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Abstract

The present work is concerned with the time accurate numerical solution of Euler equations 
coupled with the level set method to deal with the topological changes of the interface in 
compressible gas-gas flows due to an incident shock. The simulation is conducted by 
solving the unsteady compressible Euler equations along with the equation of state for an 
ideal gas. The scheme is implemented in conjunction with an implicit-unfactored method 
which is based on Newton-type sub-iterations and Gauss–Seidel relaxation and matrix 
preconditioning. The high-order flux reconstruction is an averaging procedure in which the 
flow variables and, subsequently the fluxes, are calculated at the cell faces by hybrid 
scheme. It is a combination of Riemann method and the modified Steger and Warming Flux 
Vector Splitting (FVS) method. The characteristics values at the cell faces are performed by
a modified MUSCL scheme. The performance of the solver has been assessed through a 
series of numerical experiments of interaction of weak shock wave with cylindrical, 
sinusoidal and inclined interfaces separating two different gases. The present results, 
including numerical image, evolution of the interface, and growth rate behaviour, are seen 
to be in agreement with the available previous numerical and experimental data. 

Keywords: Shock-interface interaction; Shock-bubble interaction; Level-set method; Gas-
gas interface; Two- dimensional flow; Euler equations; Unsteady compressible flow.  

1. Introduction

The problem of shock-interface interaction has received extensive attention over the last 
decades due its practical importance in compressible hydrodynamics. Common examples are the 
gas-bubble interaction problems (e.g. collapse of cavitation bubbles by incident shock) and   shock–
boundary layer interaction. The encountered flow phenomena in such cases can be seen in several 
practical flow problems, spanning from aerospace to medical engineering. Such multi-medium fluid 
flows give rise to challenging problems in both theory and numerical simulation.

Studies of shock-contact interactions are motivated by a desire to understand turbulent 
mixing in supersonic combustion ramjets whereby air and fuel can be mixed efficiently in the short 
transit times available, in inertial confinement fusion where mixing inhibits fusion, and in 
astrophysical phenomenon such as supernovae.
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Although the numerical simulations of shock wave phenomena are now fairly 
commonplace, however, they are mostly restricted to single component flows. Unfortunately, multi-
component extensions of successful single component schemes often suffer from spurious 
oscillations which are generated at material interfaces. 

Several numerical methods have been applied extensively for the modeling of multi-
component compressible flows. The methods that allow for the computation of the dynamics of the
shock waves-moving interfaces interaction have received a great attention. These methods can be 
classified into either shock-capturing methods or front-tracking methods. Although both categories 
have been considerably improved, however, always yield a numerical diffusion and slight parasitic 
oscillations of moving interfaces, see for more details Cocchi and Saurel [1].

Eulerian schemes work well for most gas-gas interface problems and can efficiently handle 
large deformations of fluid interfaces. However, they can admit non-physical oscillations near fluid 
interfaces due to the smeared out density profile and the radical change in equation of state across 
fluid interfaces. Lagrangian schemes also work well on material interfaces, since they do not smear 
out the density profile and it is clear which equation of state is valid at each point. Unfortunately, 
Lagrangian schemes have their own problems when subjected to large deformations. Most 
numerical methods for interfacial flows are based on Eulerian schemes with embedded Lagrangian 
techniques.

The refraction of shock at a material interface has been previously studied both 
experimentally and numerically. Henderson et al. [2] have provided insight into the complex 
problem of anomalous refraction. Emphasis has been placed on the pattern of reflected and 
refracted waves, including precursors. However, the evolution of the interface itself is of 
considerable interest in problems ranging from inertial confinement fusion to astrophysics (Klein 
and Colella [3]) and has generated a flurry of activity that encompasses the subject of compressible 
turbulence. The basis for the study of the evolution of a shocked interface stems from the question 
of the Rayleigh-Taylor (RT) instability (Taylor [4]). The stability of an interface submitted to 
gravitational forces was investigated for the case in which the density of one of the materials across 
the interface was negligible compared to the other. Taylor [4] analyzed the case in which the 
Atwood number (ratio of the difference of the densities to their sum) is less than 1, and the 
acceleration of the system is constant. The interface was found to be unstable to small perturbations 
only if the direction of the acceleration normal to the interface coincides with that of the density 
gradient.

Richtmyer [5] extended Taylor's analysis to the case of an impulsive acceleration. His 
results implied that the interface would be unstable irrespective of the relative orientation of the 
velocity impulse and the density gradient. His predictions were verified experimentally by Meshkov 
[6], and the Richtmyer-Meshkov (RM) instability became a subject of research in its own right. 
Experimental, analytical and numerical studies performed by Rupert [7] clearly addressed this 
problem. 

It was shown by Jenny et al. [8] and Karni [9, 10] that upwind conservative methods admit 
nonphysical oscillations near material interfaces. In Ref. [8], a conservative discretization of the 
calorically perfect Euler equations was shown to admit nonphysical oscillations when there is a 
jump in both temperature and specific heat ratio across an interface. They proposed non-
conservative modifications of the conservative numerical method in regions where difficulties may 
occur. However, these modifications give rise to conservation errors in the total energy of the 
system, and thus yield a locally non-conservative formulation. In general, non-conservative 
formulations give the wrong shock speeds, although errors in shock speeds can be reduced 
significantly if the special viscosity term is added [11].

The approach introduced by Karni [10, 11] is to solve the Euler equations separately on each 
side of the interface using a method designed for a single-component flow, while the interface is 
dealt within a different manner using an evolution equation derived from the energy equation. 
Despite the fact that the method is not exactly conservative at the interface, reasonable results were 
obtained using this approach in conjunction with either standard level-set or mass-fraction 
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formulation of ideal gases, see [12]. Qamar and Warnecke [13] simulated multi-component flows 
using high order central schemes. They introduced numerical methods for the conservative 
extension of the classical Euler equations to multi-component flows. High-resolution central 
schemes were used to solve these equations. The equilibrium states for each component were 
coupled in space and time to have a common temperature and velocity. Usually conservative Euler 
solvers for the gas mixtures produce nonphysical oscillations near contact discontinuities, if the 
temperature and the ratio of specific heats both are not constant there. However, Qamar and 
Warnecke [13] considered in the schemes that the oscillations near the interfaces are negligible. The 
schemes also guaranteed the exact mass conservation for each component and the exact 
conservation of total momentum and energy in the whole particle system. The central schemes were 
robust, reliable, compact and easy to implement. Several one- and two-dimensional numerical test 
cases, such as shock helium bubble and shock R22 bubble interactions, were included in the paper 
of Qamar and Warnecke [13], which validated the application of these schemes to multi-component 
flows. However, Qamar and Warnecke [13] found through their numerical experiments that 
pressure and velocity fluctuations near gas interfaces are very small and do not seem to interfere 
with the physics of the simulation. The reason of these small fluctuations is the presence of 
sufficient implicit numerical dissipation in the central schemes which allows smooth shocks 
transition. For more detail regarding numerical dissipation and numerical shock instability, see Xu 
[14].

Quirk and Karni [15] presented a detailed numerical study of the interaction of a weak shock 
wave with an isolated cylindrical gas inhomogeneity. Such interactions have been studied 
experimentally in an attempt to elucidate the mechanisms whereby shock waves propagating 
through random media enhance mixing. The study concentrated on the early phases of the 
interaction process which are dominated by repeated refractions and reflections of acoustic fronts at 
the bubble interface. Specifically, Quirk and Karni [15] have reproduced two of the experiments 
performed by Haas and Sturtevant [16]: at Mach=1.2 a planar shock wave moving through air, 
impinging on a cylindrical bubble which contains either helium or Refrigerant 22. These flows are 
modeled using the two-dimensional compressible Euler equations for a two component fluid (air-
helium or air-Refrigerant). In order to avoid the spurious oscillations generated at material 
interfaces, Quirk and Karni [15] have employed a novel non-conservative shock-capturing scheme. 
In addition, they have utilized a sophisticated adaptive mesh refinement algorithm which enables 
extremely high resolution simulations to be performed relatively cheaply. Thus Quirk and Karni 
[15] have been able to reproduce numerically all the intricate mechanisms that were observed 
experimentally (e.g. transition from regular to irregular refraction-cusp formation and shock wave 
focusing, multi shock and Mach shock structures, jet formation etc.). Moreover, Quirk and Karni 
[15] could present an updated description for the dynamics of a shock-bubble interaction.

Both Picone and Boris [17] and Yang et al. [18] have performed computations aimed at 
determining the long-time evolution of the bubble inhomogeneities, while Loehner et al. [19] have 
investigated the early-time dynamics of the interaction process. All these numerical studies were 
performed according to the experimental data of Haas and Sturtevant's experiments [16]. However, 
in these studies the flow was modeled using a single gas rather than the exact binary system used by 
the experiment. This simplification, whilst expedient, inevitably reduced the accuracy of the results. 
Note that since some desired density jump must be imposed across the bubble interface with a 
single gas component model the bubble cannot be in thermal equilibrium with its surroundings as 
was the case with the experiments. 

In a more recent study, Large-eddy simulation of multi-component compressible turbulent 
flows using high resolution methods was performed by Thornber et al. [20]. They examined the 
ability of a finite volume Godunov and a semi-Lagrangian large-eddy simulation (LES) method to 
predict shock induced turbulent mixing through different simulations. Thornber et al. [20] 
concluded that very good agreement was gained in qualitative comparisons with experimental 
results for combined Richtmyer–Meshkov and Kelvin–Helmholtz instabilities in compressible 
turbulent multi-component flows. It was also shown that both numerical methods can capture the 



On the Dynamics of Shock-Interface Interaction using the Level Set Method

179

size, location and temporal growth of the main flow features. In comparing the methods, there was 
variability in the amount of resolved turbulent kinetic energy. The semi-Lagrangian method had 
constant dissipation at low Mach number, thus allowing the initially small perturbations to develop 
into Kelvin–Helmholtz instabilities. These were suppressed at the low Mach stage in the Godunov 
method. However, Thornber et al. [20] found that there was an excellent agreement in the final 
amount of fluid mixing when comparing both numerical methods at different grid resolutions. 
However, LES requires a huge storage memory and supercomputers and of course very expensive 
to be used, see El-Askary [21].   

Recently, a level set formulation for tracking moving interfaces in compressible gas 
dynamics has been introduced, Mulder et al. [22]. This algorithm can handle the complex 
topological changes such as merging and breaking of interfaces with no special treatment. In the 
level set methods the interface is represented as the zero level set of a smooth function G defined on 
the entire physical domain and satisfying a transport equation. It presents several advantages: there 
is no need to reconstruct the interface or to re-grid the neighbourhood of the discontinuity. 
Moreover, it can be easily generalized to three dimensions.

The main application of level set method is to track evolving topological changes of 
interface separating different fluids. This is done by viewing the interfacial boundary as an 
interface, and then using the method to keep track of the boundary. Mulder et al. [22] early 
attempted to couple level set methods to the problem of fluids with compressible fluid flows. Euler 
equations with the equation of state for an ideal gas were used. A sharp interface was assumed, 
which separated gases with two different adiabatic exponents, and the Euler equations were 
amended to include a level set equation written in conservation form. Karni [23] showed that this 
algorithm produces unphysical oscillations. She attributed such oscillations to the discretization 
applied in the conservation form that failed to give the correct jump conditions at the interface 
between the two gases. In the case of the compressible Euler equation, the pressure should be 
continuous at the interface; however, any discrete conservative formulation will disrupt this jump 
condition and cause oscillations [24]. To eliminate these oscillations, Karni [23] did not consider 
the conservative form of the finite-difference scheme at the interface between the two gases. The 
conservation form was maintained elsewhere, thus ensuring that shock waves will be computed 
correctly. Quirk and Karni [15] used this solver to compute the interaction of a shock wave in air 
with a helium bubble.

More recently, an adaptive ghost fluid finite volume numerical method has been developed 
by Wang et al. [25] and applied for compressible gas-water flow problems.  This method could 
predict several gas-water flow problems involving large gradient density at the interface and strong 
shock-interface interaction. This work showed that the local mesh clustering in the vicinity of the 
interface can effectively reduce both numerical and conservative errors caused by the standard 
ghost fluid method. Although good results have been obtained by this method for one- and two-
dimensional multi-medium flows, however, it is expected that such numerical methods are 
extremely computationally demanding for three-dimensional flow problems. 

Given this background, the purpose of the present study is to explore the extent to which a 
modern computational method could complement the experiments of Haas and Sturtevant [16] and 
the numerical study performed by Quirk and Karni [15] in elucidating the basic mechanisms that 
govern the propagation of shocks through non-uniform gases. Additionally, it is thought that such a 
study could help bridge the gap between existing theories of shock reflection-refraction phenomena 
and experiment. For example, although Haas and Sturtevant [16] were able to use the theory of 
geometrical acoustics to gain a good understanding of their experimental observations, this theory 
ignores wave nonlinearities and so it fails to account for all flow features. The present 
computational study tries to avoid the above shortcomings, discussed in the literature. First, proper 
account is taken of the separate gas components; the flow is modeled by the compressible Euler 
equations for a two-component fluid (air-helium or air-Refrigerant 22 (R22) depending upon the 
experiment being simulated). Although this represents a small generalization over the single 
component case, most popular shock-capturing schemes do not perform satisfactorily for multi-
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component flows in that they produce spurious oscillations at material interfaces (e.g. Abgrall [26]). 
Since such numerical artifacts can have a significant effect upon the evolution of a material 
interface, they are to be avoided. Here we employ a somewhat novel technique to avoid this 
numerical difficulty. In essence, the scheme allows for a controlled conservation error so as to 
maintain the correct pressure equilibrium between different fluid components. While this relaxation 
of strict conservation runs against perceived wisdom in the design of numerical schemes for flows 
with shock waves (Lax [27, 28]), it does produce good results. Second, we overcome the 
shortcoming of poor resolution by utilizing a sophisticated adaptive mesh refinement scheme (Quirk 
[29]). This scheme can reduce by several hundred-fold the cost of performing detailed simulations 
and so it allows for simulations that would otherwise prove to be prohibitively expensive. The level 
set method is applied for tracking the sharp interface between the compressible gases. The initial 
data is smoothed by assigning modified area-weighted values to the appropriate cells to avoid the 
staircase configuration of the data. Moreover, after advection the sharp interface, a reinitialization 
of the level set function on the computational filed is applied. A further verification to the present 
scheme is introduced through the comparisons with the experiment of Benjamin et al. [30] and the 
numerical studies of Zhang and Sohn [31] and Weaver et al. [32]. The present study is extended to 
include a simulation of inclined interface separating air and He with the presence of an attacking 
shock wave.

2. Numerical details
2.1. Governing equations

The computational code used in the present study is based on the finite volume solver for the 
solution of the Euler equations for compressible flow. The two-dimensional Euler equations can 
be written in matrix form and curvilinear coordinates as: 
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with the contravarient velocities defined as:

zx wuU  ~
 ,  zx wuW  ~

                (3)

The conservative variable, Q, is given by: 

  TT JUe,v,u,JQ                      
(4)

where  is the density, u and v are the velocity components, and e is the total energy per unit 
volume. J stands for the Jacobian of the transformation from Cartesian ( zx, ) to curvilinear 
(  , ) coordinates. 
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The pressure, p, is calculated by the perfect gas equation of state,  ip 1  , where  is the 

ratio of specific heats (for air  air  1.4) and i is the specific internal energy.

The advective flux derivative 
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domain. The determination of the intercell flux function is the main aim of the numerical 
scheme.

2.2. Numerical scheme

One of the challenges in the numerical simulations is to eliminate the numerical dissipation 
which may be responsible for suppressing the flow-field details. Therefore, the investigation has 
been performed using high resolution hybrid scheme which was used in the past for the study of 
various compressible flows [33, 34, 35]. The hybrid scheme is a combination of Riemann 
method [36] and the modified Steger and Warming Flux Vector Splitting (FVS) method [37]. 
The Riemann method contains an approximate solution of the local Riemann problem at the cell 
faces, whereas the FVS scheme splits the flux terms into a left and a right part and discretises 
them according to the sign of the associated propagation speeds. Generally speaking, the FVS 
scheme is simpler in the formulation and more efficient in the implementation but it posses a 
higher numerical dissipation that prohibits sharp or accurate resolution of discontinuities and 
shear layers.   

According to the hybrid scheme, the inviscid flux, F, at the cell faces of the control volume 
(j+1/2) is given by [36, 38]:
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The fluxes FFVS and FRiemann are calculated by FVS method and the Riemann method, 
respectively. The FVS flux can be computed as: 
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where S  is the sound speed and .22
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where

zxo wu        (10)

The Riemann flux is given by:
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where, the left LU  and the right RU  states of the conservative variables are calculated via the 
MUSCL scheme.

The introduction of the FVS scheme is required in the case of supersonic Mach numbers 
where the Riemann solver does not provide sufficient numerical dissipation to capture strong 
shock waves. The limiter  is given by [38]:
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The coefficient a takes the value of 2 in supersonic flows, and M is the local Mach number. 
The flux limiter f  like that of van Albada [39] can be used to suppress oscillations near 
discontinuities and extrema by locally reducing the order of the reconstruction to first order:
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Where, 1 jjj UUU and jjj UUU  1 , and  is a small positive number  preventing 

division by zero.
To obtain higher-order accuracy the modified MUSCL-approach according to Thomas et al. 

[40] has been employed for calculating the conservative variables at the cell faces of the control 
volumes. In this approach a set of variables is extrapolated from both sides to the cell interface. 
With these values a common numerical flux is formulated. A conservative variable U  is 
interpolated at the cell face 2/1j  as follows:
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The limiter jg is a sensor function, modified form of the van Albada limiter, aiming at 

preventing spurious oscillations by reducing the accuracy of the scheme to first order in the 
vicinity of shock waves

 ,)1)(1(1 n
jjj fnfg         (23)

where 2n  is used for sharpening the limiter in the regions with strong discontinuities. 
Different interpolation schemes can be derived by using different values for the parameter k : 
fully upwind for ,1k and centred for  .1k

The time integration of the unsteady Euler equations has been obtained by the implicit-
unfactored method second-order in time [34, 35, 41]. However, the time integration method is 
clearly explained in [35] and it is not necessary to repeat it here again.

2.3. Level Set Method

The level set method is a means for computing of the interface motion between two different 
fluids. In the level set formulation, the interface Γ is the zero level set of a smooth function G
[42]:

  0 T,xG:x              
(24)

Consequently, it can simply be defined as the areas where G > 0 are occupied by air, 
whereas areas with G < 0 are occupied by gas: 
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The unit normal n on the interface and the curvature of the interface   can easily be 
expressed in terms of the function G:

nn 



 ,
G

G
                          (26)

The basic idea of the level set method is based on the advection of the interface with its local 
velocity vector, u, through the solution of the simple hyperbolic equation [42]:

0 G.Gt u            (27)
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In order to ensure that the level set function stays well-behaved, it must be maintained as a 
distance function for all time [42]. That can be achieved through the fulfilment of the Eikonal 
equation, i.e. 1G . The satisfying of the Eikonal equation in the computational domain is 

known as reinitialization of the level set. Many reinitialization algorithms have been recently 
proposed. The reinitialization algorithm proposed by Sussman et al. [43] is used in the present 
paper for its efficiency and simplicity. Many numerical techniques have been adopted to solve 
the level set transport equation (27), as described in Sethian [42]. The different developed 
schemes showed an important effect on the stability of the solution. Recently, Balabel et al. [44] 
have developed a numerical method with high effectiveness and accuracy in obtaining the 
physical solution of some standard level set cases. This numerical method is based on the two 
step Runge-Kutta method for approximating the temporal advection, and the central difference 
for the discretization of the convective terms. In general, the present numerical method is based 
on the solution of the Euler equation for the velocity field on both sides of the interface 
separating two different gases. This velocity field is used to bring the interface to the new form 
and position via level set method. The computational domain is then reinitialized.  Done in this 
manner, the method conserves mass to a large extent.

The central difference approximation, applied in the present paper, provides a high order 
accurate solver compared with the first order upwind scheme used in all the previous level set 
numerical methods. However, the original work of Sethian [45] has showed that the central 
difference is failed in two specified cases; namely; the movement of a V-front under a 
dependent gradient normal speed and the movement of a cosine curve under a normal speed 
along it normal vector field. The central difference approximation produces in such cases a 
miscalculation at the junction point of the V-front, which propagates outwards as wild 
oscillation. These oscillations cause blow-up in the code. It should be pointed that these 
miscalculations have nothing to do with the computational grid distance or the definite time 
step. Accordingly, Sethian [45], has concluded that more attention should be given for the 
gradient term discretization of G in a way that correctly accounts for the entropy condition. 
Following that, the majority of the papers concerned with the development of the level set 
technique have applied different upwind schemes for solving the level set equation ranging from 
first-order to second-order ENO or fifth-order WENO scheme. Therefore, we have to perform 
the specified cases as an important test for our proposed algorithm.

Case I:

The initial configuration of The V-front initial is a "V" formed by rays meeting at (0.5, 0) 
and can be given by:
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The equation of motion for this case is given by:

 21 xt GFG        (29)

Consider F equals 1 for initial value problem and the difference numerical approximation of 
the temporal and the spatial derivative is given by:  
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The expected problem due to central approximation of the gradient term is at x=0.5, where 

the slope is not defined. In the exact solution, 2tG for all x0.5, and this should also hold 
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at x=0.5. However, from Eq.(30) we get the value 1. The Huyghen's construction proposed by 
Sethian [45] sets the correct value for G at x=0.5. Instead of that, we use the reintialization 
process to reconstruct the level set according to the other correct values where x0.5 after each 
time step. Consequently, the value at the middle is reconstructed correctly. Fig. (1-a) shows the 
exact solution of the problem. Fig.(1-b) shows the calculated results using the central difference 
without reinitialization and the appearance of the miscalculation at x=0.5 can be seen. The 
miscalculation of G at x=0.5 is then spread over a wide range in successive time steps. Fig.(1-c) 
shows the calculated results using the central difference approximation with the reinitialization 
process. It can be observed that as a result of the reinitialization process, the miscalculations 
disappear. The reconstructive strength of the reinitialization process also holds, when cups with 
different forms are formed during other front evolution processes, as follows next.

        
                       (a)                                                (b)                                                (c)

Figure 1 The advection of a "V"-front using the central difference approximation for the level set 
function, (a) the exact solution, (b) without reinitialization, (c) with the reinitialization

Case II:

The second case that shows the effectiveness of the proposed algorithm is the propagation of 
an initially simple and smooth cosine curve along its normal vector field with a normal speed 
Vn=1.0. As seen in Sethian [45], the front develops a sharp corner in finite time, and 
consequently, it is difficult to continue the evolution as the normal vector is ambiguously 
defined. By using the central difference scheme along with the reinitialization process, the front 
forms a cusp but the evolution is continued without any disturbances, as seen in Fig.(2).

                                                                   
Figure 2 The advection of smooth cosine curve along its normal

2.4. Interface Boundary Conditions

In order to obtain a numerical method that can track the interface separating two different 
materials, one must specify accurately the boundary conditions at the interface. Since the 
interface can be considered as a contact discontinuity, moving with the normal local velocity Vn, 
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the Rankine-Hugoniot jump conditions imply that [p]=0 and [Vn]=0: i.e. both the pressure and 
the normal velocity are continuous across the interface. 

3. Results and discussion

         The performance of the solver has been assessed through a series of numerical experiments of 
interaction of weak shock wave with cylindrical, sinusoidal and inclined interfaces separating two 
gases. The test cases are conducted in a rectangular shock tube. The boundary conditions are 
considered as followings:

 The left boundary corresponds to the region behind the shock wave obtained by the 
Rankine-Hugoniot relations. 

 The right boundary was considered to permit smooth outflow of any rightward-moving 
waves by maintaining a zero-gradient condition for all variables.

 The upper boundary of the domain is the wall of the shock tube which treated as perfectly 
reflecting.

 The lower boundary of the domain could be either wall or symmetry condition depending on 
the case considered.

3.1 Cylindrical interface

The problem setup is similar to the experiment of Haas and Sturtevant [16]. Figure 3 shows 
a schematic of the computational domain with the initial conditions. A planar shock wave of 
Mach number M  1.2 impinges on a cylindrical bubble. The shock propagates through air from 
the left to the right side of the shock tube. The cylindrical bubble has a radius of 25mm and the 
vertical dimension of the shock tube is 89mm. The horizontal dimension of the shock tube is 10 
times the radius of the bubble. The bubble contains either helium (He) or Refrigerant 22 (R22).
The He-gas bubble is lighter than the surrounding air (He/air  0.166), while the R22-gas 
bubble is denser than the surrounding air (R22/air  2.86). Unshocked pressure in both gases is 
1.0 bar. The ratios of specific heats are He  1.67 and R22  1.249. It was found that the two 
configurations of the light and dense bubbles lead to a different interface evolution and flow
behaviour [16, 33].

Figure 3 Schematic of computational domain of the cylindrical interface

The flow field is assumed to be symmetric about the axis of the shock tube and so only the 
top half of the flow field is computed. However, the numerical images are reconstructed about 
the symmetry plane to aid in visualisation. The numerical experiments is performed using 
Cartesian grid of 500 100 cells. This yields that the radius of bubble is represented by about 56 
cells. Numerical experiments confirmed that the above grid resolution is sufficient to obtain 
grid-independent results [33]. The initial data is smoothed by assigning modified area-weighted 
values to the appropriate cells to avoid the staircase configuration of the data. Figure 4 
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demonstrates the effect of the initial data smoothing in both He- and R22-bubble interfaces at 
early and late evolution. The results without initial data smoothing (Fig. 4a) exhibit abnormal 
ripples, shown in dotted circles, at the upstream and downstream interface of the light bubble 
(top frames) and at the upstream interface of the dense bubble (bottom frames). The ripples are 
more pronounced at late interface evolution. These ripples disappear by removing staircase 
construction of the initial data as shown in Fig. 4b.

(a)                                                               (b)
Figure 4 The effect of the initial data smoothing in He (top) and R22 (bottom) bubble 
interfaces at early and late times (a) Without data smoothing. (b) With data smoothing

Computations are firstly performed for the interaction of the shock wave at M  1.2 with the 
He-gas bubble. Figure 5 shows the numerical images and interfaces of the bubble for a sequence 

of time. The normalised time, t, is given by 
Sr

T
t  , where S, r and T are the sound speed in the 

ambient air, radius of the  bubble and real time, respectively. The normalised time t0 
corresponds to the first collision of the shock wave with the bubble. It takes about one 
normalised time (corresponding to 61.810-6 seconds) for the incident shock to pass through a 
distance equals to the radius of the cylindrical bubble.

The first frame is at time t0.9, in which the incident shock appears as two straight branches 
connected to curved reflected and refracted (inside the bubble) waves. The incident shock is just 
about halfway across the bubble. The refracted wave moves faster than the incident shock due to 
the higher speed of sound inside the bubble. The shock system exhibits twin regular reflection-
refraction, TRR [2]. The refracted wave connects at the interface to two branches of the 
transmitted waves which cross the two branches of the incident shock and join the reflected 
wave. The air-He (upstream) interface deforms while the He-air (downstream) interface remains 
nearly unaffected. At t2.1, the Mach stem of the incident shock is passing over the interface 
and the refracted wave transmits entirely from the bubble. Also, the numerical images depicts 
secondary transmitted wave. There are two waves reflected from the walls moving towards the 
centre of the shock tube. The upstream interface is almost flattened and the downstream 
interface starts to deform. It is also observed that the interface expands laterally. The third frame 
(t4.6) shows remarkable motion to the downstream and deformation of the whole bubble 
interface. The bubble acquires a kidney shape. The upstream interface approaches the 
downstream interface. This is attributed to the formation of a central air jet at the middle of the 
bubble. As time goes on (t8.6), the bubble continues to deform. The subsequent frames of Fig. 
5 show the growth of the central jet by drawing fresh unmixed air towards the bubble interface. 
Subsequently, the bubble splits in two parts (t12.6). As shown in the interface evolution 
(t8.6), the air jet expands laterally and forms two circular-vortical structures.  The vortical 
structures grow up and interact with the upper and lower sides of the bubble. Accordingly, as 
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seen from interface evolution at t12.6, the upper and lower interfaces are penetrated by new 
formed jets. This may lead to splitting the bubble in four parts if the simulation is carried on to 
about time t26.

Figure 5 Normalized time sequence of numerical image (left) and interface (right) for M
 1.2 shock interaction with He bubble

Figure 6 shows the frames of the numerical image and interface of the interaction of a shock
wave at M1.2 with R22 bubble for a sequence of time. The first frame (t0.9), depicts the 
initial stage of the interaction of the shock wave with low sound-speed gas. The shock system 
forms a regular reflection, RR. The incident and reflected shock waves appear outside the 
bubble and the convergent refracted shock exists inside. The convergent-refracted wave moves 
inside the bubble. It lies behind the incident shock because the sound speed inside the bubble is 
lower than that outside the bubble. The upstream interface starts to deform. The subsequent 
frame (t2.4) shows the incident shock diffracted downstream and connected to the refracted 
wave. Although the bubble size gets smaller by shock compression, the downstream interface 
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has not yet undergone any deformation. The frame captures the reflected waves form the shock-
tube walls. At time t4.6, the incident shock move away form the bubble but its tail is intact to 
the bubble interface. The two branches of the incident shock intersect. The dense bubble 
reinforces the refracted wave. This leads to high velocity, created by the transmitted shock at its 
focus, subsequently, forms a narrow axial jet on the downstream interface (as shown at t9.4). 
As time goes on, the cylindrical bubble grows laterally due to the formation and growth of the 
vortex pairs. Moreover, the structure deforms into a large vortex and grows laterally during the 
formation of the vortices. The vortices grow in size by entraining the air left at the downstream
side. This overtakes the forward-moving axial jet. It is noticed that the intact tail of incident 
shock is still existed. Moreover, the frames illustrate many reflected waves, shock-shock 
interactions and shock focusing events occur inside the bubble.

Figure 6 Normalized time sequence of numerical image (left) and interface (right) for M
 1.2 shock interaction with R22 bubble

It is found that the present numerical images for both light and heavy cylindrical bubbles 
show similar evolution of shock-bubble interaction found by the experiment [16] and 
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numerically performed using an unstructured adaptive grid [15]. However, a quantitative 
comparison is made by plotting distance-time variations for certain positions in the bubble 
interface such as upstream, downstream and jet. Figure 7 and 8 depict the distance-time curves 
for both light (He) and heavy (R22) bubble, respectively. The present results are compared with 
the experimental results of Haas and Sturtevant [16] and the numerical results of Quirk and 
Karni [15]. The present results show fairly good agreement.
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Figure 7 Distance-time plots at upstream, downstream and jet for M  1.2 shock interaction with He
bubble; comparison with the results of Quirk and Karni [15]
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3.2  Air/ SF6 sinusoidal interface

The experiment of Benjamin et. al. [30] of Richtmyer-Meshkov instability is also here 
considered in order to evaluate the performance of the present solver. It consists of the evolution 
of a sinusoidal interface separating air and sulphur hexafluoride (SF6). The test case has been 
utilised to compare full nonlinear numerical simulation of Zhang and Sohn [31] and Weaver et
al. [32]. Consequently, extensive validated growth rate data is readily available. The initial 
configuration of the computational domain is depicted in Fig. 9. The experiment was conducted 
in a rectangular shock tube with an incident planar shock wave at Mach number of 1.2 which is 
initiated from the left-hand boundary. It travels from the air, with density 0.95 kg/m3, into SF6 of 
density 4.85 kg/m3. Unshocked pressure in both gases is 0.8bar. The specific heat ratio of SF6 is 

taken as SF6 1.09. The sinusoidal interface is defined by the equation 





 zax

2

cos .

Figure 9 Schematic of computational domain of the sinusoidal interface

The initial amplitude, a, is taken as 2.410-3 m and the wavelength, , is 3.7510-2 m. Due 
to symmetry, the half wavelength solution is evaluated and a full wavelength solution is 
reconstructed about the symmetry plane to aid in visualisation, see Fig. 9. The test case is 
computed in 500100 Cartesian grids.

Figure 10 shows the evolution of the sinusoidal interface at a sequence of time T0, 300, 
500, and 800 microseconds (s). The time T0 corresponds to the first collision of the shock 
wave with the interface. The spike of the interface at the centreline of the shock tube is grown 
due to Richtmyer-Meshkov instability. It is noticed that the evolution of the sinusoidal interface 
obtained by the present numerical solver is similar to the past numerical studies [15]. 

A quantitative comparison of the growth rate history of the present numerical results with 
the experiment of Benjamin et al. [30] and previous numerical studies of Zhang and Sohn [31] 
and Weaver et al. [32] is plotted in Fig. 11. The growth rate is defined as (uspike-ububble)/2, where  
uspike and ububble are the x-wise velocities at the extremities of the spike and bubble, respectively.

The exact locations of the spike and bubble are shown in Fig. 10. The present growth rate is 
recorded at every 0.7 s. This yields that the curve of the present results shown in Fig. 11 is 
represented by about 1100 points. In general, the present growth rate is fluctuated around the 
same value of the previous numerical studies. The deviation noticed between all numerical 
results and the experimental data of Benjamin et al. [30] may be due to the neglected viscous 
action, i.e. the boundary layer interaction with the shock wave in the duct. Another elucidation 
can be also here introduced in which non accurate measurements in supersonic flows. 

It is obvious that the present calculations exhibit lower growth rate than the previous 
numerical studies between 150 and 240 s. It is worth mentioning that the grid test is performed 
for 1000200 grid points without any noticeable change in the growth rate.
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Figure 10 Evolution of the sinusoidal interface after interaction with shock at M  1.2;
The solutions are recorded at the time T  0, 300, 500, and 800 s (from left to right)
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Figure 11 Growth rate history of the sinusoidal air/SF6 interface; comparisons with the 
results of Benjamin et. al. [30], Weaver et. al. [32] and Zhang and Sohn [31]

3.3 Air/He inclined interface

       The final test case considered is the shock wave interaction with an inclined interface. As 
shown in Fig. 12, an incident planar shock wave at Mach number M  2 is initiated from the left-
hand boundary. It travels from the air into He gas. The density ratio of He to air is considered as 
He/air  0.166. Unshocked pressure in both gases is considered to be 1.0 bar. The ratio of specific 
heats of He gas is He  1.67. The upper and lower boundaries of the domain are the wall of the 
shock tube. The test case is computed in 500100 Cartesian grid points. The interface is inclined by 
an angle of 45o to the lower wall. However, this is only a pure numerical test case without 
experimental findings. 
        Figure 13 illustrates time sequence of numerical images (left) and the corresponding interface 
evolution (right) for shock interaction with air/He inclined interface. The first frame is at time 
T20s after the first shock-interface collision. The shock system is regular reflection, RR. The 
incident shock connects the interface with the curved refracted and reflected waves. The refracted 
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wave moves faster than the incident shock. At first frame, the bottom of the inclined interface starts 
to deform. At T50s, the shock system is changed to the twin regular reflection-refraction, TRR
[2]. The circular vortical structure develops and interacts with the lower sides of the interface. 
About ¾ of interface has been deformed. At T100s, the incident shock is entirely transmitted 
from the air side and the interface is fully developed. The lower-circular vortical structure grows up 
and moves upwards. Also, another vortical structure near the upper wall starts to grow up. In the 
last two frames (T150-250s), the vortical structures are dominant resulting in a large distortion of 
the interface. On the other hand, the air side behind the interface exhibits many shock-shock 
interactions and shock focusing events.

Figure 12 Schematic representation of the computational domain of the inclined interface

Figure 13 Normalized time sequence of numerical images (left) and interface evolution (right) for 
M  2 shock interaction with air/He inclined interface. Time is in s
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4. Conclusion

The purpose of the present research was to perform a numerical study for the computation of 
two-gas flow along with a suitable and accurate surface tracking method. Consequently, a 
numerical simulation of compressible, two-gas flows using level set method was carried out to 
achieve better predictions of the physical processes occurring and to exclude some of the previous 
associated numerical instabilities. Implicit-unfactored unsteady hybrid Riemann solver using level 
set was presented and assessed. The performance of the solver was assessed through a series of 
numerical experiments of interaction of shock wave with cylindrical, sinusoidal and inclined 
interface separating two gases. All test cases were performed in 500100 Cartesian grids. Firstly, 
the solver was validated against the experiments of Haas and Sturtevant [16] for a shock wave 
interaction with light (He gas) and dense (R22 gas) cylindrical bubble. The numerical images for 
both bubbles showed good agreements with the past numerical [15] and experimental studies [16]. 
Furthermore, the velocities of the interface were well agreed with the past studies. The solver was 
also assessed for the experiment of Benjamin et al. [30].  It consists of evolution of a sinusoidal 
interface, separating air and sulphur hexafluoride (SF6), due to shock interaction. It was revealed the 
present numerical solver produced similar interface evolution. The present interface growth rate 
was found similar to the previous numerical studies [31, 32]. However, it exhibited oscillation 
around the same value of the previous numerical studies. The final test case was M2 for shock-
wave interaction with 45o inclined interface separating air and He gas. The present numerical 
images revealed the fine details of the interface evolution and shock focusing event.
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