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Abstract 
 

In the present paper, a numerical code has been developed with different turbulence models 
aiming at simulating turbulent bubbly flows in vertical circular pipes. The mass and 
momentum conservation equations are used to describe the motion of both phases 
(water/air). Because of the averaging process additional models are needed for the inter-
phase momentum transfer and turbulence quantities for closure. The continuous phase 
(water) turbulence is represented using different turbulence models namely: two-equation 
k-ε, extended k-ε and shear-stress transport (SST) k-ω turbulence models which contains 
additional term to account for the effect of the dispersed phase (air) on the continuous phase 
turbulence. The developed code is based on the finite volume method with the mentioned 
different turbulence models. The Reynolds stresses of the dispersed phase are calculated by 
relating them to those of the continuous phase through a turbulence response function. The 
code has been tested through two different cases: the prediction of air/water bubbly flow in 
a vertical pipe and bubbly flow in a sudden enlargement pipe where phase fractions, 
velocity profiles and turbulence can be compared with available experimental data. It is 
concluded that, SST k-ω produces the best validations in view with the other turbulence 
models and the comparisons with other simulations and experimental data from literature.  
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1. Introduction 
 

Two-phase flows have significant importance in many industrial applications. Some of these 
applications includes boiling heat transfer, cloud cavitations in hydraulic systems, stirring of reactors, 
aeration in water purification, bubble columns and centrifuges in the petrochemical industry, cooling devices 
of nuclear reactors and electrochemical reaction. Among others, bubbly flows have a great importance in the 
electrochemical reaction and particularly in hydrogen production, chlorate process, electroplating and metal 
purification processes [1-2]. Bubbly flows consist of gas bubbles (dispersed phase) within a carrier liquid 
(continuous phase). Among several two phase flow models, there are two fundamentally different 
formulations of the microscopic field equations for two phase flow systems; namely the Eulerian two fluid 
model. In two-fluid model, each phase is separately described in terms of two sets of conservation equations. 
Knowledge of the characteristics of bubbly flows is important in the design of multi-fluid system. As the 
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computer power dramatically increases each year, it is desirable to employ advanced multi-dimensional 
models to calculate bubbly flows more precisely through methods of computational fluid dynamics (CFD). 
 These models should be able to account for such effects as turbulence, strong interaction between 
phases and multi-dimensionality, which are the general attributes of the most of bubbly flows. The model 
should also rely on the empirical data to the least possible extent. In spite of the progress achieved in the 
development of Eulerian-Eulerian, two–fluid models for bubbly flows, (Simonin and Viollet [3]; Lee et.al. 
[4]; Lopez de Bertodano et al. [5]; Bel Fdhila and Simonin, [6]; Lopez de Bertodano et al., [7]), some 
important difficulties subsist. 
 Lopez de Bertodano [8] used two-phase extension of the algebraic stress model (ASM) to model 
turbulence effects in the liquid phase. The turbulence scale equations were derived on the presumption that 
the total liquid turbulence is a sum of shear and the bubble induced components. Total liquid eddy diffusivity 
was modified by an addition of the bubble-induced eddy diffusivity introduced by Sato et al. [9]. A 
comparison of this model's prediction with experimental data on bubbly flows, in a vertical duct, gave 
encouraging result. Wang et al. [10] investigated turbulent bubbly air/water flows using a pipe in which both 
up and down flows were investigated. Flow parameters such as void fraction, liquid velocity and turbulence 
intensity were measured in fully developed flow conditions for both up and down flows. Troshko and Hassan 
[11] derived a new wall law for two phase flows in Eulerian–Eulerian frame and tested its validity in bubbly 
flows using CFX. Bubbly upflow in a sudden expansion was analyzed with a two-fluid model in a circular 
cross section pipe. For such flows the presence of the interfacial drag force in the momentum equations 
introduces source terms into the transport equations for both the turbulence kinetic energy and its dissipation 
rate. These source terms were first identified by Gosman et. al. [12].The experiment of Bel F'dhila and 
Simonin [6] and Bel F'dhila [13] includes investigations of turbulent concurrent bubbly upward flow through 
a sudden area expansion. This experiment is important because of the specific flow conditions developed: 
high level of turbulence and strong shear stresses with significant adverse pressure gradients. Behzadi et al 
[14] used an in–house CFD to study bubbly flows in a sudden pipe expansion. Eulerian-Eulerian approach 
with k  model was used to model the multiphase and turbulence in the domain respectively. Carver [15] 
reviewed the various approaches for constructing a void fraction algorithm. Carver [15] first recommended 
normalizing each mass conservation equation by its own reference density and then summing the two 
equations to form an equation that will be used to determine the pressure correction. The two normalized 
mass conservation equations are then subtracted to develop the equation for determining the void fraction. 
Issa and Oliveira [16] investigated turbulent bubbly air/water flows in a sudden expansion using Eulerian-
Eulerian model. They obtained volume fraction by two method: the first method (Standard method); solve 
the continuity equation of dispersed phase and the continuous phase volume fraction is obtained from 
equation ( 1c d   ). The second method, volume fraction for each phase is computed separately from 
their mass conservation equation. Manmatha and Sukasnta [17] investigated theoretical studies to determine 
the pressure drops caused by abrupt flow area expansion/contraction in small circular pipes for two-phase 
flow of air/water mixture at room temperature and near to atmospheric pressure.  
 The main objective of the present work is to develop a numerical code to simulate the turbulent bubbly 
flow either in a vertical straight or in a vertical sudden enlargement pipes. Two-fluid model of adiabatic, 
incompressible bubbly flows is described with an emphasis on all important interfacial forces. Three 
turbulent models; the standard k   (STD) model, the extended k  (ETD) model and the shear-stress 
transport (SST) k-ω model are implemented in this code, in which the last model was not previously 
considered in the literature for simulating the bubbly flow. The computation results are compared with 
available experimental data and with previous computation results.  

 
2.  Mathematical Model 
 

2.1. Governing equations 
 

In the present work, the two-fluid model (Eulerian-Eulerian model) has been used. In the 
Euler-Euler approach, the different phases are treated mathematically as interpenetrating 
continua, with each computational cell of the domain containing respective fractions of the 
continuous and dispersed phases. The model assumptions are: 
1-The fluids in both phases are Newtonian, viscous and incompressible. 
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2-The physical properties remain constant. 
3-The pressure is assumed to common to both phases. 
4-Surface tension effect is neglected.  
5-The different turbulence models are used to describe the behavior of the continuous phase. 
6-The flow is assumed to be isothermal, so energy equation is not needed. 
With all the above assumptions the governing equations for phase k (c for continuous and d for 
dispersed) can be written as [13, 14, 16, and 17]: 
The continuity equation: 

                                  ( ) 0.0i k
i

u
x





                                                                           (1) 

The volume fractions are assumed to be continuous functions of space and time and their sum is 
equal to one.  

                                    1.0c d                                                                                  (2) 
RANS equations: 
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 (3)                                 

where u denotes mean velocities and u` is the fluctuating or turbulence velocity, ρ is density, p 
is pressure, kM is the interface momentum transfer term and  is the laminar viscosity. The 
additional fluctuating quantities are known as the Reynolds stresses, which must be modeled in 
order to close the system of equations. The apparent turbulent shearing stresses might be related 
to the rate of mean strain through an apparent scalar turbulent or "eddy" viscosity. For the 
general Reynolds stress tensor, the Boussinesq assumption reads: 
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where ij is the Kronecker delta function ( ij =1 if i=j and ij =0 if i≠j), k is the turbulent kinetic 
energy and t is the turbulent viscosity, which can be computed from the suitable turbulence 
model. 
The interface momentum transfer term Mk is given in Troshko and Hassan [11]  

  d L W tdM M M M Mc c c c c                                                                                       (5) 
 where the individual terms on the right-hand side of Equation (5) are the drag force ( d

cM ), lift 

force( L
cM ), wall force( W

cM ) and turbulent dispersion force ( td
cM ), respectively. The drag 

force is expressed as [11]  
3 ( )
4

d d
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In which the drag coefficient DC depends on the particle Reynolds number as given below [18, 
19]:     
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Relative Reynolds number is given by   
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Equation (5) shows that the drag force exerted by the secondary phase (bubbles) on the 
primary phase is a vector directed along the relative velocity of the secondary phase. 
The second term in Equation (5) represents the lift force, which arises from a velocity gradient 
of the continuous phase as given by [11]: 

( ) ( )L L
c c c c cLd d dM M C u u u                                                                        (9) 

where LC is the lift force coefficient. The value of the lift coefficient ranges from 0.01 for the 
laminar flow to 0.5 for the inviscid flow around the sphere. Troshko and Hassan [11] 
recommended LC =0.06 for turbulent bubbly flows in vertical pipes. 
The wall lubrication force is first presented by Antal and Lahey [20]. They defined an analytical 
expression for a wall force that prevents the bubbles from touching the wall. The main effect of 
the wall force is to assure the zero void condition found experimentally near vertical walls while 
not significantly affecting the phase distribution away from the wall. The wall lubrication force 
is defined as: 

1 2max(0, )c d cW W
c d w w w

b w

dM M C C n
d y

   
   d cu u                                              (10) 

Where wn the outward unit vector is perpendicular to the wall and wy is the distance from that 
wall to the bubble. The constants 1wC and 2wC determine the magnitude and the effective action 
distance which is equal to 2 1/w wdC C . 
The turbulent dispersion force, derived by Lopez de Bertodano [8], is based on the analogy with 
molecular movement. It approximates a turbulent diffusion of the bubbles by the liquid eddies. 
It is formulated as:  

td td
c c c cd tdM M C k                                                                                          (11)  

Where ck is the liquid turbulence kinetic energy per unit mass. Lopez de Bertodano [8] 
suggested the value of the coefficient tdC to be of order 0.09 to 0.1. 
 
2.2.  Turbulence modeling 
 

Three different turbulence models are included in the numerical code. The correct selection 
of the suitable model is dependent on a combination of accuracy and acceptable computational 
time. In the present paper, the turbulence models are tested and evaluated for the case 
considered; namely: the standard k-ε (STD) model [12, 16], the extended k-ε (ETD) model [21] 
and the shear-stress transport (SST) k-ω model [22, 23, and 24]. The general transport equations 
for the adopted models are given below, while the different terms and coefficient of the 
turbulence models adopted are given in Table 1. 
The k-equation: 
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The ω-equation:    
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TABLE 1:  COEFFICIENT FOR TURBULENCE MODELS 
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Where y is the distance to the next surface 
 
2.3.  Interface turbulent momentum transfer 
 

The source terms accounting for the presence of a dispersed phase and its influence upon the 
continuous phase turbulence appear in int

kS , intS and intS . The source terms are given in Table 
2. 
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TABLE 2:  INTERFACE TURBULENT MOMENTUM TRANSFER OF TURBULENCE MODELS 
 STD κ-ε model ETD κ-ε model SST κ-ω 
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In these turbulent modulation terms, the most important contribution is related to turbulent 

response coefficient tC defined as the ratio of the dispersed phase velocity fluctuations to those 

of the continuous phase
'

'
udCt uc

 . In a related work, a model for tC   was proposed in Ref. [16] 

to relate tC to the local flow and turbulence field and was implemented in Ref. [25] in 
calculation of dilute dispersed flows. The model is given by  
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Where tε is a time scale of the large eddies (typically 4 /t C k     with C4 changes between 

0.2 to 0.4 [16]) and pt is the particle relaxation time ( (1 / )p
D
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with 

vmC =0.5, see in Ref. [16]). 
The dispersed turbulence kinetic energy and viscosity are related to the continuous phase one by 
means of response functions: 
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
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Recent experimental data by Garnier et al. [26] and Larue de Tournemine et al. [27] for gas–
liquid flows as well as Augier [28] for liquid–liquid flows suggest that the turbulence response 
coefficient is a strong function of the phase fraction and that beyond a certain value of d  
which could be as small as 6%, the turbulence response function tC  approaches unity. From 
experiments given by [14], to account for this effect, a correlation for the turbulence response 
coefficient as a function of phase fraction was suggested. The correlation was plotted and takes 
the form as given in Ref. [14]. 
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WhereC Cto t  stands for the value of tC  at 0.0d   given in Eq. (15) 
 
2.4.  Boundary conditions 
 

The computational domain and boundary conditions are shown in Fig.1. Bubbly vertical 
pipe flow parameters measured by Wang et al. [10] was first chosen for validation as shown in 
Fig.1-a. In their experiments, incompressible, air/water bubbly flows at atmospheric pressure 
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and room temperature were considered. Table 3 shows the global flow condition for each 
experiment, where J denotes superficial velocity. 
 

TABLE 3: GLOBAL FLOW CONDITIONS OF WANG ET AL. [10] AND BEL F'DHILA ET AL. [6, 10] 
EXPERIMENTAL. 

Case  in
cJ  

(m/s) 

in
dJ  

(m/s) 
d  d 

(mm) 
W1 (pipe) 0.43 0.1 0.132 2.8 
W2 (pipe) 0.43 0.27 0.310 3.0 
W3 (pipe) 0.43 0.4 0.383 3.2 
Bel.(sudden  expansion) 1.413 0.181 0.1 2 
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Figure 1(a) Pipe flow (geometry and    

            boundary conditions) 
Figure 1(b) Sudden expansion (geometry 

and boundary conditions) 
 

The models have also been applied to predict bubbly flow in a sudden expansion of a 
circular pipe is shown in Fig.1-b. Measurements for this test case have been conducted by Bel 
F'dhila [13] and are presented in Bel F'dhila el al. [6] and Lance et al. [29].The configuration 
consists of a bubbly air/water flow through a sudden expansion circular pipe. In the 
experiments, the profiles of mean and RMS velocities (axial and radial components) and of the 
phase fraction were measured at six cross-sections(x=-2, 7, 13, 18, 25 and 35 cm), measured 
from the step wall. The Reynolds number based on the smaller pipe diameter and the mean 
liquid velocity is Re=78500 and the bubble diameter is estimated as d=2 mm and is assume to 
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be uniform at the entrance section. No-slip boundary conditions are imposed along the wall. The 
inlet velocity profile is considered to be 1/7-th-power law. The inflow turbulence kinetic energy 
and its dissipation rate appropriate for fully developed flow in a pipe [30] are assumed 

2.5(1 4( / ) )

20.003

k k r Rin o

k Uo in

 


                                                                                                (18) 

0.75 1.5 /C k min                                                                                                        (19) 

The mixing length m  is given as in [30]: 

2 40.14 0.08(1 ) 0.06(1 )y yRm R R
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                                                                 (20) 

Where R is the radius of the pipe and r is the local radius. 
The normal gradients at the outlet plane are taken to be zero except the streamwise velocity, 
which must be corrected every iteration step to satisfy the continuity equation. 
 

3. Numerical solution 
 

The average transport equations for momentum and mass of each phase as well as for the 
turbulent in symmetrical flow can be written for steady, incompressible, two-dimensional flows in 
the following general transport equation form: 
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Where the variable;   is the dependent variable, representing the streamwise velocity U the 
normal velocity V, the turbulence kinetic energy k, dissipation rate  or the dissipation 
frequency  , respectively. The diffusion coefficient   and source term S  in the respective 
governing equation are specific to a particular meaning of , see Table 4. 
The numerical method employed here to solve the above general differential equation is based 
on a general method for prediction of heat and mass transfer, fluid flow and related processes.  
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This method has been developed and proved its generality and capability in a wide range of 
possible applications for predicting physically meaningful solutions even for uniform grid [31]. 
The control volume integration of the above general differential equation, Eq. (21), yields a 
discretized form being solved numerically on a staggered grid system. The governing equations 
are discretized using the first-order upwind scheme to achieve the best accuracy. In this paper 
the SIMPLE algorithm is employed. The algorithm is started with the solution of the discretized 
momentum equations according to the associated boundary and initial conditions. A pressure 
correction equation, derived from the integration of the two continuity equations summing 
(dispersed and continuous phases), are then solved and the solution is used to update the 
guessed pressure and velocity fields. The other discretized transport equations are then solved. 
The volume fractions are obtained from solution of one of the continuity equations (dispersed 
phase) (1). The important question is how to ensure boundedness of α, i.e. 0 1   for k =c or 
d. Early studies of this issue are found in Carver [15]. Higher order methods are also possible, 
and in fact are desirable to improve the accuracy of the predicted volume fraction field and 
alleviate the problems introduced by the numerical diffusion associated with upwinding. The 
flow diagram is further iterated until the convergence is achieved in the order of 10-3 in 
velocities, 10-4 in pressure and of 10-4 in void fraction. The numerical accuracy of the solution is 
verified by carrying out an appropriate grid refinement study for the test case outlined in the 
next section. Here, meshes 42×520 and of 82×520 which yields almost identical results are 
used. 
 

4. Results 
 

The present developed code is verified through test cases. The upward bubbly flow through 
two different geometries; a vertical straight pipe and a vertical pipe with sudden enlargement. 
Comparisons with the available measurements against published numerical data will be represented 
in the following subsections.   

 
4.1. Bubbly flow in a vertical pipe 
 

The velocity profiles, void fraction and turbulence stresses for cases W1, W2 and W3 are 
presented in Figs. 2, 3 and 4, respectively. 
Fig. 2 (a) shows that the void fraction and liquid velocity radial profile are well predicted using 
the present developed code using the standard k-ε model as well as SST-k-ω model. The other 
computations of [11] using CFX and PHOENICS codes including the turbulence model of 
standard k-ε model are also included. Figures 2. (b and c) display the predicted off-diagonal 
(shear) Reynolds stress of liquid and turbulence scale. The comparisons include also the CFD 
results in Troshko and Hassan [11]. The Reynolds shear-stress profile indicates that turbulence 
dominates the central half of the pipe, while bubble pseudoturbulence dominates the wall 
region, causing a peak in the shears stresses coinciding with the location of the void fraction 
maximum. However, the quality of the present computations for such case (W1) with low gas 
flux is not good in view of the other computations. As shown in Fig. 2 (c) the predicted 
turbulence intensity is in a qualitative agreement with experiments. Experiments W2 and W3 
(see Table 3) are also used at higher gas flux conditions to verify the computation. The small 
deviations are due to the assumed inflow turbulence kinetic energy, dissipation rate and 
frequency which are not available in the experiment. Figures 3 and 4 display the results of 
comparison with other computations given by Troshko and Hassan [11]. The predicted void 
fraction and liquid velocity profiles agreed well with experimental data for both W2 and W3 
cases as shown in Figs. 3. (a) and 4(a) respectively. 
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(a) 

(b) 
 

(c) 

Figure 2 (a) Void fraction and liquid velocity, (b) Reynolds shear-stress, (c) r.m.s. liquid 
velocity, comparisons with case W1. 

 
In fact, the present computations overestimate the stress magnitude in bubble-dominated 

regions for W3 case, while a reasonable agreement with experiments in case W2. As shown in 
Fig. 3(c) the predicted turbulence intensity is in a reasonable agreement with experiments. 
However, the numerical results drawn for the present turbulence models over predict the 
turbulence intensity for W3 as shown in Fig.4(c). 
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(a) 

 
(b) 

 
(c) 

Figure 3 (a) Void fraction and liquid velocity, (b) Reynolds shear-stress, (c) r.m.s. 
liquid velocity, comparisons with case W2. 
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(a) 

 
(b) 

 
(c) 

Figure 4 (a)Void fraction and liquid velocity, (b)Reynolds shear-stress, (c) r.m.s. liquid 
velocity, comparisons with case W3. 

 
4.2. Sudden Enlargement in a Circular Pipe 
 

The streamfunction for the two phase mixture M is normalized by the total (liquid plus 
gas) inlet flow rate and is arbitrarily set to zero at the symmetry axis. The representation of the 
streamlines is then plotted in Fig.5 (a), in which the recirculation zone in the corner is clearly 
visible.  

The turbulent viscosity t is shown in Figs. 5(b). It is noticeable that most of the turbulent 
diffusion is produced far away from the enlargement. This is due to bubble-induced turbulence, 
which is represented by the additional two-phase source terms in the turbulence models 
equations. 
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 (a)Mixture streamlines (b)Turbulent viscosity (c)Gas phase fraction (d)Vorticity   

Figure 5 Prediction for the sudden expansion flow: 
(a) mixture streamlines, (b) turbulent viscosity contours, (c) void fraction contours and  
(d) vorticity contours. 
 

In Fig. 5(c), the distribution of the gas phase fraction is pictured. As shown, the gas phase 
fraction is high close to the wall of the small pipe section and diffuses slowly further 
downstream. The accumulation of bubbles at the wall is characteristic for certain vertical pipe 
flows and is often referred to as a "wall peak" distribution. Its prediction remains a difficult task 
because of the coupled effects of shear, wake phenomena and deformation on the lift force as 
well as the turbulence of the liquid phase. In the region just behind the enlargement the gas 
phase fraction is very small, since the recirculation is not strong enough to drag bubbles back 
towards the enlargement and in this way to support an accumulation of bubbles in this region. 
This shows the effectiveness of using the phase-intensive momentum equations instead of 
standard ones for cases where one of the phases is not present locally. The distribution of 
vorticity contour is presented in Fig.5 (d). The shear layer in the separation zone and the 
elongation in the downstream of the step is also shown. 

Profiles of the axial liquid velocity at five cross-sections: x=7, 13, 18, 25 and 32 cm 
downstream of the step wall of the sudden enlargement are shown in Fig.6. For the dilute tC - 
model (Isaa and Oliveira [16]), the velocity difference generated by the enlargement is quickly 
diffused further downstream at x=25 cm, in which the predicted profile is almost uniform over 
the pipe radius. These results are not in agreement with the experimental data, but generally 
predictions using the experiential correction tC  – formulation by Behzadi et al. [14] improve 
the results. Here, the agreement between the calculation and the experimental data is good. In 
Figure 7, the results of the gas phase fraction field are shown. The peak at the first measuring 
location (x=7 cm) originates from an accumulation of bubbles at the wall of the small pipe 
section. The dilute Ct-formulation overpredicts the accumulation of bubble shortly behind the 
recirculation zone at x=7 cm. Although the profile at x=32 cm is predicted correctly by the 
dilute model of Isaa and Oliveira [16], the experimental data upstream shows a slower 
replenishment (renewal) on the centerline. In fact, the calculated centerline phase fraction 
diminishes between x=7 and 18 cm before it recovers rapidly between x=18 and 25 cm. With 
the Behzadi model [14], the phase fraction profiles are better predicted at stations close to the 
inlet, but discrepancies with the experimental data increase towards the outlet of the pipe. 
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Figure 6 Continuous phase velocity profiles obtained from Issa and Behzadi model compared with 
experiment. 
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Figure. 7 Phase fraction profiles obtained from Issa and Behzadi model compared with 
experiment. 
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Figure. 8 Turbulence kinetic energy profiles obtained from Issa and Behzadi models 
compared with experiment. 

 
Turbulent kinetic energy profiles are shown in Fig. 8. A significant improvement is obtained 

with the Behzadi model throughout the flow, which predicts a lower level of turbulent kinetic 
energy compared the overprediction of the dilute model (Isaa and Oliveira [16]).  
However, Isaa model gives improvements in some different sections. The overall reduction of 
the kinetic energy is expected for rang of α values in this test case because tC is close to unity 
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thereby diminishing the two-phase turbulence production term in source term in turbulence 
model equation. 
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Figure. 9. Continuous phase velocity profiles obtained from Issa and Behzadi models 
compared with experiment. 
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In Figure 9, the results for the axial velocity field are shown by using different turbulence models with 
Behzadi and Issa modelling of tC . 
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Figure. 10. Continuous phase velocity profiles obtained from Issa and Behzadi models 
compared with experiment. 
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These results are better predicted at station close to the inlet but the discrepancies with the 
experimental data increase in the streamline direction, but it is found that SST model with Issa 
model of tC  is better compared with other turbulence models at all stations. 
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Figure. 11. Continuous phase velocity profiles obtained from Issa and Behzadi models 
compared with experiment. 
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The results for the phase fraction field are shown in Fig. 10 by using different turbulence 
model with Behzadi and Issa models of tC . It is clear that SST model with Issa model of tC  is 
better compared with the other turbulence models at all station. Figure 11 shows the results for 
the turbulent kinetic energy by using different turbulence models with Behzadi and Issa 
modelling of tC . Generally, SST model still plays an important role in simulating bubbly flow 
in view of the turbulence kinetic energy predictions. However, it is essential to highlight the 
limitations of the current turbulence model. 

These limitations include the non-uniform distributions of the bubble sizes in the 
measurements. Also, the strong interaction between bubbles and sometimes slugs can be 
generated in the experiments and such phenomenon can not explicitly be predicted or 
considered in the turbulence models. 

 
5. Conclusions  
 

An Eulerian–Eulerian two fluid model for the prediction of dispersed two–phase (gas/liquid) 
flow at high volume fractions of the dispersed phase has been presented. A different turbulence 
models have then been implemented in a CFD code developed and tested for bubbly flow through a 
pipe and a pipe sudden expansion. Results for the continuous phase velocity, the phase fraction and 
turbulent kinetic energy using Isaa tC  model and Behzadi tC  model have been presented. The 
results showed some improvement in the Behzadi tC  model over the Isaa tC model but not at all 
computational domain because of the absence of the inflow turbulence specifications. It is 
concluded however, that the turbulence models need more improvements to account more accuracy 
for bubble induced turbulence. The improvements can consider detailed bubble interactions during 
bubble collapse and coalescence. Also, there are some limitations of using Eulerain-Eulerain two-
fluid model for predicting gas phase should be considered.   
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