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River pollution is a major environmental concern globally, affecting ecosystems and 
water quality. Numerous strategies have been implemented to monitor and mitigate 
pollution, including mathematical modeling techniques. Among these, the advection-
diffusion equation (ADE) has been widely applied to model the transport and 
dispersion of pollutants in rivers. Previous studies on the ADE have primarily examined 
pollutant concentration in rivers under scenarios where pollution enters the river 
continuously from the boundary or, if not continuous, is modelled with exponential 
decay in concentration. However, pollution in real situations can often be introduced 
to the river instantaneously. Furthermore, it has been demonstrated that the 
dispersion of the pollutant and the river velocity are not constant but varies with 
position (space). This research focuses on finding the analytical solution to the one-
dimensional ADE with spatially dependent diffusion and velocity for the case where 
the pollutant is instantaneously introduced to the river. New space variables are 
introduced in the solution procedures to reduce the ADE to a simpler form with a single 
coefficient which is then solved using Laplace transform method. The findings 
demonstrate that velocity, diffusion coefficient, and medium inhomogeneity 
significantly influenced the pollutant concentration distribution in rivers. Since the 
pollutant is instantaneously injected, the peak concentration occurs not at the source 
of injection but at nearby location. While the spatially dependent effect with larger 
inhomogeneity demonstrates a much faster and broader pollutant distribution. 
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1. Introduction 

 
River pollution occurs when harmful substances, such as chemical waste from industrial 

processes, enter rivers and contaminate the water. This is a major environmental concern with 
serious effects on aquatic ecosystems, human health, and water [1]. Contaminated water causes 
more deaths each year than war and all other forms of violence combined [2]. 

To address river pollution, various effective methods has been used. For instance, advanced 
treatment technologies, such as physical, chemical, and biological methods, can remove a wide range 
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of contaminants [3]. Sustainable agricultural practices, such as reducing the use of chemical fertilizers 
and pesticides, can also help. Mathematically, the modelling based on ADE is commonly used to 
predict the concentration of pollutants in a river over time and space. By solving this equation, 
scientists and engineers can understand how pollutants spread, where they accumulate, and their 
impact on the river's ecosystem and water quality [1].  

In the literature, various approaches have been used to model pollutant transport in different 
environmental settings. For example, De Smedt [4] have conducted a study on analytical solutions 
incorporating an ADE for solute transport in rivers with transient storage. Also, Parsaie and Haghiabi 
[1] developed a computational model for simulating pollution transmission in rivers. Their method 
integrates numerical solutions, particularly finite difference methods, to simulate the movement and 
dispersion of contaminants in river flow. While Chaudhary, Thakur, and Singh [5] study focused on 
one-dimensional pollutant transport in a semi-infinite groundwater reservoir. They applied Laplace 
transform method to solve the advection-diffusion equation (ADE), providing an analytical 
framework for understanding how contaminants move through groundwater. Their work is 
particularly relevant for cases where pollutants are introduced into a large or effectively infinite 
groundwater domain, making it a useful model for groundwater contamination studies. In another 
related study by Atshan et al., [6], they employed a pair of coupled reaction ADE that account for the 
pollutant and dissolved oxygen concentrations and solved it numerically. Also, Paudel et al., [7] 
conducted a study on simple analytical solution for the unsteady one-dimensional ADE describing the 
concentration of pollutant in one-dimension. Saleh et al., [8] developed a mathematical model to 
study the dispersion of pollutants in a river. They used Laplace transformation and an explicit finite 
difference scheme to solve the one-dimensional ADE with constant coefficients. Besides, Rahaman 
et al., [9] presented a mathematical model that was employed to study the movement of flowing 
pollution, specifically focusing on the one-dimensional ADE. The research investigated the utilization 
of the finite difference method to obtain numerical solutions for the ADE.   

Overall, ADE can be used to model the movement of pollutants in rivers in several ways. The 
equation can be used to predict how pollutants will move downstream, how they will be distributed 
across the river, and how they will be affected by changes in the river's flow rate.  However, in all the 
above works, the diffusion and velocity coefficients were assumed to be constant. While it has been 
demonstrated that these coefficients in the ADE can vary with position or space [5]. For example, the 
work by Zoppou and Knight [11], derived an analytical solution to the advection-diffusion equation 
with spatially variable coefficients using a coordinate transformation that reduces variable 
coefficients to constants, allowing for closed-form solutions. The paper by Yadav et al., [12] 
presented an analytical solution to the advection-dispersion equation (ADE) while incorporating 
spatially dependent parameters, such as variable dispersion and advection coefficients. The study 
enhances the understanding of how spatial heterogeneity impacts the transport processes. It was 
also shown that during the solute transport, the inhomogeneity of a medium causes’ variation in the 
velocity of the flow through it [13]. Furthermore, Scheidegger [14] found that the solute dispersion 
parameter or diffusion was proportional to the square of the velocity. Also, in the study by Bruna and 
Chapman [15], diffusion has been proven to vary spatially. Even though the coefficient in the ADE has 
been proven to depend on space, many authors considered the diffusion and velocity as constant for 
simplicity. 

Previous research on the ADE has largely focused on scenarios in which pollutants enter rivers 
either continuously from the boundaries or with an exponential decay in concentration. However, in 
real-world situations, pollutants can often be introduced instantaneously into the river. This study 
aims to derive an analytical solution for the one-dimensional ADE within a finite domain without a 
source term. A key contribution of this research is the incorporation of spatially dependent diffusion 
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and velocity coefficients, which accounts for the inhomogeneity of the domain and the instantaneous 
introduction of pollutants. The solution will be obtained using Laplace transformation techniques. 
 
2. Mathematical formulation  

 
The one dimensional pollutant transport problem is govern by the advection diffusion equation 

(ADE)  
 

!"
!#
= !

!$
"𝐷"

!"
!$
− 𝑢 !"

!$
&   (1) 

 
where 𝑐 [ML-3] is the concentration, while 𝐷"  [L2T-1] and 𝑢 [LT-1] are the diffusion and velocity 

coefficients respectively. As mentioned in the introduction, it has been demonstrated that these 
coefficients can vary with position or space. In fact, the velocity varies due to inhomogeneity of the 
medium [13,16]. Therefore, in this study, the coefficients are defined to be spatially dependent, 
meaning they vary with position across the domain. This spatial variation reflects the inhomogeneity 
of the environment, allowing the model to more accurately represent real-world conditions where 
diffusion and velocity are not uniform. The coefficients are [12,13,16]: 
  
𝐷" = 𝐷(𝑥) = 𝐷%(1 + 𝑎𝑥)&   
 
and 

𝑢 = 𝑢(𝑥) = 𝑢%(1 + 𝑎𝑥) 

where 𝐷% is initial diffusion coefficient, 𝑢% is initial velocity, and 𝑎 [L-1] is constant parameter due to 
inhomogeneity of the medium. The inhomogeneity of a river may be due to sediment characteristics 
or river morphology such as narrow, shallow or rivers with obstructions. The Eq. (1) can now be 
written as 
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Or 
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!!"
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!$
− 𝑢%(1 + 𝑎𝑥)
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Initially, there is 𝑐(  concentration in the domain. Meanwhile at 𝑥 = 0 a source of pollution that 
releases a mass m [M] of a pollutant is introduced instantaneously. This situation accounts for 
scenarios such as sudden spills or burst of pollution. In addition, a flux type homogeneous condition 
is assumed at the other end of the domain.  Hence, the initial and boundary conditions are 
 
𝑐(𝑥, 0) = 𝑐(   (3) 

 
𝑐(0, 𝑡) = )

*
𝛿(𝑡),     (4) 
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where Q [L3T-1] is the volumetric flow rate, such that  )
*
𝛿(𝑡) essentially gives the instantaneous sharp 

injection of pollutant concentration localized at the boundary 𝑥 = 0. The 𝛿(𝑡)	term signifies that the 
release occurs at a single instant in time and does not persist beyond that moment ensuring an 
instantaneous effect. 
 
3. Analytical Solution 
 

To solve the model Eq. (2) along with the conditions Eq. (3 – 5), a new variable 𝑋 is introduced, 
defined as 

 
	𝑋 = +

,(+.,$)
.			  

 
This substitution yields 

!'
!$
= − +

(+.,$)!
,  

 
!"
!$
= − +

(+.,$)!
!"
!'
,   (6) 

 
and 
 
!!"
!$!

= +
(+.,$)"

!!"
!'!

.   (7) 

 
By substituting Eq. (6) and Eq. (7) into Eq. (2) will end up with  
 
!"
!#
= 𝑎&𝐷%𝑋&

!!"
!$!

+ (𝑎𝑢% − 2𝑎&𝐷%)𝑋
!"
!$
− 𝑎𝑢%𝑐.	   (8) 

 
Eq. (8) is further transformed into a partial differential equation with constant coefficients through 
the transformation 
 
𝑍 = − log 	(𝑎𝑋) = log	(1 + 𝑎𝑥).      
 
This leads to 
 
!"
!#
= 𝑎&𝐷%

!!"
!0!

− (𝑎𝑢% − 𝑎&𝐷%)
!"
!
− 𝑎𝑢%𝑐.            (9) 

 
Consequently, the initial and boundary conditions from Eq. (3) – Eq. (5) are modified to 
 
𝑐(𝑧, 0) = 𝑐( ,     0 ≤ 𝑍 ≤ 𝑍%,     𝑍% = 𝑙𝑜𝑔( 1 + 𝑎𝐿)   (10) 
  
𝑐(0, 𝑡) = )

*
𝛿(𝑡),  (11) 

 
!"
!0
(𝑍%, 𝑡) = 0.  (12) 
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For simplification, Eq. (9) can be written as  

!"
!#
= 𝐷 !!"

!0!
− 𝑣 !"

!0
− 𝜇𝑐,  (13) 

  
where 𝐷 = 𝑎&𝐷%, 𝑣 = (𝑎𝑢% − 𝑎&𝐷%) and 𝜇 = 𝑎𝑢%. 

To solve this ADE in Eq. (13), assume the solution of the form 
 

𝑐(𝑍, 𝑡) = 𝐾(𝑍, 𝑡) 𝑒𝑥𝑝 E20
&3
− "2

!

43
+ 𝜇& 𝑡F.  (14) 

 
Differentiating with respect to 𝑡 and 𝑧, and substituting into Eq. (13) will reduce Eq. (13) into diffusion 
equation  
 
!5
!#
= 𝐷 !!5

!0!
.  (15) 

 
Following the assumption used in Eq. (14), the initial and boundary conditions Eq. (10) – (12) become 
 
𝐾(𝑍, 0) = "#
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,		  (16) 
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'
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!5
!0
+ 2

&3
𝐾(𝑍%, 𝑡) = 0.  (18) 

 
By applying Laplace Transform method into Eq. (15)  along with initial condition Eq. (16) produces 
 
!!5A

!0!
− B

3
𝐾G = − "#

3 6$78$%!&9
.  

 
This is second order ordinary differential equation that can be solved using the method of 
undetermined coefficient, resulting in  
  

𝐾G(𝑍, 𝑠) = 𝐶+ 𝑒𝑥𝑝 J−K
B
3
𝑍L + 𝐶& 𝑒𝑥𝑝 JK

B
3
𝑍L − 4"#3

(2!<4B3) 6$78$%!&9
.   

 
To determine 𝐶+ and 𝐶&, make use of the boundary conditions Eq. (17) and Eq. (18) which in Laplace 
domain are 
 
𝐾G(0, 𝑠) = )

*
,    

 
and  
  
!5A

!0
+ 2

&3
𝐾G = 0   ; Z → 𝑍%.		  
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After some necessary working, it is obtained that 
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The inverse Laplace transform of 𝐾G(𝑍, 𝑠) is computed using MATLAB, specifically utilizing the 

Stehfest algorithm. The Stehfest algorithm is a numerical technique for computing the inverse 
Laplace transform, widely used due to its efficiency and ability to handle Laplace-domain solutions 
without requiring closed-form inversions. This algorithm approximates the time-domain function by 
evaluating a weighted sum of the Laplace-domain function at specific points along the real axis. By 
applying the inverse Laplace transform to 𝐾G(𝑍, 𝑠), the time domain function 𝐾(𝑍, 𝑡) is obtained. 
Substituting 𝐾(𝑍, 𝑡)   in Eq. (14) allows the intended solution to be determined.  
 
4. Result and Discussion 
 

Concentration profiles are analysed using the parameter values listed in Table 1, which are based 
on references relevant to river environments. Generally, the diffusion coefficient and velocity in 
rivers are influenced by various environmental and hydrodynamic factors. As shown in Table 1, 
diffusion coefficients range from 0.13 m²/day to 1.28 × 10⁸ m²/day, while velocities range from 0.05 
m/day to 5.96 × 10⁴ m/day. For this study, parameter values from [22], which pertains to Malaysian 
rivers is utilized. Other parameters chosen are 𝑎 = 0.01 m-1 [17], 𝑐( = 1,𝑚 = 100, 𝑄 = 5. 
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Table 1 
Diffusion and velocity parameter values of river based on some references 
References Diffusion, 𝐷/ Velocity, 𝑢0 

Pimpunchat et al., [18] 3.456 × 106   m2/day 
(2400 m2/min) 

4.32 × 104  m/day 
( 30 m/min) 

Deng et al., [19] 1.9 – 1486.45   m2/s 
(1.6416 × 105 – 1.28 × 108   m2/day)    

0.13 – 0.553 m/s 
(1.123 × 104  – 4.7 × 104   m/day) 

Ukpaka and Agunwamba [20] 72 – 104.4 m2/s 
(6.22 × 106 – 9.017 × 106   m2/day)    

0.69 m/s 
(5.96 × 104  m/day) 

Obi [21] 2.41 – 288.456 m2/s  
Fazli [22] 0.13 m2/day 0.05 m/day 

 
 The results presented in Figure 1 demonstrate the concentration distributions based on 

parameters obtained from two studies, Fazli [22] and Pimpunchat et al., [18] highlighting the 
influence of advection-diffusion parameters on pollutant transport. Take note that the time scale 
differs between the two, with the graph of Fazli expressing time in days while Pimpunchat et al. [18] 
expressing time in minutes. Both studies show a concentration peak near the source, with a decrease 
as time progresses. The highest concentration does not occur at the point it is injected because the 
pollutant is released as a single instant in time only, not continuously injected. Over time, the 
pollutant will travel to the neighbourhood space, causing the peak concentration to shift to a nearby 
location.  

 Furthermore, the diffusion coefficient, 𝐷%  and velocity 𝑢I are shown to significantly influence 
the dispersion patterns, with higher values in Pimpunchat et al., [18] resulting in broader and faster 
pollutant spread compared to the localized dispersion in Fazli [22]. As can be seen, the pollutant 
concentration in Pimpunchat et al., [18]  demonstrates that the pollutant can travel significant 
distance, reaching up to 600 – 800 m from the source point within just a few minutes. In contrast, 
when the diffusion and velocity coefficient is very low as in Fazli [22], the pollutant’s mobility is 
drastically reduced. Even after five days, the pollutant only disperses a short distance of 1 – 2 m only 
from where it is injected. This finding suggests that understanding the unique characteristics of 
pollutants in any situation is crucial, as seen by the notable difference in pollutant behaviour between 
high and low diffusion and velocity conditions. 

Figure 2 illustrates the concentration distribution for different 𝑎	which is the constant parameter 
due to inhomogeneity of the medium at two different times, Day 1 and Day 5. The findings reveal the 
significant impact of the inhomogeneity of the medium. At both Day 1 and Day 5, the concentration 
profiles demonstrate similar behaviour, with smaller 𝑎 values (𝑎 = 0.001	and	0.1) result in a higher 
concentration peak near the source. This can be attributed to the fact that a smaller 𝑎 corresponds 
to a lower diffusion and velocity, which allows more of the pollutant to remain concentrated near 
the source. Also, with less intense diffusion and advection effects, the pollutant travels a shorter 
distance resulting in a narrower dispersion. As 𝑎 value becomes larger (𝑎 = 1,), the diffusion and 
velocity also become higher with x since the coefficients are spatially dependent. Therefore, the 
pollutant is more evenly distributed over a wider spatial range. However, this broader spread results 
in lower concentration values at any specific location. In addition, comparing the results between 
Day 1 and Day 5, it is evident that the pollutant disperses over a broader area as time progresses. 
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    (a)                   (b) 
Fig. 1. Concentration distribution based on parameters obtained from two studies (a) Fazli [22] and (b) 
Pimpunchat et al., [18] 

 

             
(a) Day 1      (b) Day 5 

Fig. 2. Concentration distribution for different 𝑎 
 

5. Conclusion 
  
This study focuses on deriving analytical solutions for a one-dimensional ADE with spatially 

varying coefficients under instantaneous boundary conditions. The spatial dependence of the 
diffusion and velocity coefficients illustrates how these parameters increase with distance (𝑥) from 
the source due to the properties of the river environment. The Laplace transformation is used to 
derive the analytical solutions, introducing new space and dependent variables. The Stehfest 
algorithm in MATLAB is employed to perform the inverse Laplace transformation. 

The findings highlight the critical role of the diffusion and velocity coefficient in pollutant 
dispersion. Smaller coefficients lead to sharper concentration peaks, indicating less spreading, while 
higher coefficients result in broader peaks, indicating greater spreading. Larger inhomogeneity shows 
steeper peaks arriving sooner and broader peaks arriving later, emphasizing the importance of 
accounting for spatial variations in riverbed properties when modelling pollutant transport. Given 
the important role of diffusion, velocity and inhomogeneity, this study proves the significance of 
carefully selecting accurate parameter values in in predicting real pollutant dispersion. Accurate 
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predictions are essential for designing effective mitigation strategies to manage pollution in river 
systems. 

Future work should focus on validating the analytical solutions against experimental or field data 
to ensure the model's reliability. Additionally, extending the study to include other boundary 
conditions, time-dependent coefficients, or two-dimensional models would provide a more 
comprehensive understanding of pollutant dynamics in complex river systems. 
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