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Abstract 

 
Time-dependent numerical simulations for incompressible flow in a four-sided lid driven 
cavity are reported in the present study. The flow is generated by moving the upper wall to 
the right and the lower wall to the left, while moving the left wall downwards and the right 
wall upwards. Numerical simulations are performed by solving the unsteady two-
dimensional Navier-Stokes equations in stream function-vorticity form. A compact fourth-
order accurate central difference scheme is used for spatial discretization, while the second-
order accurate Crank-Nicolson scheme is used for discretization of the time dependent 
terms. Numerical test cases show that the cavity flow remains steady up till a critical 
Reynolds number of 735. At this critical value, the flow undergoes a supercritical Hopf 
bifurcation, giving rise to a perfectly periodic state. Flow periodicity is verified through 
time history plots for the stream function and vorticity, Fourier power spectrum plots and 
phase-space trajectories. Reported streamline plots, at different time instants, clearly 
demonstrate the change in flow pattern during a single period and the merging and 
unmerging of the different vortices. Moreover, phase-space trajectories show the transition 
from a fixed point attractor and a steady flow regime to a limit cycle attractor and a periodic 
flow regime.  
 
Keywords: driven cavity flow; bifurcation; stream function-vorticity; limit cycle; periodic 
flow.   

 
 

1.  Introduction 
 

 Lid-driven cavity flows continue to be a main topic of research in the fields of fluid 
mechanics and heat transfer. Although the flow geometry is comprised simply of a square, the flow 
dynamics inside this square are by no means simple. In fact, the driven cavity problem offers an 
ideal platform for the study of complex fluid flow phenomena such as vortex dynamics [1], 
hydrodynamic stability [2], bifurcation phenomena [3] and laminar-to-turbulent flow transition [4]. 
Driven cavity flow is also relevant to a number of engineering applications such as coating and 
drying technologies [5-7]. A detailed review of fluid dynamics in the driven cavity is given by 
Shankar and Deshpande [8]. 
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 Numerical simulations of steady flows in one-sided lid driven cavities were reported by 
numerous authors [9-12]. Accurate numerical solutions for the benchmark case of Re=1000 are 
frequently used for assessment and validation of numerical methods in the field of computational 
fluid dynamics. The hydrodynamic stability of the two-dimensional steady flow was also 
investigated in a group of studies [2, 13, 14, 15]. Beyond a critical Reynolds number, the one-sided 
lid driven cavity flow undergoes a supercritical Hopf bifurcation and the steady state is shown to be 
no longer stable. Moreover, the transition process to a chaotic flow state was numerically 
investigated in [4]. 

 Recently, several studies examined the flow dynamics inside a square cavity driven by all 
four walls [3, 16]. In the four-sided driven cavity, the upper wall is moved to the right, the lower 
wall to the left, while the left wall is moved downwards and the right wall upwards, with all four 
walls moving with equal speeds. In such a configuration, it is shown that for low Reynolds 
numbers, the flow consists of four equally sized vortices, with the whole flow field being symmetric 
with respect to both cavity diagonals. As the Reynolds number exceeds a critical value of 129, the 
flow undergoes a supercritical pitchfork bifurcation and the symmetric solution is no longer stable. 
Instead, two stable asymmetric flow states are possible, with the initial perturbations in the flow 
determining which asymmetric state would be physically realized. Such an interesting flow 
behavior is not uncommon in fluid mechanics, with the Coanda effect and the preferential 
attachment of a confined jet to either one of the two confining walls, coming immediately to mind 
[17]. Numerical simulations performed for four-sided lid driven cavity flows covered the Reynolds 
number range up till a maximum value of 300 [3]. Heat transfer inside differentially heated four-
sided lid driven cavities was also investigated in [18]. 

 In the present study, numerical simulations for four sided lid driven cavity flows are 
extended to higher Reynolds numbers. An unsteady flow solver is used to examine the 
hydrodynamic stability of the flow. Hence, the study proceeds as follows. The details of the 
numerical procedure and the spatial and temporal discretizations are stated first. Validation of the 
present numerical procedure against available data in the literature for four-sided lid driven cavity 
flow at Re=300 follows. Once the numerical procedure is validated, numerical simulations for 
higher Reynolds numbers are performed up till a maximum value of 1000. The hydrodynamic 
stability of the flow will be examined through time history plots for the vorticity and stream 
function, phase-space trajectories and Fourier power spectrum plots.  
 
2.  Governing Equations and Numerical Methods 

 
 Consider a generic convection-diffusion equation with variable coefficients, of the form 
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 The discretized value of the function U at a generic grid point is denoted by Uo. The 
discretized value at its eight neighboring points are denoted by Ui, i=1,2,…8. Hence, the compact 
nine-point computational stencil is represented as follows 
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 Similarly, the discretized values for the functions p, q and f are given as pi, qi and fi 
i=0,1,…4. Following [19] and for a uniform grid with spacing Δx = Δy = h, the compact fourth-
order central difference scheme for the generic convection-diffusion equation (1) is given as 
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where the coefficients αi are evaluated from the following expressions 
( ) ( ) ( )[ ]4231

2
0

2
0

2
0 qqhpphqph20 −+−+++−=α  

[ ] ( ) ( )[ ]420310
2
0

2

423101 ppqpppp4
8

hpppp3p4
4
h4 −+−++++−++=α  

[ ] ( ) ( )[ ]420310
2
0

2

314202 qqqqqpq4
8

hqqqq3q4
4
h4 −+−++++−++=α  

[ ] ( ) ( )[ ]420310
2
0

2

423103 ppqpppp4
8

hppp3pp4
4
h4 −−−−++++−−=α  

[ ] ( ) ( )[ ]420310
2
0

2

314204 qqqqqpq4
8

hqqq3qq4
4
h4 −−−−++++−−=α  

( ) ( ) 00

2

4231005 qp
4

hppqq
8
hqp

2
h1 +−+−+++=α  

( ) ( ) 00

2

4231006 qp
4

hppqq
8
hqp

2
h1 −−+−−−−=α  

( ) ( ) 00

2

4231007 qp
4

hppqq
8
hqp

2
h1 +−+−++−=α  

( ) ( ) 00

2

4231008 qp
4

hppqq
8
hqp

2
h1 −−+−−−+=α  

 Incompressible flow in a lid driven cavity is governed by the Navier–Stokes equations. This 
set of nonlinear equations can be re-written in terms of a non-dimensional stream function-vorticity 
formulation as follows 
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 The compact fourth-order discretization (2) of the generic convection-diffusion equation (1) 
can be readily applied to discretize the spatial terms in the stream function equation (3) and the 
vorticity transport equation (4). Strictly speaking, the fourth-order discretization for the stream 
function equation is given by equation (2) with U=ψ, p=0, q=0 and f=-ω.  Such a discretization 
would result in the Mehrstellen formula [20] 
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 On the other hand, the fourth-order discretization of the spatial terms in the vorticity 
transport equation is again given by equation (2) with U=ω, p= -uRe, q=-vRe and f=0. The 
temporal term is discretized using an implicit second-order accurate Crank Nicolson scheme as 
follows 
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where R(ω) represents the compact fourth order discretization operator (2) applied to the spatial 
terms of the vorticity transport equation (4). A dual time-stepping procedure [21] is adopted where 
pseudo time subiterations, coupled with a line successive over-relaxation (LSOR) scheme, are used 
to solve the implicit set of equations at each physical time step. 
 A fourth-order discretization of equation (5) gives the following expressions for the velocity 
components, u and v, in terms of the stream function and vorticity [20] 
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  The flow in the driven cavity is impulsively started with initial conditions of zero for the 
stream function, vorticity and velocity components u and v. To apply the no-slip boundary condition 
at the walls, a zero value for the stream function is enforced, while Thom’s formula [22] is used as 
the boundary condition for vorticity. 

 
3. Validation of Numerical Procedure 
 

The present numerical procedure is first validated against the classical problem of a single-
sided lid driven cavity. The flow domain consists of a square cavity with the upper lid being moved 
at a constant velocity to the left. Results for this classical flow problem are readily available in the 
literature for a wide range of Reynolds numbers. At Re=5000, a steady flow state prevails which 
consists of a primary vortex, two secondary vortices located in the bottom corners and a third 
secondary vortex in the upper right corner. Streamlines for the single-sided lid driven cavity flow at 
Re=5000, using the present numerical procedure, are given in fig (1). Moreover, table (1) provides 
quantitative comparisons between the present results and other results available in the literature [11, 
23-25] in terms of the location of the primary vortex and the corresponding value of the stream 
function at the center of this vortex. The comparison shows good agreement between the present 
results and reported data in the literature. 

The four-sided lid driven cavity is considered next. The geometry of the four-sided lid driven 
cavity problem is described in fig (2). The upper wall is moved to the right, the lower wall to the 
left, while the left wall is moved downwards and the right wall upwards, with all four walls moving 
with equal speeds. For low Reynolds number flows, four distinct vortices are formed; an upper 
vortex, a lower vortex, a right vortex and a left vortex. The resulting flow field is symmetric about 
both cavity diagonals [3]. 

As the Reynolds number is increased, symmetry with respect to the cavity diagonals is lost 
and the flow undergoes a supercritical pitchfork bifurcation. Two stable asymmetric flow states 
exist above the critical Reynolds number value of 129. In the first state, the upper and lower 
vortices merge to form a single primary vortex at the expense of the left and right vortices. In the 
second state, the primary vortex is formed through the merging of the left and right vortices [3].  

For validating the numerical procedure, the Re=300 case is simulated in the present study on 
three different grids, 101x101, 141x141 and 197x197 and compared with reported results in [3]. 
Comparisons between the second-order accurate values for ΨGC from [3] and present fourth-order 
accurate values are given in table (2) for Re=300. Higher-order approximations are obtained using 
Richardson extrapolation [12]. In fact, using the present fourth-order accurate solutions on three 
different grids and repeated Richardson extrapolations, one could provide numerical results that are, 
in theory, eighth order accurate. Such extrapolated values are reported in table (2) for the Re=300 
case. 
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Figure 1. Streamlines for single-sided lid driven cavity flow (Re=5000) 

 
TABLE1: PRIMARY VORTEX PROPERTIES FOR SINGLE-SIDED LID DRIVEN CAVITY FLOW 

(RE=5000) 
 Reference Grid ψ x y 
Present 197 x 197 0.1202 0.48469 0.53571 
Ghia et al [11] 256 x 256 0.118966 0.4883 0.5352 
Bruneau & Saad [23] 256 x 256 0.12064 0.48438 0.53516 
Bruneau & Saad [23] 2048 x 2048 0.12197 0.48535 0.53516 
Goodrich [24] 256 x 256 0.118 0.48438 0.53516 
Pan & Glowinski [25] 256 x 256 0.121218 0.4844 0.5352 

 

 
Figure 2. Geometry of the four-sided lid driven cavity problem 
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TABLE2: ΨGC VALUES FOR FOUR-SIDED LID DRIVEN CAVITY FLOW (RE=300) 
Study Grid Order of accuracy Value of ΨGC 
Wahba [3] 100x100 Δh2 ΨGC = -0.1106 
Wahba [3] 150x150 Δh2 ΨGC = -0.1121 
Wahba [3] 200x200 Δh2 ΨGC = -0.1127 
Present 101x101 Δh4 ΨGC = -0.11326 
Present 141x141 Δh4 ΨGC = -0.11334 
Present 197x197 Δh4 ΨGC = -0.11336 
Present Extrapolated Δh8 ΨGC = -0.11337 

 
4.  Steady flow regime 
 

 Previous work on four-sided lid driven cavity flow considered Reynolds number values up 
till 300. In the present study, the time-dependent numerical procedure, discussed in section II, is 
used to extend the four-sided lid driven cavity flow to higher Reynolds numbers. Specifically, 
numerical simulations are performed for two different Reynolds numbers; 710 and 740. A 141x141 
grid is used in both simulations. Results of the simulations are given in figs (3) and (4) for Re=710 
and Re=740 respectively. Time histories for the stream function and vorticity at the cavity center 
show the Re=710 case converging to a steady state. On the other hand, the corresponding plots for 
Re=740 indicate a periodic flow behavior. 

 Moreover in fig (5), phase space-trajectories clearly show the transition from a fixed point 
attractor and a steady flow regime in the Re=710 case to a limit cycle attractor and a periodic flow 
regime in the Re=740 case. Fourier power spectrum plot for Re=740 reveals a fundamental 
frequency value of 0.09, as shown in fig (6). 

 The above numerical test cases show that the flow inside the cavity remains steady up till a 
critical Reynolds number, Recr. At this critical value, the flow undergoes a supercritical Hopf 
bifurcation which gives rise to a perfectly periodic state. In order to determine the value of Recr, 
steady and periodic flows on either side of the bifurcation point are computed yielding an ever-
decreasing range of Reynolds numbers in which the bifurcation must occur. Two different grids are 
used for the evaluation of Recr; 101x101 and 141x141. Numerical simulations using the 101x101 
grid predict Recr=715±4, while simulations using the 141x141 grid predict Recr=735±4. 

 

 
Figure 3. Time histories for stream function and vorticity at the cavity center (Re=710) 
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Figure 4. Time histories for stream function and vorticity at the cavity center (Re=740) 

 

 
Figure 5. Phase-space trajectory (Re=710 & Re=740) 

 

 
Figure 6. Fourier power spectrum for Re=740 
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5. Periodic flow regime 
 

Numerical results for Re=1000 are given in fig (7) in terms of time histories of stream function 
and vorticity at the cavity center, Fourier power spectrum plots and phase-space trajectories. The 
figures verify the periodic nature of the flow with a fundamental frequency of 0.142. The phase-
space trajectory is shown to no longer converge to a fixed point attractor, but rather to a limit cycle 
attractor, indicating a periodic flow state. 

Moreover, for Re=1000, streamline plots at different time instants during a single period are 
reported in fig (8). The plots show the drastic temporal changes in the flow patterns and the merging 
and unmerging of the different vortices. At the beginning of the period (t=0.0T), the upper and 
lower vortices are merged together into a single primary vortex, at the expense of the right and left 
vortices.  As time advances (t=0.125T, 0.25T), the left and right vortices grow in size while the 
primary vortex shrinks. At (t=0.375T), the primary vortex splits back into two upper and lower 
vortices, with the left and right vortices now merging to form the new primary vortex. As time 
again advances (t=0.5T, 0.625T and 0.75T), the size of the primary vortex increases till it reaches a 
maximum then decreases. At time (t=0.875T), the primary vortex splits back into two right and left 
vortices, with the upper and lower vortices merging to form a new primary vortex. The size of this 
primary vortex starts to grow with time such that at (t=T), it reaches the exact size it had at (t=0.0T) 
and a single cycle is completed. 

To further assess grid independence of the time-dependent results, the phase-space trajectory for 
Re=1000 is given in fig (9) using two different grids; 101x101 and 141x141. Fig (9) reveals good 
agreement between the limit cycle attractors predicted by both grids. Moreover, the fundamental 
frequency for the periodic flow predicted by both grids match very closely, with the 101x101 grid 
giving a frequency of 0.141 as compared to a frequency of 0.142 on the 141x141 grid.    

 
Figure 7. Time histories, phase-space and power spectrum plots for Re=1000 

 
6. Concluding Remarks 
 

Four-sided lid driven cavity flows are shown to undergo a supercritical Hopf bifurcation at a 
critical Renolds number of 735±4. Below this critical value, the flow inside the cavity is steady with 
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a fixed point attractor. Above this critical value, the flow becomes periodic with a limit cycle 
attractor. Grid independence is verified through numerical simulations on three different grids for 
the steady flow regime, and two different grids for the periodic flow regime. Using simulations on 
three grids in the steady flow regime and repeated Richardson extrapolations, numerical results of 
eighth order accuracy are presented for the Re=300 case. On the other hand, for Reynolds numbers 
larger than Recr, periodicity of the flow is verified through time history plots, phase space-
trajectories and power spectrum plots. The periodic flow regime is realized up till a Reynolds 
number of 1000, which is the maximum Reynolds number value considered in the present study.  

 
Figure 8. Time evolution of the streamlines during one complete cycle for Re=1000 

 

 
Figure 9. Phase-space trajectory computed on two different grids for Re=1000 
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Nomenclature 
L: Length of square cavity side 
t: Time 
u: Horizontal component of velocity 
v: Vertical component of velocity 
V: Velocity of the driven cavity side 
x: Horizontal location 
y: Vertical location 
ν: Kinematic viscosity 
ψ: Stream function 
ψGC: Stream function at the geometric center of the square cavity 
ω: Vorticity 
ωGC: Vorticity at the geometric center of the square cavity 
Re: Reynolds number = VL/ν 
Recr: Critical Reynolds number for Hopf bifurcation 
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