arrhythmias	RAPID IV ACCESS	Visual Aids	Verbal Cue Cards	Simulation/Prop Material
Prioritizes IV sites in adults and children Selects appropriate IV fluid in shock resuscitation Performs IV cannulation with aseptic precautions Recognizes phlebitis SUTURING SKILL Learning Outcomes Differentiates mono vs. poly filament suture material and needle for simple surgical wounds Describes indications for three common suture techniques Performs simple interrupted, simple continuous and mattress sutures on props Visual Aids Verbal Cue Cards Simulation/Prop Material Suture materials with different needles Simple interrupted sutures Simple continuous sutures Non-suture materials for wound repair Suture scissors Toothed and non-toothed forceps Derma-bond material RAPID INTERPRETATION OF ECG Learning Outcomes Calculates heart rate and analyzes rhythm from ECG strip Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Abnormalities of rate, rhythm and axis Polytical Calculating heart rate and axis A child in pain Tachycardia A 60-year old on Beta blocker SVT, VT, VF, AF, Heart blocks Checking patency of IV cannula in achild Infusion Checking patency of IV cannula in a child Checking patency of IV cannula in achild Checking patency S	Recognizes signs of impending	Color coded IV cannulas	Patient with early	Plastic arm with
children Selects appropriate IV fluid in shock resuscitation Performs IV cannulation with aseptic precautions Recognizes phlebitis SUTURING SKILL Learning Outcomes Differentiates mono vs. poly filament suture material and needle for simple surgical wounds Describes indications for three common suture techniques Performs simple interrupted, simple continuous and mattress sutures on props RAPID INTERPRETATION OF ECG Learning Outcomes Calculates heart rate and analyzes rhythm from ECG strip Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia from ventricular tachycardia from ventricular tachycardia Formula for calculating heart rate and axis Estimates axis of the heart from direction of QRS complex Formula for rate, rhythm and axis IV fluid charts Algorithm Management of Checking patency of IV cannula in a child Simulation/Prop Material Suture materials with different needles Foam pads with thin semi-porous covering, (mimicking skin) Suture scissors Toothed and non-toothed forceps Derma-bond material Simulation/Prop Material ECG Strips with: Normal sinus rhythm Tachycardia Bradycardia A child in pain	shock		impending shock	anatomically located veins
Selects appropriate IV fluid in shock resuscitation Performs IV cannulation with aseptic precautions Recognizes phlebitis SUTURING SKILL Learning Outcomes Differentiates mono vs. poly filament suture material and needle for simple surgical wounds Describes indications for three common suture techniques Performs simple interrupted, simple continuous and mattress sutures on props RAPID INTERPRETATION OF ECG Learning Outcomes RAPID INTERPRETATION OF ECG Learning Outcomes RAPID INTERPRETATION OF ECG Learning Outcomes Calculates heart rate and analyzes rhythm from ECG strip Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Non-suture materials for three common suture techniques Non-suture materials for wound repair Non-suture materials for wound repair Visual Aids Verbal Cue Cards Suture scissors Toothed and non-toothed forceps Derma-bond material RAPID INTERPRETATION OF ECG Learning Outcomes Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Abnormalities of rate, rhythm and axis IV fluid charts Algorithm Management of Shock Simulation/Prop Material Suture cards Suture scissors Toothed and non-toothed forceps Derma-bond material Formula for calculating heart rate and axis A child in pain Bradycardia A rrhythmias Bradycardia A child in pain Bradycardia A child in pain Bradycardia Arrhythmias	Prioritizes IV sites in adults and	Phlebitis	requiring rapid IV	
shock resuscitation Performs IV cannulation with aseptic precautions Recognizes phlebitis SUTURING SKILL Learning Outcomes Differentiates mono vs. poly filament sutures material and needle for simple surgical wounds Describes indications for three common suture techniques Performs simple interrupted, simple continuous and mattress sutures on props Non-suture materials for wound repair RAPID INTERPRETATION OF ECG Learning Outcomes RAPID INTERPRETATION OF ECG Learning Outcomes RAPID INTERPRETATION OF ECG Learning Outcomes Clackulates heart rate and analyzes rhythm from ECG strip Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Suture sinsor Abnormalities of rate, rhythm and axis Algorithm Management of Shock Checking patency of IV cannula in a child Werbal Cue Cards Suture materials with different needles Foam pads with thin semi-porous covering, (mimicking skin) Mattress sutures Non-suture materials for wound repair Suture scissors Toothed and non-toothed forceps Derma-bond material Simulation/Prop Material ECG Strips with: Normal sinus rhythm sinus arrhythmia Tachycardia A child in pain Bradycardia A fol-year old on Beta blocker A folyear old on Beta blocker A follocks Chest x-rays and ECG strips with LVH & RVH	children		access and fluid	
Performs IV cannulation with aseptic precautions Recognizes phlebitis SUTURING SKILL Learning Outcomes Differentiates mono vs. poly filament suture material and needle for simple surgical wounds Describes indications for three common suture techniques Performs simple interrupted, simple continuous and mattress sutures on props RAPID INTERPRETATION OF ECG Learning Outcomes Calculates heart rate and analyzes rhythm from ECG Strip Calculates PR, RR, QRS duration Differentiates supraventricular from wentricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Algorithm Management of Shock Shock Visual Aids Verbal Cue Cards Suture materials with different needles Foam pads with thin semi-porous covering, (mimicking skin) Foam pads with thin semi-porous covering, (mimicking skin) Suture scissors Toothed and non-toothed forceps Derma-bond material Simulation/Prop Material ECG Strips with: Polyfilament sutures Non-suture meedles Simple continuous sutures Non-suture materials for wound repair Visual Aids Verbal Cue Cards Suture scissors Toothed and non-toothed forceps Derma-bond material Simulation/Prop Material ECG Strips with: Polyfilament sutures Non-suture meedles Non-suture materials for wound repair Sutures scissors Toothed and non-toothed forceps Derma-bond material Simulation/Prop Material ECG Strips with: Normal sinus rhythm sinus arrhythmia Tachycardia Bradycardia Tachycardia Bradycardia A child in pain	Selects appropriate IV fluid in	IV fluid charts	infusion	
aseptic precautions Recognizes phlebitis Suture skill Learning Outcomes Differentiates mono vs. poly filament suture material and needle for simple surgical wounds Describes indications for three common suture techniques Performs simple interrupted, simple continuous sutures autures on props RAPID INTERPRETATION OF ECG Learning Outcomes Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Sinock Visual Aids Verbal Cue Cards Suture materials with different needles Suture needles Simple continuous sutures Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Shock Visual Aids Verbal Cue Cards Verbal Cue Cards Verbal Cue Cards Simulation/Prop Material ECG paper An athlete with sinus arrhythmia Formula for calculating heart rate and axis A child in pain Bradycardia Arrhythmias SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with LVH & RVH	shock resuscitation			
Recognizes phlebitis SUTURING SKILL Learning Outcomes Differentiates mono vs. poly filament suture material selects appropriate suture material and needle for simple surgical wounds Describes indications for three common suture techniques Performs simple interrupted, simple continuous and mattress sutures on props RAPID INTERPRETATION OF ECG Learning Outcomes Calculates heart rate and analyzes rhythm from ECG strip Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Wisual Aids Visual Aids Verbal Cue Cards Visual Aids Verbal Cue Cards Suture materials with different needles Suture materials with different needles Suture needles Foam pads with thin semi-porous covering, (mimicking skin) Suture scissors Toothed and non-toothed forceps Derma-bond material Verbal Cue Cards Simulation/Prop Material ECG Strips with: An athlete with sinus arrhythmia Formula for calculating heart rate and axis Estimates axis of the heart from direction of QRS complex Abnormalities of rate, rhythm and axis SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with LVH & RVH	Performs IV cannulation with	Algorithm Management of	Checking patency	
SUTURING SKILL Learning Outcomes Differentiates mono vs. poly filament suture material Selects appropriate suture material and needle for simple surgical wounds Describes indications for three common suture techniques Performs simple interrupted, simple continuous sutures Non-suture materials for wound repair Non-suture materials for wound repair RAPID INTERPRETATION OF ECG Learning Outcomes Calculates heart rate and analyzes rhythm from ECG strip Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Visual Aids Verbal Cue Cards Simulation/Prop Material Verbal Cue Cards Suture scissors Toothed and non-toothed forceps Derma-bond material Simulation/Prop Material Cases describing: An athlete with sinus arrhythmia Formula for calculating heart rate and axis ECG paper Abnormalities of rate, rhythm and axis Abnormalities of rate, rhythm and axis Abnormalities of rate, rhythm and axis Chest x-rays and ECG strips with LVH & RVH	aseptic precautions	Shock	of IV cannula in a	
Learning OutcomesIllustrations:Suture materials with different needlesDifferentiates mono vs. poly filament suture material and needle for simple surgical woundsIllustrations:Suture materials with different needlesDescribes indications for three common suture techniques Performs simple interrupted, simple continuous and mattress sutures on propsSimple continuous sutures Mattress sutures Non-suture materials for wound repairSuture scissorsRAPID INTERPRETATION OF ECG Learning OutcomesVisual AidsVerbal Cue CardsSimulation/Prop MaterialCalculates heart rate and analyzes rhythm from ECG strip Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocksECG paperAn athlete with sinus arrhythmiaNormal sinus rhythmEstimates axis of the heart from direction of QRS complexAbnormalities of rate, rhythm and axisA child in painTachycardiaAbnormalities of rate, rhythm and axisSVT, VT, VF, AF, Heart blocksChest x-rays and ECG strips with LVH & RVH	Recognizes phlebitis		child	
Differentiates mono vs. poly filament suture material Selects appropriate suture material and needle for simple surgical wounds Describes indications for three common suture techniques Performs simple interrupted, simple continuous and mattress sutures on props RAPID INTERPRETATION OF ECG Learning Outcomes Calculates heart rate and analyzes rhythm from ECG strip Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Illustrations: Monofilament sutures Monofilament sutures Polyfilament sutures Monofilament sutures Polyfilament sutures Polyfilament sutures Monofilament sutures Polyfilament sutures Simple cortinuous sutures Mattress sutures Non-suture materials Simple continuous sutures Mattress sutures Suture scissors Toothed and non-toothed forceps Derma-bond material ECG Strips with: Normal sinus rhythm Tachycardia Tachycardia A child in pain Bradycardia Abnormalities of rate, rhythm and axis Polyfilament sutures Abnormalities of rate, rhythm and axis Polyfilament sutures Simple continuous sutures Mattress sutures Non-suture materials of verified, (mimicking skin) Suture scissors Toothed and non-toothed forceps Polyma-bond material Foam pads with tin semi-porous cevering, (mimicking skin) Suture scissors Toothed and non-toothed forceps An athlete with sinus arrhythmia Tachycardia A child in pain Tachycard	SUTURING SKILL	Visual Aids	Verbal Cue Cards	Simulation/Prop Material
filament suture material Selects appropriate suture material and needle for simple surgical wounds Describes indications for three common suture techniques Performs simple interrupted, simple continuous sutures Performs simple interrupted, simple continuous and mattress sutures on props Non-suture materials for wound repair Non-suture materials for wound repair Suture scissors Toothed and non-toothed forceps Derma-bond material RAPID INTERPRETATION OF ECG Learning Outcomes Calculates heart rate and analyzes rhythm from ECG strip Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Abnormalities of rate, rhythm and axis Monofilament sutures Polyfilament sutures Polyfilament sutures Types of suture needles Foam pads with thin semi- porous covering, (mimicking skin) Suture scissors Toothed and non-toothed forceps Derma-bond material Simulation/Prop Material ECG paper An athlete with sinus arrhythmia Tachycardia Tachycardia Tachycardia Bradycardia A child in pain Bradycardia Arrhythmias SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with LVH & RVH	Learning Outcomes			-
Selects appropriate suture material and needle for simple surgical wounds Describes indications for three common suture techniques Performs simple interrupted, simple continuous and mattress sutures Sutures on props RAPID INTERPRETATION OF ECG Learning Outcomes Calculates heart rate and analyzes rhythm from ECG strip Calculates Sp. R.R. QRS duration Differentiates supraventricular rachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Abnormalities of rate, rhythm and axis Polyfilament sutures Types of suture needles Simple continuous sutures Mattress sutures Monn-suture materials for wound repair Suture scissors Toothed and non-toothed forceps Derma-bond material Simulation/Prop Material Cases describing: ECG Strips with: Normal sinus rhythm Sinus arrhythmia Tachycardia Tachycardia A 60-year old on Beta blocker Arrhythmias SVT, VT, VF, AF, Heart blocks With LVH & RVH	Differentiates mono vs. poly	Illustrations:		Suture materials with
and needle for simple surgical wounds Describes indications for three common suture techniques Performs simple interrupted, simple continuous and mattress sutures on props RAPID INTERPRETATION OF ECG Learning Outcomes Calculates heart rate and analyzes rhythm from ECG strip Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Abnormalities of rate, rhythm and axis Types of suture needles Simple interrupted sutures Simple interrupted sutures Simple continuous sutures Mattress sutures Non-suture materials for wound repair Suture scissors Toothed and non-toothed forceps Derma-bond material Simulation/Prop Material ECG Strips with: Normal sinus rhythm Tachycardia Bradycardia A child in pain Bradycardia Arrhythmias SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with LVH & RVH	filament suture material	Monofilament sutures		different needles
wounds Describes indications for three common suture techniques Performs simple interrupted, simple continuous and mattress sutures Non-suture materials for wound repair Non-suture materials for wound repair Non-suture materials for wound repair Normal sinus rhythm sinus arrhythmia Formula for calculating heart rate and axis ESG paper Abnormalities of rate, rhythm and axis Simple interrupted sutures Simple continuous sutures Mattress sutures Non-suture materials for wound repair Suture scissors Toothed and non-toothed forceps Derma-bond material Simulation/Prop Material ECG Strips with: Normal sinus rhythm Tachycardia Bradycardia A 60-year old on Beta blocker SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with LVH & RVH	Selects appropriate suture material	Polyfilament sutures		
Describes indications for three common suture techniques Performs simple interrupted, simple continuous and mattress sutures Sutures on props Non-suture materials for wound repair Non-suture materials for wound repair Non-suture materials for wound repair Toothed and non-toothed forceps Derma-bond material Simulation/Prop Material Simulation/Prop Material Cases describing: Performs simple interrupted, simple continuous and mattress sutures Non-suture materials for wound repair Suture scissors Toothed and non-toothed forceps Derma-bond material Simulation/Prop Material ECG Strips with: Pormulation ECG Strips with: Suture scissors Toothed and non-toothed forceps Derma-bond material Simulation/Prop Material ECG Strips with: Pormula for calculating heart rate and axis Formula for calculating heart rate and axis A child in pain Bradycardia Bradycardia Abnormalities of rate, rhythm and axis SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with LVH & RVH	and needle for simple surgical			· ·
common suture techniques Performs simple interrupted, simple continuous and mattress sutures on props RAPID INTERPRETATION OF ECG Learning Outcomes Calculates heart rate and analyzes rhythm from ECG strip Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Mattress sutures Non-suture materials for wound repair Verbal Cue Cards Simulation/Prop Material Cases describing: Cases describing: An athlete with sinus arrhythmia Formula for calculating heart rate and axis A child in pain Bradycardia Abnormalities of rate, rhythm and axis SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with LVH & RVH	wounds			
Performs simple interrupted, simple continuous and mattress sutures on props Non-suture materials for wound repair Suture scissors Toothed and non-toothed forceps Derma-bond material Simulation/Prop Material Simulation/Prop Material ECG Strips with: Normal sinus rhythm Suture scissors Toothed and non-toothed forceps Derma-bond material Simulation/Prop Material ECG Strips with: Normal sinus rhythm Tachycardia A child in pain Bradycardia Abnormalities of rate, rhythm and axis SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with LVH & RVH	Describes indications for three	Simple continuous sutures		(mimicking skin)
simple continuous and mattress sutures on props Wound repair RAPID INTERPRETATION OF ECG Learning Outcomes Calculates heart rate and analyzes rhythm from ECG strip Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Wound repair Wound repair Toothed and non-toothed forceps Derma-bond material Simulation/Prop Material ECG Strips with: An athlete with sinus arrhythmia Formula for calculating heart rate and axis A child in pain Bradycardia A 60-year old on Beta blocker Arrhythmias SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with: Coses describing: ECG Strips with: A 60-year old on Beta blocker Arrhythmias	common suture techniques	Mattress sutures		
sutures on props RAPID INTERPRETATION OF ECG Learning Outcomes Calculates heart rate and analyzes rhythm from ECG strip Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Abnormalities of rate, rhythm and axis Formula for calculating heart rate and axis Abnormalities of rate, rhythm and axis Formula for calculating heart rate and axis Abnormalities of rate, rhythm and axis SVT, VT, VF, AF, Heart blocks Cases describing: ECG Strips with: Normal sinus rhythm Tachycardia A 60-year old on Beta blocker SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with LVH & RVH	Performs simple interrupted,	Non-suture materials for		
RAPID INTERPRETATION OF ECG Learning Outcomes Calculates heart rate and analyzes rhythm from ECG strip Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Cases describing: ECG Strips with: An athlete with sinus arrhythmia Formula for calculating heart rate and axis A child in pain Bradycardia Abnormalities of rate, rhythm and axis SVT, VT, VF, AF, Heart blocks Cases describing: ECG Strips with: Normal sinus rhythm Tachycardia A child in pain Bradycardia Arrhythmias Chest x-rays and ECG strips with: Cases describing: An athlete with sinus arrhythmia Tachycardia A child in pain Bradycardia Chest x-rays and ECG strips with children.		wound repair		Toothed and non-toothed
RAPID INTERPRETATION OF ECG Learning Outcomes Calculates heart rate and analyzes rhythm from ECG strip Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Abnormalities of rate, rhythm and axis Yerbal Cue Cards Simulation/Prop Material Simulation/Prop Material ECG Strips with: Normal sinus rhythm Tachycardia A child in pain Bradycardia A 60-year old on Beta blocker SVT, VT, VF, AF, Heart blocks Cases describing: An athlete with sinus arrhythmia Tachycardia Tachycardia A 60-year old on Beta blocker Arrhythmias SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with:	sutures on props			forceps
Learning OutcomesCases describing:ECG Strips with:Calculates heart rate and analyzes rhythm from ECG stripIllustrationECG Strips with:Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocksECG paperAn athlete with sinus arrhythmiaNormal sinus rhythmEstimates axis of the heart from direction of QRS complexA child in painTachycardiaAbnormalities of rate, rhythm and axisA 60-year old on Beta blockerArrhythmiasSVT, VT, VF, AF, Heart blocksChest x-rays and ECG strips with LVH & RVH				Derma-bond material
Calculates heart rate and analyzes rhythm from ECG strip Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Abnormalities of rate, rhythm and axis ECG paper An athlete with sinus arrhythmia Formula for calculating heart rate and axis A child in pain Bradycardia A 60-year old on Beta blocker SVT, VT, VF, AF, Heart blocks Cases describing: ECG Strips with: Normal sinus rhythm Tachycardia Tachycardia Sradycardia A 60-year old on Beta blocker Arrhythmias Complex FOR Strips with: Complex Tachycardia Tachycardia Tachycardia Complex Tachycardia Complex Formula for calculating heart rate and axis Formula for calculating heart rate and axis A child in pain Bradycardia Complex Chest x-rays and ECG strips with:	RAPID INTERPRETATION OF ECG	Visual Aids	Verbal Cue Cards	Simulation/Prop Material
rhythm from ECG strip Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex An athlete with sinus arrhythmia Formula for calculating heart rate and axis A child in pain Bradycardia Abnormalities of rate, rhythm and axis SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with LVH & RVH	Learning Outcomes			
Calculates PR, RR, QRS duration Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Abnormalities of rate, rhythm and axis ECG paper An athlete with sinus arrhythmia Tachycardia Tachycardia Bradycardia A 60-year old on Beta blocker SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with LVH & RVH		Illustration	Cases describing:	ECG Strips with:
Differentiates supraventricular from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Abnormalities of rate, rhythm and axis A 60-year old on Beta blocker SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with LVH & RVH	·			
from ventricular tachycardia Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Abnormalities of rate, rhythm and axis A 60-year old on Beta blocker SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with LVH & RVH	Calculates PR, RR, QRS duration	ECG paper	An athlete with	Normal sinus rhythm
Recognizes heart blocks Estimates axis of the heart from direction of QRS complex Abnormalities of rate, rhythm and axis A 60-year old on Beta blocker SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with LVH & RVH			sinus arrhythmia	
Estimates axis of the heart from direction of QRS complex Abnormalities of rate, rhythm and axis Abnormalities of rate, rhythm and axis Bradycardia A 60-year old on Beta blocker SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with LVH & RVH		Formula for calculating		Tachycardia
direction of QRS complex Abnormalities of rate, rhythm and axis A 60-year old on Beta blocker SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with LVH & RVH	Recognizes heart blocks	heart rate and axis	A child in pain	
rhythm and axis Beta blocker SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with LVH & RVH	Estimates axis of the heart from			Bradycardia
SVT, VT, VF, AF, Heart blocks Chest x-rays and ECG strips with LVH & RVH	direction of QRS complex	· · · · · · · · · · · · · · · · · · ·	•	
Heart blocks Chest x-rays and ECG strips with LVH & RVH		rhythm and axis	Beta blocker	Arrhythmias
Heart blocks Chest x-rays and ECG strips with LVH & RVH			SVT. VT. VF. AF.	
with LVH & RVH				Chest x-rays and ECG strips
				•
			LVH. RVH	
			,	

Table 2Demographic and Educational Details of Peer Tutors. (Percentages given)

Bernograpino ana Ladocational Betails of Feet Tators (Ferteritages given)						
Skill Station	'n'	Male/Female %	Mean	Major	Education	Peer Tuition
			Age, (Yrs)	Ethnicity %	FSc/Cambridge %	Experience %
ECG	14	45.0/55.0	20+/-2.3	Pushtoon	98.0/2.00	2.0
BLS, Adult	14	57.0/33.0	22+/-2.1	Pushtoon	99.0/1.00	5.0
BLS, Child	13	30.0/60.0	21+/-2.0	Pushtoon	99.0/1.0	3.0
ABCDE	18	27.0/73.0	21+/-2.2	Pushtoon	100/0.0	4.0
Rapid IV	12	10.0/90.0	22+/-1.5	Pushtoon	100/0.0	2.0
Suturing	09	80.0/20.0	20+/-2.0	Pushtoon	95/5.0	0.0

Table 3Score Card for Scoring Multidisciplinary Medical Team Function in Exit Exam

S. No	Multidisciplinary Teamwork	- 1 - 7 0			
	Attribute	1: Rare. One or two rare examples of the behaviour occurred.			
		2: Isolated/minimum. There were isolated examples of the			
		behaviour throughout the observation.			
		3: Intermittent/standard. There were intermittent examples			
		throughout the observation.			
		4: Consistent. There were consistent examples of the behaviour			
		throughout the observation.			
1.	Communication Skills	A. Listens carefully			
		B. Speaks clearly			
		C. Informs about progress			
2.	Technical Communication	A. Vocalizes steps taken			
		B. Repeats orders			
		C. Records progress			
		D. Gives clear referral orders, (when indicated)			
3.	Professional Relationships	A. Punctual			
		B. Respectful			
		C. Assertive			
		D. Supportive			
4.	Patient Relationships	A. Respects dignity			
		B. Keeps family informed			
		C. Advocates patient's rights			
5.	Problem Solving Skills	A. Identifies problem			
		B. Prioritizes problems			
		C. Assigns roles and goals			
		D. Gives feedback			
6.	Educational Attitudes	A. Discusses issues on site			
		B. Quotes best evidence			
		C. Asks questions			
		D. Interested in teaching			
7.	Procedural Skills	A. Observes protocol			
		B. Obtains "Informed Consent"			
		C. Maintains anti-sepsis			
		D. Checks progress			

Table 4Paired t-test Results for Pre-Test and Post-Test Scores of Control and Experimental groups

- an ear t test mesants for the fest and t est estates of estates and experimental 8. supp					
#	GROUPS	PRE-TEST SCORES	POST TEST SCORES	P VALUE	
1.	Control, (n=40)	1.30 ± 0.791	3.53 ± 0.716	<0.001	
2.	Experimental, (n=40)	1.43 ± 0.958	3.55 ± 0.749	<0.001	

Data was analysed using SPSS V-21. Two sample t-test was applied to calculate the difference in scores between experimental and control groups.

2. Results

A total of eighty undergraduate medical students from pre-clinical years were enrolled. Demographic characteristics of study participants are given in Table 2. Forty students were randomly assigned in experimental and forty in control group. There was no statistical difference in Pre-Test scores between experimental and control groups. Both groups showed significant improvement in

mean scores in Post-Tests after the eight-hour theoretical teaching sessions. Again, both experimental and control groups showed improvement and no significant difference was noted between the two groups in Post-Test scores, (see Table 4).

Scores for multidisciplinary team function between experimental and control groups were significantly different in all eight attributes of multidisciplinary medical teamwork observed by the evaluation committee, (p-value - <0.001), (see Table 5). Experimental group scored significantly higher compared with the control group for all the attributes of medical teamwork tested. Difference between scores in "Communication Skills" was most significant between the two groups followed closely by differences in "Educational Attitudes", "Patient Relationships" and "Professional Relationships", (see Table 5).

Table 5Paired t-test Results for Multidisciplinary Medical Teamwork Scores of Control and Experimental groups

#	VARIABLES	CONTROL	EXPERIMENTAL	P VALUE
1.	Pre-Test	1.30 ± 0.791	1.43 ± 0.958	0.526
2.	Post Test	3.53 ± 0.716	3.55 ± 0.749	0.879
3.	Technical Communication	2.40 ± 0.6325	3.20 ± 0.6284	<0.001
4.	Problem Solving	2.425 ± 0.6655	3.725 ± 0.6975	<0.001
5.	Procedural Skills	2.563 ± 0.7695	3.463 ± 0.6923	<0.001
6.	Communication Skills	1.925 ± 0.6558	3.95 ± 0.6679	<0.001
7.	Data Gathering Skills	2.50 ± 0.725	3.838 ± 0.6543	<0.001
8.	Patient Relationship	2.363 ± 0.6601	3.988 ± 0.6252	<0.001
9.	Educational Attitudes	2.088 ± 0.5761	3.813 ± 0.6951	<0.001
10.	Professional Relationship	2.425 ± 0.7970	3.775 ± 0.7246	<0.001

3. Discussion

Our study showed significantly better acquisition of attributes required for multidisciplinary medical team function among students who were exposed to simulations and scenarios depicting imminent death of the patient. Trauma teams and Code teams are the norm in hospitals, all over the world. It is important to introduce teamwork ethics and principles as early on in student life as possible.

Our results support the notion that teaching scenarios and simulations about critically ill patients encourage development of academic and personality traits required for teamwork among training students. A landmark study by Smith-Han *et al.* [9] showed that facing the death of a patient had several positive and negative effects on undergraduate students. They concluded that students who faced death of their patients felt emotionally moderated and they sought reassurance through closeness and comfort of their peers [9]. They underwent a transition in terms of their understanding of their views about being doctors [9]. They viewed death as a part of life rather than something shocking, with resultant maturity and dampening of emotions [9]. Students began to perceive the professional surroundings and pace of work of the hospital by beholding the familiarity of death [9]. They seemed to accept their role in solemnizing the death of a patient [9]. They also felt more responsible for their patients [9]. Although our study is quantitative, however, our results reflect more frequent display of similar traits in our students who were exposed to scenarios with dying patients.Our results show that difference in scores for "Communication Skills" was most significant between the two study groups. Härgestam *et al.* [18] report communication, specifically "Closed Loop Communication", initiated by the Team Leader in a Trauma Team, to be beneficial for teamwork.

They tested sixteen, six-member, trauma teams on a patient simulator pre-programmed to represent a severely injured patient (injury severity score: 25) suffering from hypovolemia due to external trauma. Our simulations were similarly representative of critical patients, who died at the end of exercise in case of the experimental group.

Research studies about encounters with death and dying among undergraduate medical students are a handful. One of the earlier research studies about pre-clinical undergraduate students views after facing death of a patient by Hull *et al.* [19] concluded saying, "There is increased need for teaching about death and dying particularly before clinical training and at the time of graduation. Another time may be at the beginning of human dissection.". Earlier reports of inadequacies in preparation of young medical graduates to deal with death and dying patients mostly explore the emotional and affective burden faced by young doctors facing mortality, early on in their professional careers. Ahmedzai *et al.*, [20] reported that the junior house staff who were surveyed in their study felt that the nursing staff were more helpful and supportive compared with senior medical staff in dealing with terminal patients and death on wards. There is a paucity of data about actually using death of a simulated patient to enhance student performance in certain areas, specifically, taking care of critically ill patients and being effective team members in critical situations.

All of our study participants were natives of Pakistan. Majority were Pushto speaking and were ethnic Pushtoons. We recognize the fact that teamwork is not studied at all in this particular ethnicity and culture. Our study population comprised of a good mix of male and female medical students. Differences in scores based on genders will be reported in future after further in-depth analysis. It is known that gender differences result in different styles of verbal and non-verbal communication, moral and ethical obligation to values, and self/workplace expectations [21]. In the health care set ups, where physicians are frequently male and nurses, female, communication problems are further accentuated by gender differences.

Our study is a pilot study in this area. With an approved study protocol and required infrastructure for skill stations in place, we plan to conduct this study with larger groups of students and more in-depth data analysis along with qualitative exploration of impressions and ideas of students in both groups.

4. Conclusion

Simulated case scenarios depicting death of the patient are an effective tool to teach medical undergraduates about effective teamwork

References

- [1] Mohd Slim, M. Atif. "The Superhero Mythos: A Medical Student's Experience of Death." *Journal of palliative medicine*16, no. 7 (2013): 803-805.
- [2] Liston, Edward H. "Education on death and dying: a neglected area in the medical curriculum." *OMEGA-Journal of Death and Dying* 6, no. 3 (1975): 193-198.
- [3] Barton, David. "The need for including instruction on death and dying in the medical curriculum." *Academic Medicine* 47, no. 3 (1972): 169-75.
- [4] Liston, Edward H. "Education on death and dying: a neglected area in the medical curriculum." *OMEGA-Journal of Death and Dying* 6, no. 3 (1975): 193-198.
- [5] Smith, Marc D., Maryellen McSweeney, and Barry M. Katz. "Characteristics of death education curricula in American medical schools." *Journal of medical education* 55, no. 10 (1980): 844-850.
- [6] Field, D. "Formal instruction in United Kingdom medical schools about death and dying." *Medical education* 18, no. 6 (1984): 429-434.
- [7] Black, D., D. Hardoff, and J. Nelki. "Educating medical students about death and dying." *Archives of disease in childhood* 64, no. 5 (1989): 750.

- [8] Williams, Cynthia M., Cindy C. Wilson, and Cara H. Olsen. "Dying, death, and medical education: student voices." *Journal of palliative medicine* 8, no. 2 (2005): 372-381.
- [9] Smith-Han, Kelby, Helen Martyn, Anthony Barrett, and Helen Nicholson. ""That's not what you expect to do as a doctor, you know, you don't expect your patients to die." Death as a learning experience for undergraduate medical students." *BMC medical education* 16, no. 1 (2016): 108.
- [10] Jackson, Molly Blackley, Misbah Keen, Marjorie D. Wenrich, Doug C. Schaad, Lynne Robins, and Erika A. Goldstein. "Impact of a pre-clinical clinical skills curriculum on student performance in third-year clerkships." *Journal of general internal medicine* 24, no. 8 (2009): 929-933.
- [11] Fraser, Heather C., Jean S. Kutner, and Mark P. Pfeifer. "Senior medical students' perceptions of the adequacy of education on end-of-life issues." *Journal of palliative medicine*4, no. 3 (2001): 337-343.
- [12] Banerjee, Arna, Jason M. Slagle, Nathaniel D. Mercaldo, Ray Booker, Anne Miller, Daniel J. France, Lisa Rawn, and Matthew B. Weinger. "A simulation-based curriculum to introduce key teamwork principles to entering medical students." *BMC medical education* 16, no. 1 (2016): 295.
- [13] Dayton, Elizabeth, and Kerm Henriksen. "Communication failure: basic components, contributing factors, and the call for structure." *The Joint Commission Journal on Quality and Patient Safety* 33, no. 1 (2007): 34-47.
- [14] Baldwin Jr, Dewitt C., and Steven R. Daugherty. "Interprofessional conflict and medical errors: results of a national multi-specialty survey of hospital residents in the US." *Journal of interprofessional care* 22, no. 6 (2008): 573-586.
- [15] Sexton, J. Bryan, Eric J. Thomas, and Robert L. Helmreich. "Error, stress, and teamwork in medicine and aviation: cross sectional surveys." *Bmj* 320, no. 7237 (2000): 745-749.
- [16] Thomas, E. J., J. B. Sexton, and R. L. Helmreich. "Translating teamwork behaviours from aviation to healthcare: development of behavioural markers for neonatal resuscitation." BMJ Quality & Safety 13, no. suppl 1 (2004): i57i64
- [17] Leonard, Michael, Suzanne Graham, and Doug Bonacum. "The human factor: the critical importance of effective teamwork and communication in providing safe care." *BMJ Quality & Safety* 13, no. suppl 1 (2004): i85-i90.
- [18] Härgestam, Maria, Marie Lindkvist, Maritha Jacobsson, Christine Brulin, and Magnus Hultin. "Trauma teams and time to early management during in situ trauma team training." *BMJ open* 6, no. 1 (2016): e009911.
- [19] Hull, F. M. "Death, dying and the medical student." Medical education 25, no. 6 (1991): 491-496.
- [20] Ahmedzai, S. "Dying in hospital: the residents' viewpoint." *British medical journal (Clinical research ed.)* 285, no. 6343 (1982): 712.
- [21] Gray, John. "Men are from Mars, women are from Venus: A practical guide for improving communication and getting what you want in a relationship." (1992).