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Abstract

In this paper, the flow inside the two sided lid driven cavity is simulated using third
order upwind compact finite difference scheme based on flux difference splitting in
combination with artificial compressibility approach. The results are compared with
alternate direction implicit finite difference scheme. Unlike single lid driven cavity,
there is free shear layer and two symmetric secondary eddies growing in size
directly with Reynolds numbers for parallel wall motion. However, for anti parallel
wall motion the eddy structure changes, the secondary eddies appear in upper left
and lower right corners.
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1. Introduction

With the rapid development of computational techniques and availability of high
speed computers, there has been a continuously widening scope of scientific and engineering
problems that can be solved numerically. A proper mathematical model and a good numerical
scheme can provide realistic answers to complex physical phenomena for which analytical
solution has not available. Most of the modelled partial differential equations (PDE’s) for
science and engineering problems do not possess the exact solutions, so we have to refer to
numerical solution of these differential equations. As computer technology progressed, a
computational approach became viable to deal with increasingly complicated flow problems.
A desirable attribute of the computational fluid dynamics (CFD) technique is its flexibility
when conducting parametric studies. Increasing interest in numerical computing demanding
high accuracy for a wide range of scientific and engineering problems, therefore efficient and
high resolution schemes become a major challenge to numerical scientists. Particularly
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locally high-order finite difference, finite-volume and finite element methods have received
more attention than traditional globally high-order methods such as spectral methods [1, 2]
because the former are more robust in handling problems with complicated geometries than
the latter. Compact finite difference schemes [3, 4] provide an effective way of combing the
robustness of the finite difference schemes and the accuracy of spectral methods. Generally,
in compact finite differences the computation of derivatives is implicit in the sense that
derivative values at a particular node are computed not only from the function values but also
from the values of the derivative at the neighbouring nodes. Compared to non-compact
schemes of the same order of accuracy, compact schemes utilize a smaller stencil, have
smaller truncating errors, and give better resolution. Compact finite difference scheme are
classified into two main categories: central and upwind compact schemes. Central compact
schemes have the advantage of achieving higher order accuracy with fewer grid points in the
stencil, but have non-dissipative nature. Therefore, using central compact schemes on non-
staggered grids for convective terms may cause numerical oscillations even for flows without
discontinuities. On the other hand, upwind compact schemes with dissipative properties are
more stable than central compact schemes. Fu and Ma [5, 6] among others [7-9] have
developed some upwind compact schemes. As these upwind compact schemes can
automatically provide grid-scale linkage for each variable to avoid odd-even decoupling and
appropriate dissipation to prevent non-physical oscillations, they seem to be more suitable for
discretizing the convective terms. This will make it easier to develop solution methods
capable of handling problems with complicated geometries. The numerical method developed
in [9] is tested in solving two sided moving lid driven cavity and the computed results are
compared with those obtained in [10,14] using finite difference method. The comparison of
the two schemes agrees very well.

The flow in cavity driven by a moving side walls is of basic importance for the study
of vortex flows in closed geometries. Moreover, it is related to many engineering applications
such as the flow over structures in airfoils, the cooling flow over electronic devices, or in the
flow in short dwell coaters. Ghia et al. [10] have applied a multi grid method and given
solutions for Reynolds numbers ranging from 100 to as high as 10000. Kuhlmann and others
[11-12] have investigated two sided lid driven cavity with various span wise aspect ratios.
They explored the nonlinear regime and found multiple two dimensional states in rectangular
cavities. They also found seven and five flow states in anti-parallel and parallel motion
respectively. Blohm and Kuhlmann [13] experimentally investigated the incompressible fluid
flow in a rectangular container driven by two facing sidewalls which move steadily in an
anti-parallel direction up to Re = 1200. D. A Perumal et al. [14] simulated incompressible
flows in two sided lid driven square cavity by finite difference method.
The present work is concerned with the computation of two-sided lid-driven square cavity
flows by using the numerical scheme developed by A. Shah and Li Yuan [9].

This rest of the paper is organized as follows. In Section 2, the formulation of the
governing equations with artificial compressibility (AC) term is briefly outlined. In Section 3,
the code is validated with benchmark results. Section 4 contains the numerical results.
Pressure and vorticity fields in square cavity are briefly discussed in Section 5 and
concluding remarks are made in Section 6.

2. Governing Equations

The governing equations are the non-dimensional incompressible Navier-Stokes
equations in Cartesian coordinates  yx,  in conservative form and with the artificial term
added to continuity and momentum equations using pseudo time approaches:
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Here Q is the solution vector,   is the pseudo-time or an iterative parameter, vu and are
the velocity components, p  is the pressure, Re is the Reynolds number, mI is the modified

identity matrix and   is the artificial compressibility factor whose value is very important
for the stability and convergence of the method. The FE and  are the inviscid flux vectors
while vv FE and  are the viscous flux vectors in x and y directions respectively.  The

Jacobian matrices BA and of the inviscid flux vectors are
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The Jacobian matrices vv BA and  of the viscous flux vectors are
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To get tri-diagonal system, matrices A and B are diagonalize as
1

B
1

A YYΛBXXΛA   ,  (2)

where the diagonal matrices AΛ  and BΛ contains the eigenvalues of matrices A and B
respectively. X and Y are the matrices of the right eigenvectors, while X-1 and Y-1 are their
inverses respectively.

3. Spatial Discretization

Since the governing equation are hyperbolic in nature, therefore the convective flux
and its derivatives are split into two parts i.e., in the x direction

xxx
  EEE (3)

These split derivatives can be computed using the following 3rd –order scheme

   
x

ii

ixix



 





6

5

3

1

3

2 1

1

EE
EE


(4a)

   
x

ii

ixix



 





6

5

3

1

3

2 1

1

EE
EE


(4b)

where ,, 11 



  iiiiii ffffff   and x  is the grid spacing. The advantage of these

upwind compact schemes is:
(1) their computational cost is small, as Eqs. (4) are explicitly marched forward and backward
to get all the derivatives once the right-hand side (RHS) and the boundary derivatives are
given;
(2) unlike central compact scheme, they provide odd-even coupling of grid points and
numerical dissipation to damp out high-frequency oscillation; and
(3) they have better resolution properties than non-compact, upwind biased scheme of the
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same order. Since each of the term in the RHS of Eqs.(4)  represents the difference of split
fluxes between neighboring points; one can compute them by using FDS [4]
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some intermediate value Q . The Roe properties [3], which are necessary for a conservative

scheme, are satisfied exactly if Q  is taken as the average of the surrounding points, i.e.,
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To close the third order scheme, Eq. (4), at interior points, an explicit, dissipative, and third-
order one-sided boundary scheme [5] is used at boundary grid points:

 
x

i
iiii

ix



 










6

291811
:1

321 EEEE
E

)(
6

2711
32

5

2

3

2

1

xO
x

iii














 EEE

(6a)

 
x

Ni
iiii

ix



 










6

291811
:

321 EEEE
E

)(
6

2711
32

5

2

3

2

1

xO
x

iii














 EEE

(6b)

The discretization of the viscous terms is performed with central schemes because the viscous
diffusion occurs in all directions. The second derivative for the viscous terms in Eq. (1) is
approximated by a fourth-order symmetric compact scheme at the interior points
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4. Implicit Approximate Factorization Scheme

By applying backward Euler difference scheme to the pseudo-time derivative, and
three points, second-order backward difference scheme to the physical time derivative, one
obtains

   
0

FFEEQ




















1m

vv
m

yx
(8)

where mmm QQQ  1 , the superscript n is the physical time level, and m is the pseudo
time level.   is the pseudo time step which is determined based on the CFL number and the
superscript m is the pseudo time level. The residual term at m+1 pseudo time level are
linearized with respect to the previous time level m by using Taylor’s expansion, i.e.,
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Thus obtains the unfactored implicit delta form as
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The equations are marched in pseudo time until R.H.S converges to zero. The Beam-
Warming approximate factorization (AF) scheme can be symbolically written as
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To obtain block tri-diagonal equations, convective terms in L.H.S of Eq. (10) are discretized
by first order upwind difference and viscous terms by central difference, e.g.,
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Remember that the upwind compact scheme is used for terms in the RHS mS . Thus, obtain
the following form
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Finally by suppressing the cross-derivative term which for small t will not affect the
second-order time accuracy. We thus obtain the AF scheme in the following form
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The system (11) is then solved by the ADI (Alternating Direction Implicit), which is

an efficient method as it converges in a number of iterations proportional to the number of
points in one direction.
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Each of these systems of equations is a set of block tri-diagonal equations of the form

1imax,...,2,11   irUUU iiiiiii  with appropriate boundary conditions.

3. Results and Discussion

As a numerical experiment, a driven cavity flow in a square domain is simulated. The
physical configuration consists of a square container filled with incompressible fluid. The
upper and lower sides of the container moves at a given, constant velocity in same direction
(parallel motion) or in opposite directions (anti parallel motion). The other two walls are at
rest. Neuman boundary conditions are used for pressure. The schematics of lid driven cavity
for two cases are given in Figure 1.
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(a) (b)
Figure. 1 Two sided Lid driven square cavity for (a) parallel wall motion (b) anti parallel wall
motion.

        (a) (b)

Fig. 2  Code validation: Horizontal velocity u (a)  Parallel wall motion (b) Anti parallel wall
motion, along the vertical line (x=0.5) for Re = 100.

Figures 2(a) and 2(b) shows the steady state x component of velocity along the
vertical centre line of square cavity for Reynolds number 100. The results produced by third
order compact upwind scheme and finite difference ADI scheme given in [14] are in good
agreement. It verifies the accuracy of present computational strategy.

Case I: Parallel Wall Motion

Figure 3 (a-d) shows the flow  in a square container, with parallel motion of upper and
lower walls with same uniform velocity, the flow field consists of two counter rotating
primary  eddies, which are symmetrical with respect to the line joining the mid points of side
walls. The table 1 elucidates the coordinates of primary eddy centres. These centres shift
from right hand top and right hand bottom corners towards the centres of the of top and
bottom halves of cavity, with increasing Reynolds number. Moreover, at Reynolds no 400, a
pair of secondary counter rotating eddies are seen. These eddies increase in sizes as the
Reynolds number is increased beyond 400.

u=0
v=0

u=0
v=0

u=1, v=0

u= -1, v=0

u =1, v =0

u=0
v=0

u=0
v=0

u=1, v=0
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                                     0

Figure 3. Steady-state eddy structure for parallel wall motion at (a) Re = 100 (b) Re = 400 (c)
Re = 1000 and (d) Re = 2000 on a 257 × 257 grid.

TABLE 1: LOCATIONS OF THE EDDIES FOR PARALLEL WALL MOTION USING THIRD ORDER COMPACT UPWIND

SCHEME

Primary Eddy Centre Secondary Eddy Centre
Bottom Top Bottom TopRe

x y X y X y x Y
100 0.61 0.2 0.61 0.8
400 0.59 0.24 0.59 0.76 0.99 0.46 0.99 0.53

1000 0.54 0.24 0.54 0.76 0.96 0.46 0.96 0.54
2000 0.52 0.24 0.52 0.76 0.94 0.46 0.94 0.54

Case II. Anti-parallel Wall Motion

Figure 4(a-d), shows the eddy structure when upper and lower wall of square cavity
are moving in opposite direction with same velocity along the x-axis, for Re=100, 400, 1000
and 2000. A single primary eddy appears for Reynolds number 100 and 400 as shown in
Figures 4(a) and 4(b). Two counter rotating secondary eddies appear for Re=1000 and 2000,
as clear from Figures 4(c) and 4(d). The size of secondary eddy grows when Re is increased

(a) Re=100 (b) Re=400

(c) Re=1000 (d) Re=2000
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from 1000 to 2000. These computations were made on grid size 257x257. The location of
centres for each primary and secondary eddy is given in Table-2.

                               4(a)                     4(b)

                    4(c)           4(d)
Figure 4. Streamline pattern for anti-parallel wall motion at (a) Re = 100 (b) Re = 400 (c) Re
= 1000 and (d) Re = 2000 on a 257 × 257 grid.

TABLE 2: LOCATIONS OF THE EDDIES FOR ANTI- PARALLEL WALL MOTION USING THIRD ORDER COMPACT

UPWIND SCHEME

Secondary Eddy CentrePrimary Eddy Centre
Bottom Top

Re

X Y x Y x y
100 0.500 0.500 - - - -
400 0.500 0.495 - - - -

1000 0.499 0.500 0.9685 0.1408 0.0338 0.857
2000 0.500 0.500 0.9550 0.111 0.0444 0.887

4. Pressure and Vorticity Fields in the Square Cavity

As the lid moves, the fluid is set into motion due to viscosity of fluid, away from the
lid, the fluid is driven by pressure gradient. There is pressure suction near the left side wall
and pressure build up on right. Moreover there are also vorticity peaks at same locations.
Figure 5 shows these facts in detail.
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Figure 5. Pressure and vorticity contours for parallel wall motion at Re = 100 on 257 × 257
grid.

5. Conclusion

In the present work, flow in two sided lid driven square cavity is observed for parallel
and anti parallel motion of top and bottom sides. For parallel motion, there is a free shear
layer along the mid line joining the side walls and secondary eddies appear for Re=400,
which grows in size with decreasing viscosity. Moreover, for anti-parallel wall motion, there
is single primary eddy for Reynolds number upto 400, the two secondary eddies, on upper
left and lower right corners appear, when the Reynolds number is increased beyond 400. The
size of these eddies increases with increasing the Reynolds number. The results given by
present scheme are in good agreement with those of finite difference alternate direction
implicit (ADI) scheme.
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