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Abstract

The objective of this paper is to present the mixed velocity-pressure (v-p) finite element 
method that solves the pulsatile blood flow in arteries. The solution exploits the Galerkin 
method and the fully implicit incremental-iterative procedure for the three-dimensional 
nonlinear finite element equations. This methodology is applied to model biological flows 
that are important in predicting growth and rupture risks in abdominal aortic aneurysms
(AAA). The numerical technique was validated with the analytical solution of the 
Womersley model. Next, a physiologically realistic pulsatile blood flow waveform was 
imposed onto the idealized cylindrical arterial model and solved as a benchmark problem. 
The model represents a healthy abdominal aorta. This pulsatile condition simulates an in 
vivo aorta at rest. The numerical results were used to quantify clinically relevant flow 
dynamics that play a significant role in today’s field of medical treatment planning and 
development of predictive methods via computational modelling for assessing common 
clinical problems such as AAAs.

Keywords: Three-dimensional finite element methods; Pulsatile flow dynamics; Abdominal 
aorta.  

1. Introduction

Abdominal aortic aneurysm (AAA) is a common clinical problem that requires 
determination of hemodynamic conditions and subsequent rupture prediction. AAAs, are aneurysms 
occurring in the abdominal part of the aorta, more specifically, between the renal bifurcation and 
the iliac branches. The main causes of aneurysm are arteriosclerosis and cystic medial degeneration,
but also genetic disorder, malfunction of the aorta (i.e. biomechanical phenomenon), mycotic 
infections or arthritis can be a cause of aneurysm [1]. Another cause of aneurismal disorders 
mentioned by scientists is the loss of distensibility of the vessels.
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This pathologic condition has been found to affect 8.8% of the population over the age of 65 
and if left untreated it may lead to rupture [2]. Although the size of the aneurysm and its rate of 
expansion are parameters widely associated with the risk of rupture, it is important to understand 
the flow dynamics of pulsatile flow in a healthy aorta and its flow implications under an aneurismal 
condition [3]. 

A fundamentally new approach in medical treatment planning and development of 
predictive methods in clinical applications is computational modelling. Mathematical models can 
help to interpret non-invasive monitoring techniques. The numerical methods used to study AAA 
development vary from one researcher to another. However, the finite element method is commonly 
used these days [4,5,6]. The key factor that determines the reliability of the finite element scheme is 
its stability. Generally, the finite element computation of incompressible flows involves two main 
sources of potential numerical instabilities associated with the Galerkin formulation of a problem. 
One source is due to the presence of advection terms in the governing equations, and can result in 
spurious node-to-node oscillations primarily in the velocity field. Such oscillations become more
apparent for advection-dominated (i.e. high Reynolds number) flows and flows with sharp layers in 
the solution. 

The other source of instability is due to using inappropriate combinations of interpolation 
functions to represent the velocity and pressure fields. These instabilities usually appear as 
oscillations primarily in the pressure field.  In last decades a number of stabilization procedures 
have been developed to prevent potential numerical instabilities described above [7,8,9,10,11]. In 
order to guarantee the stability of the scheme, the finite elements for velocity and pressure need to 
be selected in a proper way to satisfy the inf-sup condition of Ladyzhenskaya-Babuska-Brezzi
(LBB) condition [12].

On the finite element level, we consider solving a system of equations in a finite element 
space hV  x hP , where V and P  are velocity and pressure respectively. Here the parameter h usually 

refers to the mesh size. The stability properties of the finite element method based on hV x hP is 

determined by the inf-sup condition such that the inf-sup constant is;
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where  is a polygonal domain. A finite element is called stable if there exists 0 independent 

of h such that  h holds for any mesh of the domain   and for any mesh size 0h . Similarly, a 

finite element is said to be stable for a mesh family if h can be bounded by a positive number for 

any mesh of the mesh family. Therefore, with good approximation properties and finite element 
method can be stable.

We aim to derive a complete set of three-dimensional finite element equations arising from 
the mixed velocity-pressure (v-p) finite element method by implementing the Galerkin method and 
the fully implicit incremental-iterative procedure for solving the nonlinear Navier Stokes and 
continuity equations that represent blood as a viscous incompressible Newtonian fluid, that can be 
applied to solve pulsatile flow problems in arteries.

2. Methods
2.1. Governing equations

Except in tiny capillaries, the blood flow can be assumed to behave as a continuum, 
as well as incompressible, apart from severe pathological situations [13]. Although, in 
reality blood is a non-Newtonian suspension of cells in plasma, but it is reasonable to model 
it as a Newtonian fluid in vessels greater than approximately 0.5mm in diameter [14]. The 
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three-dimensional governing equations (momentum and continuity equations) of a viscous 
incompressible Newtonian fluid (blood) flow, using the indicial notations with the usual 
summation convention are, respectively,
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where vi is velocity of blood flow in direction xi, and summation is assumed on the repeated 
(dummy) indices, i, j = 1, 2, 3.  , jij ,  and B

if  are the fluid density, fluid stress and body 

force, respectively. Its prescribed velocity on the surface S1 and boundary force on the 
surface S2 as the governing boundary conditions imposed onto equations (1) and (2) are, 
respectively,
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where the fluid domain of interest S with its boundaries are given as;
S2S1=S and S2S1=  (5)

 Next, a constitutive equation for the fluid stress for Newtonian fluid is introduced as;
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  and ij  is the Kronecker delta. Substituting 

equation (6) into equation (1) and subsequently applying equation (2) gives rise to the final 
form of the flow equation;
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2.2. Pulsatile flow and boundary conditions

A physiologically realistic pulsatile blood flow simulating an in vivo cardiac cycle of 
the abdominal aorta section at rest was imposed at the inlet of the non-dilated aorta entry, 
dAA, as shown in Figure 1 [15]. The mean Reynolds number, Remean=4Qmean/πυdAA and peak 
Reynolds Number, Repeak=4Qpeak/πυdAA of the pulsatile flow were 525 and 2325, 
respectively. The mean Reynolds number is based on the mean flow rate, Qmean of a full 
cardiac cycle whereas the peak Reynolds number is based on the peak systolic flow rate,
Qpeak of the pulsatile flow. The pulsatile flow consists of a pulse frequency,   of 
60beats/min, so that the Womersley number, α=0.5dAA√ω/υ≈12, where υ is the kinematic 
viscosity of blood which was taken to be 3.5mm2/s.

At the inlet of the aorta, the pulsatile flow imposed is considered to be a fully 
developed flow in an infinitely long straight cylindrical tube model. All velocity 
components at the fixed vessel wall of the aorta model are prescribed as zero. The no-slip 
condition at the inner vessel wall was adopted. Along the symmetric plane of the model, the 
velocity components normal to this plane and the tangential stresses are imposed to be zero. 
At the outlet of the aorta, the normal and tangential stresses are set to be zero as well 
respectively (i. e. stress-free condition). Therefore, near the outlet of the aorta the solution 
differs from the solution in an infinitely long straight cylindrical tube model.
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Figure 1. Pulsatile waveform imposed at the entry of the aorta

2.3. Finite element formulation

The advantage of the mixed velocity-pressure (v-p) formulation is that the pressure, 
velocity, velocity gradient and stress boundary conditions can be directly incorporated into 
the finite element matrix equations [12]. A 21/8 node 3D brick element was used for this 
three-dimensional analysis. 21 nodes were employed to interpolate the velocities and 8 
nodes were employed to interpolate the pressure, hence, providing stable elements expressed 
by the inf-sup condition of Brezzi-Babuska. The finite element mesh of the model consists 
of 7,200 elements and 8,450 nodes, as shown in Figure 2.

Figure 2. Finite element model of a straight cylindrical tube representing a healthy aorta

Applying the Galerkin method in equations (2) and (7) yields;
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Integrating by parts and transforming the volume to surface integral of equation (9) yields;
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The chosen interpolation functions for the velocity and pressure are, respectively;
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Next, equations (11) and (12) are substituted into equations (10) and (8) to arrive at;
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Finally, the finite element matrix equation takes the form of;
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where, the mass, convective, viscosity, pressure gradient, volume force and surface force 
terms are, respectively; 
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Next, in order to implement the incremental-iterative procedure, the velocity and 
pressure at the end of each time step is defined, respectively;
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   mmtttt ppp    1 (18)

where (m) is iteration. Next, by substituting equations (17) and (18) into equations (13) and 
(14) we obtain the incremental-iterative equations as;
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Now equation (15) becomes;

       

 

 

 































 
 



1

11111

mtt

mtt

m

mmttmttmtt

t
p

v

T

vp

vpvvvvvv

F

F

p

v

0K

KJKKM  (21)

where the matrices and vectors are;
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The left upper index tt   denotes that the quantities are evaluated at the end of 
time step. V and S are the volume and the surface of the finite element, respectively. The 
matrix H and G contains the interpolation functions for the velocities and the pressure, 
respectively. The matrix Mv is mass matrix, Kvv and Jvv are convective matrices, Kμv is 
viscous matrix, Kvp is pressure matrix and Fv and Fp are forcing vectors. RB and RS are 
volume and surface forces, respectively.
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3. Results and discussion

In order to assess the accuracy of the finite element methods employed, the pulsatile flow in 
a typical cylindrical artery is computed and compared with the well known analytical Womersley 
solution [16,17]. An idealized long, straight, rigid-walled cylindrical artery with length L , and 
radius r , is subjected to an inflow velocity that was uniform in space and periodic in time. The time 

variation is described by a sinusoidal function      TtVtV /2sin1 


with mean velocity, 

smmV /135


and period, sT 2.0 as shown in Figure 3.
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Figure 3. Sinusoidal velocity profile

A sufficient distance from the inlet, the radial and circumferential components of velocity 
and pressure vanish. The axial velocity becomes a function of radius only and the pressure varies 
linearly with axial position. Figures 4 and 5 illustrate the numerically computed axial velocities
against the well known analytical solution and the velocity profiles at 4 different phases within one 
cardiac cycle for the flow in a long, straight, cylindrical tube i. e. t/T = 0.125, t/T = 0.375, t/T = 
0.625 and t/T = 0.875, respectively. In these figures and thereafter, the blood flow direction is 
referred to the arrow and the various phases of the pulsatile flow are referred to the flow waveform 
icon within each figure. The maximum error observed between the analytical and numerical results 
is below 15%. Further improvements can be made by adopting a much finer mesh. 
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Figure 4. Theoretical and computed axial velocities at four different phases within one cardiac cycle
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(i) t/T=0.125

(ii) t/T=0.375

(iii) t/T=0.625

(iv) t/T=0.875

Figure 5. Three-dimensional velocity contours in a long, straight cylindrical tube at four different 
phases within the sinusoidal waveform; (i)t/T=0.125; (ii)t/T=0.375; (iii)t/T=0.625; (iv)t/T=0.875.

Next, as a benchmark problem for flow simulation in abdominal aortic aneurysm models, 
we characterized the flow in a healthy infrarenal aorta. The infrarenal aorta is idealized as a straight 
tube of diameter dAA=18mm. The model is supplied with a physiologically realistic pulsatile inflow 
waveform measured in a male subject at rest, as shown in Figure 1. The flow evolution was studied 
at six different phases of the pulsatile flow: (i) acceleration to systole, t/T=0.035 (ii) peak systole, 
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t/T=0.16 (iii) deceleration into retrograde flow, t/T=0.35 (iv) peak retrograde flow, t/T=0.55 (v) 
early diastole, t/T=0.77 and (vi) late diastole, t/T=0.87. Figures 6 and 7 show the evolution of 
velocity contours and vectors profiles, respectively at six different phases within the cardiac cycle.

During flow acceleration, the flow develops into the characteristic top-hat velocity profile. 
When the Womersley number is small, viscous forces dominate and the velocity profiles are 
parabolic in shape. However, for Womersley number above 10, which is the case in abdominal 
aorta, the unsteady inertial forces dominate, and the flow is nearly top-hat with thin boundary 
layers. At the peak systole, the thickness of the boundary layer scales as /AAd . After the peak 
systole, that is, during flow deceleration, the flow slows down along the walls and quickly reverses, 
while the central region bulk of the fluid in the healthy aorta moves forward with a blunt velocity 
profile. At peak retrograde flow, this central region bulk of fluid only reverses fully. As the flow 
comes out from the retrograde flow region into the early diastolic flow region, the net flow 
decelerates back to zero and ends up moving forward again. At late diastole, the flow relaxes to 
near rest before being accelerated again at the beginning of the next cardiac cycle. It is important to 
point out that although the flow develops an inflexional velocity profile during diastole, it remains 
entirely laminar during the whole cardiac cycle. The axial velocity distributions at each key step 
along the pulsatile flow are as illustrated in Figure 8.

This boundary layer of reversed flow close to the wall is an important characteristic of 
pulsatile flow. This exhibits that even for a straight section of an artery with positive volume flow, 
there is always some time within the cardiac cycle where the viscous traction forces are opposite the 
dominant flow direction. This has implications in the design of in vitro devices designed to replicate 
the shear forces on the inner wall of the artery. Namely, in vivo, the luminal surface is exposed to 
shear forces which reverse in direction for some portion of the cardiac cycle.

(i) t/T=0.035

(ii) t/T=0.16
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(iii) t/T=0.35

(v) t/T=0.55

(v) t/T=0.77

(vi) t/T=0.87
Figure 6. 3D Velocity flow contours in a healthy aorta under physiologically realistic pulsatile flow 
at six phases of the pulsatile flow cycle: (i) flow acceleration, t/T=0.035; (ii) peak systole, t/T=0.16; 

(iii) flow deceleration, t/T=0.35; (iv) peak retrograde flow, t/T=0.55; (v) early diastole, t/T=0.77; 
(vi) late diastole, t/T=0.87
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(i) t/T=0.035

(ii) t/T=0.16

(iii) t/T=0.35

(iv) t/T=0.55
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(v) t/T=0.77

(vi) t/T=0.87
Figure 7. 3D Velocity vector profiles in a healthy aorta under physiologically realistic pulsatile flow 
at six phases of the pulsatile flow cycle: (i) flow acceleration, t/T=0.035; (ii) peak systole, t/T=0.16; 

(iii) flow deceleration, t/T=0.35; (iv) peak retrograde flow, t/T=0.55; (v) early diastole, t/T=0.77; 
(vi) late diastole, t/T=0.87
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Figure 8. Axial velocity distribution of pulsatile blood flow in a healthy aorta at six different phases 
within one complete pulsatile flow cycle

4. Conclusion

A complete set of three-dimensional mixed velocity-pressure (v-p) finite element method 
was derived to solve the pulsatile nature of blood flow in a rigid-walled healthy aorta. The 
numerical scheme exploits the Galerkin method and the implicit incremental-iterative procedure. 
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The presented computational technique was used to analyze the flow dynamics in a healthy 
abdominal aorta under a physiologically realistic pulsatile flow at rest that can be considered as a 
benchmark problem. It was observed that there exists a boundary layer of reversed flow close to the 
wall that is considered an important characteristic of pulsatile flow. This exhibits that even for a 
straight section of an artery with positive volume flow, there is always some time within the cardiac 
cycle where the viscous traction forces are opposite the dominant flow direction. This has 
implications in the design of in vitro devices designed to replicate the shear forces on the inner wall 
of the artery. Namely, in vivo, the luminal surface is exposed to shear forces which reverse in 
direction for some portion of the cardiac cycle. This leads to the ability to further co-relate flow 
dynamics in an aneurismal aorta and subsequently allow biomedical engineers and physicians to 
diagnose and design patient-specific treatment plans that can improve their care. Having said this, 
clinical application of numerical modelling and computer-aided surgical planning is the key for the 
future of medicine.

Nomenclature
 Fluid density
 Fluid stress
f Body force
v Velocity
p Fluid pressure
 Dynamic viscosity

ije Tensor of velocity deformation

ij Kronecker delta

Re Reynolds number
Q Flowrate
 Womersley number
T Time
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