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n the inaugural editorial of  this journal, it was suggested that non-
elastic collisions of molecules may modify the traditional continuum 
model of a turbulent fluid.  Non-elastic collisions of molecules violate the 
historic assumption that molecular properties do not matter for as long as 
viscosity and density are used as macroscopic parameters, contributing to 
the dimensionless Reynolds number.  In fact, inelastic collisions presume 
the existence of quantum states of molecules.  An energetic gas consists 
of molecules in various quantum states. The gas is therefore composed of 
different components, each component belongs to an excited state, and 
the gas may be considered multi-component. An accurate physical 
description will consist of different species of what used to be considered 
a single specie of unexcited molecules, as in the Navier-Stokes equation.  
Note that traditional numerical simulations only assume a single specie.  
The purpose of this guest editorial is to suggest that if computational fluid 
dynamics admits the existence of several interacting species, very rich 
results, including turbulence, will be found.

We illustrate this suggested new approach with a simple example. 
Let there be a gas consisting of two species: ground state molecules, and 
excited state molecules. The velocity of ground state molecules is v1 , 
while the velocity of excited state molecules is v2 . Transport equations 
describing the time evolution of the two velocities may be modeled by the 
following equations in one dimension:
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x
 (A  B)v1  Bv2 (2)

A and B are analogues of the Einstein A and B coefficients used in laser 
physics,   is a radiation density that couples the two states.  If A and B
are zero – no quantum mechanics (!) – the model equations reduce to the 
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Fig. 1 – Decay of the initial velocity v1  at one position 

to a quasi-steady state and subsequent turbulent period, 
followed by decay to another quasi-steady state.

Fig. 2 – Growth of the initial velocity v2 of the 

excited state atom at  the same position to a quasi-
steady state and subsequent turbulent period, 
followed by a decay to another quasi-steady state.

classical uncoupled Burgers equations [1], a simplification of the Navier-
Stokes equation by 
making the pressure 
term a constant. The 
steady states are exactly 
solvable, resulting in 
multivalued velocity 
fields. The steady state 
solutions are Lambert 
functions indexed by a 
branch number [2,3].  

There are no 
known solutions for the 
fully time-dependent 
case, but simulation 
experiments may be 
done to yield some 
interesting behavior.  
One such result is the 
velocity at a specific 
position, showing the 
time evolution of the 
velocity at that position. We show one such computation – simpler than 
any CFD study – for the velocities v1  and v2 . With initial data using a 
simple gradient of velocities as a function of position, and an imposed 
periodic boundary condition, the result is surprising. A turbulent region is 
sandwiched between steady states, caricaturing the occurrence of “plugs” 
in pipe flow [4].

How do we know that the 
solutions of the equations 
are turbulent? By inspection, 
just like the entire history of 
turbulence!  But in fact the 
solution satisfies a new 
precise, unique definition of 
turbulence [2,3]: (I) when 
the steady-state solution of a 
transport equation is 
multivalued, the system 
described is turbulent.  
Furthermore, (II) the system 
consists of ground state and 
excited state molecules, 
which is yet another physical 

condition for turbulence. 
Both (I) and (II) are 
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manifestations of the quantum mechanical description of matter.
If nothing else, the lives of CFD specialists will become more 

challenging and interesting if CFD addresses interacting multicomponent 
systems, as our simple example illustrates. 

Finally, on a related matter, it is curious that  the Clay Institute 
challenge to find solutions of the Navier-Stokes equation -- presumably  
to explain turbulence -- does not define turbulence. Perhaps we might
make a somewhat self-serving proposal [5] that turbulence be defined by 
(I) and (II) above, filling the absence of a rigorous definition. With this 
definition, we may be able to answer the philosophical question: how 
does one solve a problem that has not been precisely defined 
mathematically? Perhaps our field of research could advance if we start 
with a precise definition of turbulence.
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