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Abstract 
 

In this paper, a lattice Boltzmann method (LBM) based simulation of  microscale flow has 
been carried out, for various values of Knudsen number.  The details in determining the 
parameters critical for LBM applications in  microscale flow are provided. Pressure 
distributions in the slip flow regime  are compared to the analytical solution based on the 
Navier-Stokes equation  with slip-velocity boundary condition. Satisfactory agreements 
have been  achieved. Simulations are then extended to transition regime (Kn = 0.15) and 
 compared with the same analytical solution. The results show some deviation  from the 
analytical solution due to the breakdown of continuum assumption.  From this study, it 
can be concluded that the lattice Boltzmann method is an  efficient approach for 
simulation of microscale flow.  
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1. Introduction 
 

In recent years, many of the researchers have diverted their attention to the microscale flow area 
[1-4]. Microscale flows are defined as fluid flow phenomena associated with microscale mechanical 
devices. While understanding these phenomena is of great fundamental interest, there are also major 
economical incentives related to many industrial applications such as micro-electro mechanical system 
(MEMS), micro heat exchanger, micro pump, etc. Flow in micro devices with characteristic size of the 
order of microns differ from their large counterparts. Two important flow parameters; Knudsen number 
Kn, and Reynolds number Re, are drastically different from those encountered in large scale flows [5-
7]. Experimental work on such microscale behavior is very difficult and expensive if not impossible 
because of the length- and time-scale involved. Due to these reasons, it is necessary to establish a 
numerical model which can exactly simulate the flow characteristics at microscale condition. 
Currently, the lattice Boltzmann method is the most suitable numerical tool in simulating microscale 
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fluid flow problem. 
The lattice Boltzmann method (LBM), the numerical method that will be used in this study, is the 

only numerical technique that directly treats the flow behaviour at microscopic level. LBM utilizes the 
particle distribution function to describe collective behavior of fluid molecules. This new numerical 
method, evolved from mathematical statistical approach, has been well accepted as an alternative 
numerical scheme in computational fluid dynamics field. In comparison with other numerical schemes, 
LBM is a “bottom up” approach, derives the Navier-Stokes equation from statistical behavior of 
particles dynamics. The imaginary “propagation” and “collision” processes of fluid particles are 
reconstructed in the formulation of LBM scheme. These processes are represented by the evolution of 
particle distribution function f(x,t), which describes the statistical population of particles at location x 
and time t. 

The advantages of LBM include simple calculation procedure [8], suitability for parallel 
computation [9], ease and robust handling of multiphase flow [10], complex geometries [11], 
interfacial dynamics and others [12-13]. A few standard benchmark problems have been simulated by 
LBM and the results are found to agree well with the corresponding Navier-Stokes solutions [14-16]. 

The attractiveness of LBM in simulating microscale flow lies in the fact that, unlike other 
conventional scheme, no special treatment or attention is required for the solid boundaries, meaning 
that no extra computational burdens is needed to apply slip boundary condition at solid boundaries 
[17]. Thus, the LBM is an ideal tool in predicting microscale flow phenomena. Application of LBM is 
expected to increase the efficiency, accuracy and the capability of the current computer performance 
without scarificing the need of the detailed behavior of fluid particles for this type of flow. 

There were works have been carried out to understand microscale flow behavior experimentally 
and numerically. In 1997, Arkilic et al [4] investigated the gaseous flow through long microchannel. 
They found that the rarefaction and compressibility effect can be reproduced by applying first order 
slip boundary condition in the solution to two-dimensional Navier-Stokes equation. 

In order to gain better understanding on the behavior of fluid flow at particle level, Xue et al, 
[18] used Direct Simulation Monte Carlo method (DSMC) to predict microchannel flow. They claimed 
that the DSMC can go beyond the capability of Navier-Stokes method to simulate at high Knudsen 
number when the continuum assumption is no longer valid. However, DSMC is reported to consume 
very long computational time even to predict the evolution of particle in a small physical geometry 
[19].  

The application of LBM in predicting microscale flow is relatively new. Xiaobo et al, [20] firstly 
introduced LBM to simulate flow in MEMS. Zhang et al, [5] and Lim et al, [21] applied slip boundary 
condition to describe gas-surface interaction in microchannel by introducing tangential momentum 
accommodation coefficient. Their results are compared well with the analytical solution provided by 
Arkilic et al, [4]. However, the simplicity property of the lattice Boltzmann scheme has been lost due to 
this complicated boundary treatment. 

In the work reported by Frederik et al, [22], who investigated the flow behavior in long 
microchannel using LBM, they demonstrated that the conventional bounce-back boundary condition 
[23] still valid for no-slip boundary condition at the walls. Their results compared well with the 
analytical solution of Navier-Stokes equation and DSMC method. Recently, Agrawal et al [17] proved 
the capability of bounce-back boundary condition of LBM to simulate flow in microchannel for simple 
and complex boundaries.  

This paper is differentiated from previous microchannel studies by inclusion of density 
dependence relaxation time in LBM formulation to reproduce compressibility and rarefied effects. In 
order to maintain the simplicity of LBM, we applied the original bounce-back boundary condition for 
the wall boundary treatment. Other than that of two-dimensional isothermal fluid flow, no assumptions 
regarding the flow profile or distribution of pressure are made. The results of pressure distribution 
along the channel are then plotted and compared with the analytical solution.  

The rest of the paper is organized as follow. Section 1 discusses the formulation of lattice 
Boltzmann method. After showing how the formulation of LBM fits in to the framework of microscale 
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flow, numerical results of microchannel flow at various Knudsen number are presented to highlight the 
applicability of the approach. The final section concludes current study. 
 
 
 
 2. Isothermal Lattice Boltzmann Model   
 

Historically, LBM is the logical development of lattice gas automata (LGA) method   [24]. 
Like in LGA, the physical space is discretized into uniform lattice nodes. Every  node in the network 
is then connected with its neighbours through a number of lattice  velocities to be determined 
through the model chosen.   
The lattice Boltzmann equation is given by:  

( ) ( ) ( ) ( )[ ]txftxftxfttexf eq
iiiii ,,1,, −−=−Δ+

τ
     (1) 

where f = f(x,t) is the distribution function for particles with velocity e at position x and time t.  
Equation (1) consists of two parts: propagation (left hand side) which refers to the propagation 

of distribution function to the next node in the direction of its probable velocity, and collision (right 
hand side) which represents the collision of the particle distribution function. In LBM, magnitude of e 
is set up so that in each time step Δt, every distribution function propagates in a distance of lattice 
nodes spacing Δx. This will ensure that distribution function arrives exactly at the lattice nodes after Δt 
and collide simultaneously. Note that Bhatnagar-Gross-Krook (BGK) collision model [25] with single 
relaxation time is used for the collision term where feq is the equilibrium distribution function and t is 
the time to reach equilibrium condition during collision process. 

The general form of the lattice velocity model is expressed as DnQm where D represents 
spatial dimension and Q is the number of connection (lattice velocity) at every node. In this paper, the 
nine-microscopic velocity or nine-bit model (D2Q9) is used. The discrete velocity is expressed as: 
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The equilibrium distribution function of the nine-bit model is [26]: 
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The macroscopic variables, such as density    , and velocity u can be evaluated as the  moment to 
the distribution function as follow:  

ii fΣ=ρ            (5) 
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                                               (6) 
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The viscosity is related to the relaxation time through: 
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In microscale flows, the local density variation is relatively small, however the total density 
changes, for instance the density difference between the inlet and outlet of a very long channel could 
be quite large. To include the dependence of viscosity on density, we replace τ  by ′ τ  as follow: 

′ τ =
1
2

+
1
ρ

τ −
1
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟                                               (9) 

From above explanation, we can see that the LBM is a suitable choice for simulation of 
microscale flow. According to Shen et al, [27], LBM can be used at least up to Kn ≈ 0.2. Even if we 
apply slip boundary condition, solution to Navier-Stokes equation only hold in the slip flow regime 
(0.001 < Kn < 0.1). Therefore LBM is better suited for microscale gas flow as compared to the 
conventional Navier-Stokes solver. 

 
3. Microchannel Flow Simulation 
 

In this section, we will discuss how to apply the lattice Boltzmann method to simulate 
microchannel flow. The computational domain employed in this study consists of two-dimensional 
channel with the channel width is resolved by 21 grid points. The aspect ratio is set up very high so 
that the density gradient between the successive grids is not very steep. This is to ensure the 
applicability of LBM is simulating hydrodynamics [28]. Note that we have not tried to provide 
physical dimension of the channel because the same results apply under identical values of the non-
dimensional governing parameters. 

The dynamical similarity depends on two non-dimensional parameters: The Knudsen number 
Kn, and Reynolds number Re. The Knudsen number, Kn = l/H, can be used to identify the influence 
of the effect of the mean free path on the flow, where l is the mean free path of the molecules and H 
is a typical dimension of the flow domain. As we have pointed out that for a system with Kn < 
0.001, the fluid flow can be treated as continuum and can be easily solved by Navier-Stokes 
solution. As Kn increases, the flow enters the “slip-flow” (0.001 < Kn < 0.1) and “transition” (0.1 < 
Kn < 3) regimes. In the transition regime, the conventional flow solver, which is based on the 
computation of Navier-Stokes equations, is no longer applicable. The second non-dimensional 
parameter is the well-known Reynolds number, defined as: 

Re = UH / υ           (10) 
Other than these two non-dimensional parameters, we need to carefully restrict LBM 

simulation parameters so that the low-Mach-number approximation holds. To do this, the third non-
dimensional parameter, the Mach number Ma, is introduce and defined as U/cs. In present scheme, 
the Knudsen, Reynolds and Mach numbers are related as follow: 

Re/2533.1 MaKn =          (11) 
Note that these numbers are computed during the post-processing of the data rather  than being 

specified before start of the simulations. By combining (8), (10) and (11),  the Knudsen number can 
be related to the relaxation time in LBM formulation as  follow:  

0181.00362.0 −= τKn          (12) 
A conventional bounce-back boundary condition [23] is used at the top and bottom walls. 

According to this condition, the particle distribution function is considered fully rebound to its 
original position when it hits the wall after one iteration time step. For example: 

( ) ( )1,1,,1, 73 −= txftxf  at lower wall                                 (13) 
( ) ( )1,,,, 37 −= tHxftHxf  at upper wall                                (14) 

Even with this simple boundary treatment, the bounce-back boundary condition allows slip at the 
wall for high Knudsen number [29]. 

The flow in microchannel is driven by the pressure gradient between the inlet and outlet of the 
channel. Pressure at the left is kept higher than the pressure at the right to induce a flow to the right. 
The pressure ratio has been fixed to two for the computations presented in this paper. By setting up 
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the value of pressure at the inlet (or outlet), the incoming distribution function can be calculated 
using the Dirichlet types boundary condition proposed by Zou and He [30]. 

 
4. Results and Discussion 
 

Arkilic et al, [4] obtained analytical Navier-Stokes solution at low Kn with a first order slip 
model for two dimensional microchannel flow, in which the general pressure profile was describe. 
As predicted by Arkilic et al, [4], the pressure profile along the length of microchannel is expressed 
as a function of location in the microchannel direction and overall pressure ratio is: 

( ) ( ) ( )xKnXKnKnKnP −++++−+−= 1Pr)12(Pr12166 22* σσσσ             (15) 
In the present study, four cases were simulated at different Knudsen number, Kn = 0.02, 0.05, 

0.1 and 0.15. Once Kn is decided, the relaxation time can be calculated from (12). In each 
simulation, the output results are plotted when the difference of the value of centerline velocity at 
the outlet less than 10-5 for two successive iterations.  

 
  Figure 1. horizontal velocity profile for Kn = 0.05  

 

 
Figure 2. Vertical velocity profile for Kn = 0.05 

 
Figures 1 and 2 show the velocity profiles obtained by the proposed LBM formulation at Kn = 

0.05. As can be seen for these figures, the horizontal velocity increases along the channel due to the 
pressure drop. However, vertical velocity along the channel is symmetric at the center. The 
magnitude of vertical velocity is very small and gives less significant to the flow characteristic in 
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the microchanel. All of these profiles show the similarity with the profiles published by Arkilic et al 
[4].  

The predicted pressure profiles along the streamwise of the channel is plotted and compared 
with the analytical solution provided by Arkilic et al, [4] Figs. 2a-2d show the comparisons for Kn 
= 0.02, 0.05, 0.1 and 0.15 respectively. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Pressure profile along the microchannel for (a) Kn = 0.02 and (b) Kn = 0.05 (c) Kn = 0.1 
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and (d) Kn = 0.15 
 

As can be seen from figure 2, a non-linear pressure profile along the microchannel profile can 
be clearly observed for all Knudsen number values. This non-linearity is due to the compressibility 
effects and in contrast with the linear variation of incompressible flows. As Kn increases, the non-
linearity of pressure becomes less pronounced. This finding is consistent with the results obtained 
by previous researchers [11], [20], [22], [24] and[25]. However, there is a little deviation for Kn = 
0.15 can be observed. This is expected because the first order slip velocity model used by Arkilic et 
al, [4] solution is no longer valid for this Knudsen number while we look at the issue in a more 
rarefied sense where the molecular dimensions are concerned. 

Figures 3a and 3b show the plots of Reynolds and Mach numbers for every simulation of 
Knudsen number. As can be seen from the figures, both Mach and Reynolds number decrease 
monotonically as Knudsen number increases.  

 

 
(a) 

 
(b) 

Figure 3. (a) Plots of calculated Reynolds number for every simulation of Knudsen number (b) 
Plots of calculated Mach number for every simulation of Mach number   

 
5. Conclusion 
 

In this paper, a lattice Boltzmann method based simulation of microscale flow has  been 
carried out, for Knudsen number between 0.02 and 0.15 (slip to transitional  regimes). Conventional 
bounce-back boundary condition together with the inclusion  of density dependence relaxation time 
has been applied into the formulation of LBM.  Computation of pressure driven flow in a 
microchannel correctly predicted the  pressure distribution along the channel and agrees well with 
the analytical solution.  Our numerical results confirm the rarefaction`s negation on non-linearity of 
pressure.  Although we use the two-dimensional isothermal model in present study, the  approach can 
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be easily extended to non-isothermal and three-dimensional model. A  detailed investigation for 
non-isothermal microscale flow will be reported in the  future.   
 
 
 
 
ACKNOWLEDGMENTS 
 
The author would like to thank Universiti Teknologi Malaysia and Malaysian  government for 
supporting these research activities.  

Nomenclature 

e     
f 
feq  
H 
l 
P* 

Microscopic velocity  
Distribution function  
Equilibrium distribution function  
Characteristic height 
Mean free path of particle 
Pressure distribution 

u  
U  
υ 
ρ 
τ 

Velocity  
Centerline velocity at outlet  
Viscosity of fluid 
Density 
Relaxation time 
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