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In recent years, the lattice Boltzmann method has emerged as a promising numerical 
technique for solving complex fluid flow problems. This method has been successfully 
applied to both Newtonian and non-Newtonian fluids. Lately, the research in the field 
of the dynamics of non-Newtonian fluids inside a 2D square lid-driven cavity has 
attracted significant attention. In this numerical study, using the in-house developed 
Lattice Boltzmann solver, a two dimensional (2D) square lid-driven cavity with power-
law fluids is investigated for different moving lengths of the top lid. Here, the top 
moving lid of length (L) is bisected into stationary (Lx) and moving (L-Lx) parts. The 
effects of the power-law index (n), Reynolds number (Re) on the flow regime, velocity 
and vorticity distribution in the cavity are analyzed for Lx in the range 0.0L to 0.9L. The 
flow regime in the cavity changes from Type-I (one primary vortex) to Type-II (two 
primary vortices) when the value of Lx is increased beyond a critical value. This critical 
value of Lx is found to depend on both n and Re. We have further investigated the 
inertia effects of the moving lid and analyzed the trajectory of the primary vortex 
center as the functions of the power-law index (n), Reynolds number (Re) and length 
of the moving lid.  
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1. Introduction 
 

Since the non-Newtonian fluids have various industrial, engineering and biological applications, 
it is important to understand its fluid dynamics. Primarily, the non-linear relationship between the 
shear stress and strain rate makes the flow physics of the non-Newtonian fluid different from its 
Newtonian counterpart. To characterize the shear dependent flow behavior of the non-Newtonian 
fluids, several constitutive models have been proposed [1-3] out of which the Power-law model is 
widely used [4, 5]. 

In the present study, to investigate the flow dynamics, we have focused on a lid-driven cavity flow 
problem which has previously received significant attention in the CFD researcher community and 
also has various practical applications such as solar collector [6], short-dwell and flexible blade 
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coaters [7], etc. The factors like Reynolds number (Re) [8-10], the number of the moving lids/sides 
[11] and orientation [12] of the cavity govern the flow regimes in the lid-driven cavity problem. 
Burggraf [13] analytically and numerically investigated the steady-state solution of the lid-driven 
square cavity flow for Reynolds number up to 400 and highlighted that the flow regime mainly 
contains a large primary vortex and two small corner vortices. In his study, the shifting of the vortex 
center from the top lid region to the geometric center was observed when Re is increased. To further 
investigate the cavity flow problem, Ghia et al., [8] have used the stream function-vorticity 
formulation of the NS equation at higher Re. Recently, the lattice Boltzmann method (LBM) with 
Bhatnagar–Gross–Krook (BGK) collision model has been used to solve the flow physics of the lid-
driven cavity problems [9,11]. Hou et al., [14] used the LBM with a single relaxation time (SRT) model 
and found that their results match quite well with conventional CFD results. Some of the later studies 
[9,15] examined the lid-driven cavity flow with various aspect ratios and Reynolds number (Re) with 
Newtonian fluid. They analyzed the influences of Re and aspect ratios of the cavity on the shape and 
size of the vortex, vortex center location, and the number of vortices in the cavity. In our recent study, 
[16] the effect of different moving lengths of the top lid of a square cavity is investigated for the 
Newtonian fluid. Distinct flow types are observed when the lid length is modified.  

It is worth to note that the linear nature of the governing equations of LBM has several 
advantages over the conventional NS solver, such as ease in parallel code execution and 
implementation of the complex boundary conditions, etc. Therefore, LBM is not only followed in the 
case of Newtonian fluids but also widely adopted in solving non-Newtonian flow problems. Using 
LBM solvers, Gabbanelli et al., [17] have simulated the power-law fluid flow in the parallel plate 
geometry and captured the flow physics of shear-thinning and shear-thickening fluids. Boyd et al., 
[18] presented a new second-order accurate lattice Boltzmann method to simulate the shear 
dependent non-Newtonian flows through a rigid pipe and compared their results with the analytical 
solutions. Sulvian et al., [5] predicted the shear-thinning flow behavior of the power-law fluid in 2D 
and 3D porous media. They also discussed the selection of local lattice viscosity for a stable 
simulation. The power-law fluid flow inside the 2D square cavity using LBM-MRT (multi relaxation 
time) model is studied by Li et al., [19] for a wide range of power-law index (n) and Re. It is observed 
that the complicated nature of power-law fluid for different values of n changed the flow structure, 
number of vortices and their strength inside the cavity. The simulation of power-law fluid for a 
double-sided lid-driven square cavity is studied by Mendu et al., [20]. The top and bottom walls have 
been moved and other walls of the cavity are kept fixed. They have studied the effect of n and Re on 
the vortex center location and variation of velocity components in the cavity. 

It is understood from the above literature review that the LBM can successfully be applied to 
simulate the flow of Newtonian as well as non-Newtonian fluid. Again, the flow physics of Newtonian 
fluid in the lid-driven square cavity has been well reported. To the best of the authors’ knowledge, 
these studies are restricted to the cases where the length of the moving lid is identical to one side of 
the square cavity. However, it is important to understand the flow physics of the shear-thinning and 
shear-thickening fluid in the square lid-driven cavity for the various moving length lid lengths. This is 
very essential to characterize the flow mixing in the cavity. With this motivation, we have investigated 
the 2D, top-lid-driven square cavity for various moving lid lengths using in-house developed LBM-SRT 
solver. Three different power-law indices are selected to capture the flow physics of both Newtonian 
and non-Newtonian fluids at low (Re=100), intermediate (Re=400) and high Reynolds number 
(Re=1000).  
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2. Numerical Methodology 
 

The governing equations for incompressible, steady, viscous, laminar and generalized non-
Newtonian flow in the two-dimensional rectangular cavity is given by [19] 
 
𝛻𝛼 ⋅ (𝜌𝒖𝛼) = 0               (1) 
 

𝛻𝛽𝛼 ⋅ (𝒖𝛼𝒖𝛽) = −𝛻𝛼𝑃 + 𝛻𝛽 ⋅ 𝜏𝛼𝛽           (2) 

 
where the variables ρ and P denote the density and pressure of the fluid, respectively. The shear 
stress tensor is represented by 𝜏𝛼𝛽 and it is expressed as, 𝜏𝛼𝛽 = 𝜇(|�̇�|)𝑆𝛼𝛽. Here, μ is called the 

apparent viscosity of the fluid. The variable �̇� and 𝑆𝛼𝛽 is called the shear rate and shear rate tensor, 

respectively. The expression for shear rate tensor is 
 

𝑆𝛼𝛽 =
1

2
(∇𝛼𝑢𝛽 + ∇𝛽𝑢𝛼)             (3) 

 
In this study, to relate the apparent viscosity with the shear rate, the power-law model is used. 
 
2.1 Power-Law Model 
 

The apparent viscosity (μ) in the power-law model for the non-Newtonian fluid is expressed as 
[18], 𝜇(|�̇�|) = 𝑚|�̇�|𝑛−1, where m and n are proportionality constant and power-law index, 
respectively. Here, the constant m can be calculated from the expression of the Reynolds number i.e. 

𝑅𝑒 =
𝑈2−𝑛𝐿𝑛

𝑚
⇒ 𝑚 =

𝑈2−𝑛𝐿𝑛

𝑅𝑒
. Note that the variable L and U are the characteristics length and velocity 

scale, respectively. Furthermore, the shear rate (�̇�) can be calculated using the relation [18], �̇� =

2√𝐷П, where 𝐷П is the second invariant of the strain rate tensor and is expressed as, 𝐷П =

∑ 𝑆𝛼𝛽𝑆𝛼𝛽
𝑙
𝛼,𝛽=1 . In the present 2D simulations the upper limit of l is set as 2. Eventually, the apparent 

viscosity simplifies to; 
 

𝜇(|�̇�|) = 𝑚|�̇�|𝑛−1 = (
𝑈2−𝑛𝐿𝑛

𝑅𝑒
) (2√𝐷П)

𝑛−1
           (4) 

 
2.2 The Lattice Boltzmann Method 
 

In this study, the inhouse developed code based on the lattice Boltzmann method is followed to 
solve the above governing Eq. (1) and (2). The Lattice Boltzmann equation which is derived from the 
finite difference approximation of the Boltzmann equation is [18], 
 

𝑓𝑖(𝒓 + 𝒄𝒊Δ𝑡, 𝑡 + Δ𝑡) − 𝑓𝑖(𝒓, 𝑡) = −
𝑓𝑖(𝒓,𝑡)−𝑓𝑖

𝑒𝑞
(𝒓,𝑡)

𝜏
          (5) 

 
For 2D simulations, we have used D2Q9 (2: two dimensions; 9: nine lattice directions) lattice 

model with BGK approximation [18,20]. Here, 𝑓𝑖(𝒓, 𝑡) denotes the particle distribution function along 
i direction at position r and time t. τ is the single relaxation time factor. In LBM, the kinematic viscosity 

(𝜈) and relaxation time parameter (τ) are related as, 𝜏 =
1

2
+ 3𝜐 ⇒ 𝜏 =

1

2
+ 3 {

𝜇(|�̇�|)

𝜌
}. Here, the value 

of τ is constant at every node within the domain for a Newtonian fluid. However, for power-law fluids, 
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the apparent viscosity is dependent on the shear rate, which varies locally. Thus, both the kinematic 

viscosity (𝜐) as well as τ is a local variable. So, the above relationship becomes; 𝜏(𝒓, 𝑡) =
1

2
+ 3𝜐(𝒓, 𝑡). 

Note that using the Chapman-Enskog expansion, the macroscopic governing Eq. (1) and (2) can be 
suitably recovered from the mesoscopic LBM Eq. (5). Additional details on LBM can be found in the 
ref. [18-21]. 
 
2.3 Problem Definition and Boundary Condition 
 

The schematic diagram of a two-dimensional lid-driven cavity with the appropriate boundary 
conditions is shown in Figure 1. The top wall is divided into two parts in which one part is stationary 
and the other part is moving. The length of the stationary part is denoted by Lx. Here, Lx is varied 
from 0.1L to 0.9L with an interval of 0.1L. Three different power-law indices (n = 0.75, n = 1.00, n = 
1.25) are considered which covers the shear-thinning (n < 1), shear-thickening (n > 1), and Newtonian 
fluid (n = 1). 

 

 
Fig. 1. Schematic diagram of the present 
lid-driven cavity flow problem 

 
The application of boundary condition (BC) in LBM is different from the conventional Navier-

Stokes solver in which the BC is directly applied at the boundary in terms of macroscopic variables. 
Whereas, in LBM, the particle density distribution function is used to apply BC. In this problem, for 
the stationary wall, the well-known bounce back technique is considered [20]. For the moving length 
of the top lid, the equilibrium distribution function is modified [14] to satisfy the moving wall 
condition. 
 
2.4 Numerical Execution 
 

At t = 0, velocity components (u, v) at all lattice nodes except on the top moving wall are taken as 
zero. The non-dimensional velocity of the moving part of the top wall is set as u = 0.1. Here, the 
velocity of the moving lid is suitably selected so that the Mach number (Ma < 0.2) of the flow lies in 
the incompressible limit. Also, the initial density at each grid point is set as 1.0 in the lattice unit. The 
convergence criteria (CC) shown in Eq. (6) for the velocity residue is set to 10-8. 
 

𝐶𝐶 = ∑
[𝒖(𝑥,𝑦,𝑡+∆𝑡)−𝒖(𝑥,𝑦,𝑡)]

𝒖(𝑥,𝑦,𝑡+∆𝑡)𝑥,𝑦             (6) 
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where, 𝑥 = 1, 𝑁𝑥;  𝑦 = 1, 𝑁𝑦 − 1. The number of grid points along X and Y direction is Nx and Ny, 
respectively. The velocity at the geometric center of the cavity is plotted in Figure 2 for different 
values of n. It shows that the solution approaches steady-state as the time (iteration) progresses and 
this is true for all the cases considered here.  
 

 
Fig. 2. The non-dimensional velocity vs. time (iteration) 
computed at the geometric center of the cavity for 
different values of n, Lx, and Re 

 
2.5 Grid Independence Study and Validation of the LBM Code 
 

To ensure that the results of this study are independent of grid resolution, at first numerical 
simulations are performed on five different uniform grids of size 131 × 131, 201 × 201, 261 × 261, 
331 × 331 and 391 × 391 on the square lid-driven cavity with Lx = 0.4, n = 0.75 and Re = 400. The v-
component of velocity along the horizontal centreline of the cavity is compared in Figure 3. It can be 
seen that the error is insignificant when the grid size is finer than 261 × 261. Hence, the grid size of 
261 × 261 is chosen for the remaining simulation of Re = 100 and 400. However, for higher resolution 
of the velocity and vorticity distributions, the grid size of 331 × 331 is selected for Re = 1000.  
 

 
Fig. 3. Comparison of v component velocity for different 
grid sizes along the horizontal centreline of the square 
cavity, for Lx = 0.4, n = 0.75 and Re = 400 
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To validate the present LBM solver, numerical simulations on the square lid-driven cavity are 
carried out for Re = 100 and at Lx = 0.0L with both the Newtonian and non-Newtonian fluids. For 
different cases, the computed u and v components of the velocity along the vertical and horizontal 
centreline of the cavity are compared with ref. [8,19] in Figure 4. It is observed that the velocity 
profiles obtained from the present solver match well with those published results which also confirms 
the accuracy of the developed solver. 
 

 
(a) (b) 

Fig. 4. Comparison of u and v components of the velocity along the vertical and horizontal centreline 
of the cavity 

 
3. Results and Discussion 
  

In the following section, the effects of the Reynolds number (Re), Power-law index (n) of the fluid 
and the moving lid length (L-Lx) on the flow regime, velocity and vorticity distribution in the square 
cavity are investigated. 
 
3.1 Flow Regime 
 

In the case of both Newtonian and non-Newtonian fluids, the typical flow regime in the lid-driven 
square cavity consists of one large primary vortex and several small corner vortices [15,19,20]. In the 
present study, it is noticed that the flow regime in the cavity is modified when the moving lid length 
(Lx-L), Reynolds number (Re) and Power-law index (n) of the non-Newtonian fluid is varied. We have 
broadly categorized the flow regime in the cavity as Type-I and Type-II based on the number of the 
primary vortex (PV).  

As shown in the streamline plots in Figure 5, in Type-I and Type-II flow regimes, one and two 
primary vortices are observed, respectively. Note that in both Type-I and Type-II flow regimes, several 
corner vortices are also seen. The red and blue color streamline indicates the clockwise and counter-
clockwise rotation of the vortices, respectively. In Figure 6, the observed flow types as functions of 
the Power-law index (n), moving lid length (L-Lx) and Reynolds number (Re) are shown. It is seen that 
at low Re, the transition to Type-II flow regime appears for minimum moving lid length i.e. Lx = 0.9L, 
at all n. However, at higher Re=1000, the Type-II flow regime only appears for n ≥ 1. 
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(a) (b) 

Fig. 5. Streamline patterns showing the (a) Type-I (for Lx=0.2, n=1.25, 
Re=400) and (b) Type-II (for Lx=0.9, n=1.25, Re=400) flow regimes, 
respectively. Here, the red and blue color streamline indicates the 
clockwise and counter-clockwise rotation of the vortices, respectively 

 

 
(a) (b) (c) 

Fig. 6. Flow types observed at different Lx and n for (a) Re = 100, (b) Re = 400 and (c) Re = 1000, respectively 
 

 
(a) (b) (c) 

Fig. 7. Streamline patterns seen in the square lid-driven cavity at Re = 1000 and Lx = 0.9 for (a) 
n = 0.75, (b) n = 1.00 and (c) n = 1.25, respectively. Here, the red and blue color streamline 
indicates the clockwise and counter-clockwise rotation of the vortices, respectively 

 
Moreover, for shear-thickening (n > 1) fluid, the transition to the Type-II flow regime occurs at 

intermediate moving lid length, i.e. Lx > 0.6L. It is worth to note that the inertia effect of the moving 
lid primarily governs the flow regime transition. When the moving lid length is reduced and Re is 
increased, the inertia effects get concentrated towards the top-right corner (i.e. the location where 
the moving lid is defined, see in Figure 1) of the cavity. For the shear-thinning fluids (n < 1), the viscous 
effects decrease with the increase of shear rates. As a result, for Re = 1000, the inertia effects of the 
top moving lid propagates easily into the cavity and does not allow to form the second PV inside the 
cavity for n = 0.75 and Lx = 0.9 (see in the streamline plots in Figure 7(a)). 
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Conversely, for the case of shear-thickening fluids (n > 1), the inertia effects of the top moving lid 
may not propagate easily in the vicinity of the cavity due to higher viscous effects at higher shear 
rates. Therefore, the two counter-rotating PVs are seen in the cavity for Lx > 0.6L, regardless of the 
increase of Reynolds number (see in the streamline plots in Figure 7(c)).  
 
3.2 Trajectory of the Primary Vortex Centre  
 

It is noticed that in a particular flow type, the size and location of the primary and corner vortices 
are different when Lx, n, and Re are varied. In Figure 8, both the X and Y coordinates of the primary 
vortex (PV) center location is plotted as functions of the Power-law index (n), moving lid length (L-Lx) 
and Reynolds number. Here, the PV center is identified as the location in the cavity where both u and 
v velocity components are zero. It can be seen that for low Re and all values of n, the PV center 
gradually shift towards the top right corner of the cavity when the moving lid length is reduced (ref. 
Figure 8(a)). However, at higher Re, the shift in the PV center appears for the intermediate moving 
lid lengths, i.e. Lx > 0.5L (ref. Figure 8 (b) and (c)) and unlike the low Re case, the trajectory of the PV 
center differs for different values of n. Note that in Figure 8, the location of the second PV center is 
also plotted for the Type-II flow regimes. 
 

 
(a) (b) (c) 

Fig. 8. Comparison of the primary vortex center location at different Lx and n, for (a) Re = 100, (b) Re = 400 
and (c) Re = 1000, respectively 

 
3.3 Cavity Centerline Velocity Distribution 
  

In Figure 9 and 10, u and v component of the velocity along vertical and horizontal centreline of 
the cavity is plotted, respectively. For the Type-I flow, u component velocity near the top wall of the 
cavity is positive, whereas, near the bottom wall, it is negative (see in Figure 9(a)). Similarly, the v 
component velocity near the left and right walls of the cavity is positive and negative, respectively 
(see in Figure 10(a)). This is because of the clockwise rotational sense (see in Figure 5(a)) of the 
primary vortex in the Type-I flow regime.  
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(a) (b) 

Fig. 9. The comparison of u-velocity along the vertical centreline of cavity at (a) Lx = 0.4 and (b) Lx = 0.9 
for different values of n and Re = 400 

 
As shown in the streamline plot in Figure 5(b), in the case of Type-II flow, the top and bottom PVs 

rotate in opposite directions. Since the bottom PV rotates in the counter-clockwise direction, u 
component velocity near the bottom of the cavity is positive and becomes negative as it approaches 
the top lid (see in Figure 9(b)). Similarly, due to the interactions of the two counter-rotating vortices 
in the cavity, v component velocity near the left wall is negative and it is positive close to the right 
wall (see in Figure 10(b)). It is worth to note that the trends of the velocity profiles are similar in the 
respective flow types for different values of n; however, their magnitude depends on the strength of 
vortices in the cavity. 
 

 
(a) (b) 

Fig. 10. The comparison of v-velocity along the horizontal centreline of cavity at (a) Lx = 0.4 and (b) Lx = 
0.9 for different values of n and Re = 400 

 
4. Conclusions 
 

In this study, using the power-law model and inhouse developed LBM solver, non-Newtonian and 
Newtonian fluid flows in a 2D square lid-driven cavity is investigated for the different moving lengths 
of the top lid and Reynolds number. The viscous effect changed by the power-law index and inertia 
effect changed by the moving lid length causes the shift in the primary and corner vortex centers in 
the cavity region and also modifies the flow regime from Type- I (one PV) to Type- II (two PVs). The 
velocity distribution along the centerline of the cavity shows a distinct pattern for Type-I and Type-II 
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regime. The present study can be further extended to analyze the more complicated rheological 
behavior of other shear-thinning and shear-thickening fluid in a three-dimensional cavity model.  
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