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Wide range of mesh types are proposed in computational fluid dynamics which in turn 
initiate further discussions over problems of their structure in the numerical 
computation of fluid flows. Nevertheless, such discussions might sometimes lead to ill-
fitted choices of mesh for specific problem. Some types, if improperly used, can cause 
spurious oscillation in the solutions of governing equations. Furthermore, the 
contribution of mesh and flow parameters in predicting spurious oscillation free 
solutions has been much-debated topic over the last decades. Comparison was made 
in this research between uniform and piecewise-uniform meshes in accentuating the 
significance of the mesh structure and singular perturbation parameter connection in 
numerical solution of a singularly perturbed problem. A systematic technique was 
particularly applied in setting both the singular perturbation parameter and mesh 
number. Based on the a priori formulation, the condition to avoid spurious oscillatory 
solutions on the two types of mesh which depends on the parameters of interest is 
presented in this paper. This was done by adopting reasonable mesh interval sizes. The 
results of the test cases affirmed the consistency of the condition. It becomes clear 
that, in general both parameters of interest are linearly related in each case, and the 
piecewise-uniform mesh number is doubled that of the uniform mesh in order to 
obtain realistic solution. 
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1. Introduction 
1.1 The General Model 
 

General model of problem is defined in differential form as 
 
𝐿𝑢 ∶= − 𝜖𝜑′′ + 𝑏(𝑥)𝜑′ + 𝑐(𝑥)𝜑 = 𝑓(𝑥), for 𝑥 ∈ (0,1),        (1) 
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with the boundary conditions 
 
𝜑(0) = 0, 𝜑(1) = 1,             (2) 
 
and the assumptions 
 
𝜖 > 0, 
𝑏(𝑥) > 0 for all 𝑥 ∈ [0,1], 
𝑐(𝑥) ≥ 0 in [0,1], 
 
where − 𝜖𝜑′′is diffusive, 𝑏(𝑥)𝜑′ is convective, 𝑐(𝑥)𝜑 is reactive and 𝑓(𝑥) is source/sink terms. The 
functions b(x), c(x), and f(x) are sufficiently smooth. Applying the transform of variable 𝑥 → (1 − 𝑥), 
the problem in Eq. (1) still remains when 𝑏(𝑥) < 0 in [0,1]. Note that only when 𝑏(𝑥) ≠ 0 for all 𝑥 ∈
[0,1] does Eq. (1) become important with regard to convection. When 𝜖 ≪ ‖𝑏‖𝐿∞(Ω), the parameter 

𝜖 is defined as singular perturbation parameter, and the problem is said to be singularly perturbed. 
In the case where there are no convection, reaction and source, Eq. (1) represents the pure diffusion 
process where the solution is linear in space, which is not our interest here. 

The consistency and stability of the finite difference technique are compromised when 𝜖 is small, 
due to the influence of a boundary layer which appears generally in the solution of Eq. (1) and Eq. (2) 
at x = 1. The consistency of the technique could be improved provided that one chooses the boundary 
values in such a way that no boundary layer exists. This, however, does not guarantee the stability of 
the technique [1,2]. In this paper, c(x) = f(x) = 0 is considered where Eq. (1) reduces to 
 
𝐿𝑢 ∶= − 𝜖𝜑′′ + 𝑏(𝑥)𝜑′ = 0, for 𝑥 ∈ (0,1),          (3) 
 
involving an unknown parameter 𝜑. In the case of convection-diffusion problem, for instance, 
diffusion causes 𝜑 as scalar concentration to spread, while convection carries it along with the 
moving fluid element [3,4]. The sharp change of 𝜑 in space occurs after it initially grows slowly over 
a defined distance when 𝜖 is small, given appropriate boundary conditions. The sudden rise of 𝜑 
serves two numerical purposes; to test severely the method of discretization, and the selection of 
compatible computational domain mesh structure. 
 
1.2 Issues on Mesh Structures 
 

There are major issues on mesh structures that draw research attentions. These include the 
influence of mesh on numerical accuracy and mesh’s effectiveness in reducing the computation time 
[5-17] in solving a governing equation. Minimization of mesh number, mesh refinement or un-
refinement, two-mesh schemes [17-19], multimesh methods [20–25], and spurious oscillation [26] 
are among mesh concepts that receive wide attentions in the research field. 

Lattice Boltzmann scheme (LBS) performs at a similar level as Lax-Wendroff scheme of the one-
step second-order with respect to simulation time decrease [5,10]. The scheme is even better than 
that of projection method based finite difference. 

In a study by Yuezhen et al., [13], the employment of an operator interpolation scheme, 
Richardson extrapolation technique usage, and the application of a fourth-order compact difference 
scheme were involved in an extensive numerical procedure to solve convection-diffusion equation 
on the fine mesh with sixth-order accuracy. Other high-order-accuracy schemes corresponding to 
such equation were also proposed in some studies [9,14]. 



CFD Letters 

Volume 12, Issue 8 (2020) 108-120 

110 
 

The improper decrease of mesh number may cause spurious oscillation. One of the successful 
methods is that of component-wise splitting [7]. The method which is an absolutely stable finite 
difference scheme greatly decreases mesh number of the analysis system by introducing the irregular 
mesh size. In addition to clear illustration of the problem of oscillation, it was proposed in previous 
studies [26,27] that severe oscillations in the solution of convection dominated diffusion equation 
could be decreased by means of the upwind hybrid difference method which has been improved. It 
is also worth to note that Superbee, MINMOD, and SMART were shown to be effective in producing 
physically realistic calculation results. These second-order discretization schemes were evaluated in 
a previous study [12] where ‘unphysical solution’ term was coined to portray a more general 
problem. 

In this paper, the model problem in Eq. (3) which may be considered as a ‘special’ convection-
diffusion problem is discretized by finite difference technique on two types of mesh, i.e. uniform and 
Shishkin meshes; a piecewise equidistant mesh is defined in such a way that it is sufficiently fine in a 
neighborhood of x = 1. Note that the mesh of Shishkin type is considered to represent the piecewise-
uniform mesh. There is a need to prevent 𝜑 profile from being nonphysical by determining a valid 
minimum mesh number. In order to achieve physically realistic solution of the flow problem with less 
pre-computation time, the flow parameter of interest 𝜖 in Eq. (3) is examined in connection with 
mesh number 𝑁. The work is an extension to that on mesh and low Peclet numbers’ relationship that 
was discussed in previous studies [28,29]. Since the solutions are at the risk of being nonphysical, the 
reduction of mesh number needs to be done with care. 

Fluid dynamists have undoubtedly studied various types of mesh, yet comparative study between 
the uniform and piecewise-uniform meshes corresponding to the condition for preventing spurious 
oscillatory solutions of singularly perturbed problem remains open. It is important to study such 
condition to appreciate the appropriateness of these types of mesh in solving the governing equation 
of interest, thus eradicate some heuristic parts in numerical computation. This research aims at 
providing a qualitative guideline to avoid nonphysical solutions on both meshes. 
 
2. Methodology 
2. 1 Discretization 
 

Defining the boundary conditions of the model problem represented by Eq. (3) as 
 
𝜑(0) = 0

𝜑(1) = 1,
              (4) 

 
uniform mesh and that of piecewise-uniform (represented by Shishkin mesh) are considered to cover 
the corresponding solution domain. The numerical analysis results support the use of these mesh 
types. Given that the mesh number 𝑁 to be an odd integer. The number of interval is thus given by 
(𝑁 − 1). Defining 𝑥 to be the independent variable whose domain is discretized (i.e. 𝑥 = [0,1]), the 
nodes in both meshes were defined as follows. In the case of uniform mesh, the node is simply 
defined as 
 

𝑥𝑖+1 = 𝑥𝑖 +
1

𝑁 − 1
, 

 
for the nodes 𝑥0, … , 𝑥𝑁−1, while in that of Shishkin mesh, the node is given by 
 



CFD Letters 

Volume 12, Issue 8 (2020) 108-120 

111 
 

𝑥𝑖+1 = 𝑥𝑖 +
2

𝑁 − 1
− 2𝑟𝑒

ln(𝑁 − 1)

𝑁 − 1
, 

 
for the nodes 𝑥0, … , 𝑥(𝑁−1) 2⁄ , and 

 

𝑥𝑖+1 = 𝑥𝑖 + 2𝑟𝑒

ln(𝑁 − 1)

𝑁 − 1
, 

 
for the nodes 𝑥(𝑁−1) 2⁄ , … , 𝑥𝑁−1, where 0≤ 𝑖 ≤ (𝑁 − 1), 𝑖 ∈ ℤ, and the parameter 𝑟𝑒 > 0. Thus there 

are several intervals, namely a uniform sized intervals ∆𝑥𝐴 in uniform mesh, and two sized intervals 
(i.e. ∆𝑥𝐵 and ∆𝑥𝐶) in that of Shishkin type depending on the nodes. 

In the mesh of Shishkin type, the meeting point between the coarse and the very fine mesh is 
known as the transition point. Its location is given by 
 
𝑥 = 𝑥(𝑁−1) 2⁄ = 𝑟𝑒ln(𝑁 − 1) 

 
Clearly ∑ ∆𝑥𝑖 = 1. The meshes are illustrated in Figure 1 and Figure 2 below. 
 

 
Fig. 1. Computational molecules in uniform mesh 

 

 
Fig. 2. Computational molecules in Shishkin mesh 
which represents the piecewise-uniform mesh 

 
The idea is to discretize Eq. (3) such that the partial derivatives are approximated by nodal 

algebraic expression. Thus for every single node, there is an algebraic version of Eq. (3), where the 
variables to be determined are those at that and instant nodes. The system of algebraic equations is 
given by 
 
𝐶𝑃𝜑𝑃 + ∑ 𝐶𝑚𝜑𝑚𝑚 = 𝑄𝑝            (5) 

 
where P denotes the nodes at which the algebraic equations are allocated, while 𝑚 index runs 

over the immediate left and right nodes. The elements of the corresponding matrix 𝐶 in Eq. (5) are 
stored as three 𝑛 × 𝑛 array. They are non-zeros only on the matrix’s main diagonal (represented by 
𝐶𝑖𝑖) as well as the diagonals immediately below and above it (represented by 𝐶𝐿 and 𝐶𝑅, respectively). 
Using the three-point computational molecules, Eq. (5) becomes 
 
𝐶𝑃𝜑𝑃 + 𝐶𝑅𝜑𝑖+1 + 𝐶𝐿𝜑𝑖−1 = 𝑄𝑃           (6) 
 

Discretization of all terms in Eq. (3) is done by using central difference scheme (CDS), both for the 
outer derivative in the first term 
 

−[(𝜖𝜑′)′]𝑖 ≈
(𝜖𝜑′)

𝑖+
1
2

−(𝜖𝜑′)
𝑖−

1
2

1

2
(𝑥𝑖−1−𝑥𝑖+1)

            (7) 

L- L P R R+

L- L P R R+
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and the inner derivative 
 

(𝜖𝜑′)
𝑖+

1

2

≈ 𝜖
𝜑𝑖+1−𝜑𝑖

𝑥𝑖+1−𝑥𝑖

−(𝜖𝜑′)
𝑖−

1

2

≈ 𝜖
𝜑𝑖−𝜑𝑖−1

𝑥𝑖−1−𝑥𝑖

},            (8) 

 
as well as the second term in Eq. (3) 
 

−[(𝑏𝜑)′]𝑖 ≈ 𝑏
𝜑𝑖+1−𝜑𝑖−1

𝑥𝑖−1−𝑥𝑖+1
            (9) 

 
The contributions of the first and second terms to the coefficients of the algebraic Eq. (6) are 

therefore 
 

𝐶𝑅  = 𝐶𝑅
𝑠𝑒𝑐𝑜𝑛𝑑 + 𝐶𝑅

𝑓𝑖𝑟𝑠𝑡
 

 

=
𝑏

𝑥𝑖+1 − 𝑥𝑖−1
−

2𝜖

(𝑥𝑖+1 − 𝑥𝑖−1)(𝑥𝑖+1 − 𝑥𝑖)
; 

 

𝐶𝐿  = 𝐶𝐿
𝑠𝑒𝑐𝑜𝑛𝑑 + 𝐶𝐿

𝑓𝑖𝑟𝑠𝑡
 

 

= −
𝑏

𝑥𝑖+1 − 𝑥𝑖−1
−

2𝜖

(𝑥𝑖+1 − 𝑥𝑖−1)(𝑥𝑖 − 𝑥𝑖−1)
; 

 

𝐶𝑃  = 𝐶𝑃
𝑠𝑒𝑐𝑜𝑛𝑑 + 𝐶𝑃

𝑓𝑖𝑟𝑠𝑡
 

 

= −(𝐶𝑅
𝑓𝑖𝑟𝑠𝑡

+ 𝐶𝐿
𝑓𝑖𝑟𝑠𝑡

) 

 
Linearization is not required by the numerical solution of Eq. (3). This is due to the linearity of the 

differential equation, thus the approximate equation contains only terms which are linear. The linear 
system of the algebraic Eq. (6) is solved by applying Thomas’ algorithm (i.e. tridiagonal matrix 
algorithm). It is set that 
 
𝑏 = 1.0, 𝑟𝑒 = .03                       (10) 
 

Illustration in Figure 3 shows the nonphysical solution of Eq. (3) where spurious oscillation occurs 
due to improper minimization of the number of mesh N. Note that the negative values for the 
solution on Shishkin mesh are magnified 1032 times for enhanced visibility. The symbols Ns and Nu 
represent Shishkin and uniform mesh numbers, respectively. It is therefore necessary to find a 
technique that is systematic rather than heuristic to use in the determination of N. 
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Fig. 3. The insufficient mesh number leads 
to nonphysical behaviour of 𝜑 profile over 
computational domain; physically correct 
profile is not supposed to have negative 
values 

 
2.2 Sequences of 𝜖−1 and the Mesh Number 
 

The connection between 𝜖−1 and mesh number 𝑁 is represented by a set of ordered pairs 
((𝜖−1)𝑖, 𝑁𝑖), 𝑖 = 1,2, … , n. The range of 𝜖−1 of interests is [50,1600]. A sequence of 𝜖−1 is defined 
by 
 
(𝜖−1)𝑖, 
(𝜖−1)𝑖+1 = (𝜖−1)𝑖 𝑝⁄ , 
(𝜖−1)𝑖+2 =  (𝜖−1)𝑖+1 𝑝⁄ ,                       (11) 
 
(𝜖−1)𝑛 = (𝜖−1)𝑛−1 𝑝⁄ , 
 
where the constants 𝑖, 𝑝 ∈ ℤ+. Next, defining a sequence of 𝑁 by 
 
𝑁𝑖 , 

𝑁𝑖+1 =
𝑁𝑖 + 1

𝑞
−

(−1)
(

𝑁𝑖+1
𝑞

+1)
− 1

2
 , 

𝑁𝑖+2 =
𝑁𝑖+1+1

𝑞
−

(−1)
(

𝑁𝑖+1+1

𝑞
+1)

−1

2
,                      (12) 

 

𝑁𝑛 =
𝑁𝑛−1 + 1

𝑞
−

(−1)
(

𝑁𝑛−1+1
𝑞

+1)
− 1

2
, 

 
where the constants 𝑖, 𝑞 ∈ ℤ+. Let 
 
𝑖 = 𝑗 = 1, 𝑛 = 6, (1/𝜖)1 = 1600, 𝑁1 = 1281, and 
𝑝 = 𝑞 = 2,                        (13) 
 

-.4

-.2

.0

.2

.4

.6

.8

1.0

.0 .2 .4 .6 .8 1.0

ϕ

x

𝜖-1 = 400
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solution on
Shishkin mesh

solution on
uniform mesh
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such that the sequence in Eq. (11) and Eq. (12) become 
 
1600, 800, 400, 200, 100, 50  
 
and 
 
1281, 641, 321, 161, 81,41  
 
respectively. 
 
2.3 Spatial Error Growth Model 
 

Substituting Eq. (7), Eq. (8), and Eq. (9) into Eq. (3); 
 
𝜑𝑖+1−𝜑𝑖−1

2𝜖
=

𝜑𝑖+1−2𝜑𝑖−𝜑𝑖−1

∆𝑥
                      (14) 

 
The spatial error is defined as 
 
𝛾 = 𝒩 − 𝐸                        (15) 
 
where 𝒩 and 𝐸 are finite accuracy numerical solution from a real computer and exact solution of 
difference equation, respectively. Note that the numerical solution 𝒩 satisfies the difference 
Eq. (14). A Fourier series model can be used to analytically represent the random variation of   with 

respect to space; 
 

𝛾(𝑥) = ∑ 𝑒𝛼𝑥𝑒𝑖𝑘𝑙𝑥
𝑙 , 𝑙 = 1,2,3 …,                     (16) 

 
where 𝑒𝛼𝑥 is the amplification factor, 𝑘𝑙  is the wave number, and 𝛼 is a constant. 
 
Lets 𝑒𝛼𝑥 in Eq. (16) be proportional to 𝑥 when numerical oscillation occurs. Thus it is sufficient to 
consider only the growth of 𝑒𝛼𝑥. Direct substitution of 𝑒𝛼𝑥 into the finite difference Eq. (14) gives 
 
𝑒𝛼(𝑥+∆𝑥)−𝑒𝛼(𝑥−∆𝑥)

2𝜖
=

𝑒𝛼(𝑥+∆𝑥)−2𝑒𝛼𝑥+𝑒𝛼(𝑥−∆𝑥)

∆𝑥
                    (17) 

 
In order to have a non-growing error amplification, the criterion 
 
𝑒−𝛼∆𝑥(∆𝑥+2𝜖)−4𝜖

∆𝑥−2𝜖
≤ 1                        (18) 

 
must be fulfilled. Note that Eq. (18) is obtained after manipulating Eq. (17). The details can be found 
in a study by Aslam [28]. 
 
3. Result and Discussion 
 

Rewriting Eq. (18) in terms of 𝜖 and 𝑁; 
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𝑒
−

𝛼
𝑁−1(

1

𝑁−1
+2𝜖)−4𝜖

1

𝑁−1
−2𝜖

≤ 1                       (19) 

 
Define 
 

𝐺 =
𝑒

−
𝛼

𝑁−1(
1

𝑁−1
+2𝜖)−4𝜖

1

𝑁−1
−2𝜖

                        (20) 

 
Thus Eq. (19) becomes 
 
𝐺 ≤ 1                          (21) 
 

If the mesh is uniform, then 
1

𝑁−1
 is constant. However, the term has two values when the Shishkin 

mesh is considered. In such case, the larger one is chosen. In particular, Eq. (20) becomes 
 

𝐺𝑢 =
𝑒

−
𝛼

𝑁𝑢−1(
1

𝑁𝑢−1
+2𝜖)−4𝜖

1

𝑁𝑢−1
−2𝜖

;                      (22) 

 

𝐺𝑠 =
𝑒

−
𝛼

𝑁𝑠−1(
1

𝑁𝑠−1
+2𝜖)−4𝜖

1

𝑁𝑠−1
−2𝜖

,                       (23) 

 
where the subscript 𝑢 and 𝑠 indicates uniform and Shishkin meshes, respectively. The criterion in Eq. 

(22) and Eq. (23) were checked against all 36 possible pairs ((𝜖−1)𝑖, 𝑁𝑗) per type of mesh, 

respectively, based on sequences in Eq. (11) and Eq. (12). The output is given in Table 1, where the 
shaded cells indicate cases for 𝐺 ≤ 1. 
 

Table 1 
Range of grid numbers 𝑁 that fulfils the criterion in Eq. (21) where 𝛼 = −0.1 

 𝜖−1 = 1600 𝜖−1 = 800 𝜖−1 = 400 𝜖−1 = 200 𝜖−1 = 100 𝜖−1 = 50 

𝑁 𝐺𝑠 𝐺𝑢 𝐺𝑠 𝐺𝑢 𝐺𝑠 𝐺𝑢 𝐺𝑠 𝐺𝑢 𝐺𝑠 𝐺𝑢 𝐺𝑠 𝐺𝑢 

1281 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 

641 > 1 > 1 > 1 

321 > 1 > 1 

161 > 1 > 1 

81 > 1 > 1 

41 > 1 > 1 

 
For 𝜖−1 = 50, all uniform mesh numbers Eq. (12) are appropriate in achieving physically accurate 

non-oscillatory solutions. This is indicated by 𝐺𝑢 being less than or equal to 1. The appropriate range 
of 𝑁𝑢 shrinks by one element each time the previous 𝜖−1 in Eq. (11) is considered. 

Meanwhile, all Shishkin mesh numbers but 𝑁𝑠 = 41 in Eq. (12) are sufficient to obtain realistic 
solutions for 𝜖−1 = 50, where 𝐺𝑠 is smaller than or equals 1. The range of sufficient 𝑁𝑠 gets smaller 
by one element every time the previous 𝜖−1 in Eq. (11) is given except when 𝜖−1 = 1600; for both 
𝜖−1 = 800 and 𝜖−1 = 1600, 𝑁𝑠 = 1281. 

The values of 𝐺 tabulated in Table 1 were verified by plotting 𝜑 against 𝑥 as shown in Figure 4, 
where the profiles change exponentially with respect to x-direction, and the area below the curve 
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represented by the integral ∫ 𝜑(x)𝑑x
1

0
 is inversely proportional to 𝜖−1. The plots which are validated 

against that in Figure 5 show correct physical behaviors of the solutions. It is confirmed now that in 
any case where 𝐺 ≤ 1, the spurious oscillations can be avoided, and the amplitudes grow with 
respect to 𝑥 when 𝐺 > 1. 
 

φ
 

  

  

  
  x 

Fig. 4. The solution profile at 𝜖 << 1, numerically calculated, where dash and dot lines represent 
solutions on Shishkin and uniform meshes, respectively 

 
There are several findings in this numerical calculation of a singularly perturbed two-point 

boundary value problem. Firstly, the minimum uniform mesh number 𝑁𝑢𝑚𝑖𝑛
 is linearly proportional 
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to 𝜖−1 for 𝜖−1 ∈ [50,1600], while 𝑁𝑠𝑚𝑖𝑛
 is for 𝜖−1 ∈ [50,800]. Thus, the minimum mesh number 

𝑁𝑚𝑖𝑛 for solving problem in Eq. (3), with the conditions in Eq. (4), is expressed as a linear function of 
𝜖−1; 
 
𝑵𝒎𝒊𝒏  = 𝒎𝜖−1 + 𝒅 for 50 ≤  𝜖−1 ≤ 1600,                    (24) 
 
corresponding to uniform mesh, where 𝑚 and 𝑑 are curve slope and a constant, respectively, and  
 

𝑵𝒎𝒊𝒏  = �̃�𝝐−𝟏 + �̃� for 50 ≤  𝜖−1 ≤ 800,                     (25) 
 

corresponding to Shishkin mesh, where �̃� and �̃� are curve slope and a constant, respectively. 
Secondly, there is an intersection between both 𝜖−1𝑁𝑚𝑖𝑛 relationships. In particular, it is found 

that 𝑁𝑢𝑚𝑖𝑛
= 𝑁𝑠𝑚𝑖𝑛

 when 𝜖−1=1600. These are clearly seen in Figure 6. 

Thirdly, as shown in Figure 6, 𝑁𝑚𝑖𝑛 must be sufficient for the 𝜑 profile to behave physically 
correctly. In other words, if N < Nmin for the corresponding 𝜖−1, where N in an element in Eq. (12), 
then the solution would oscillate as, for instance, depicted previously in Figure 3. If N ≥ Nmin, the 
solution is physically correct. 

Forthly, in general, the number of uniform mesh (i.e. 𝑁𝑢𝑚𝑖𝑛
) is approximately half that of Shishkin 

mesh (i.e. 𝑁𝑠𝑚𝑖𝑛
) such that the solution is realistic. Thus, the red dots curve slope 𝑚 in Figure 6 is half 

that of black dots, �̃�. 
The illustration in Figure 5 shows the theoretical 𝜑 profiles for three ranges of 𝑏 𝜖⁄ . Note that in 

this paper, the profile of interest is that when 𝑏 𝜖⁄ > 0. It is clear that the correct solutions are non-
negatives and do not oscillate. Thus the profiles in Figure 4 and that in Figure 5 are in agreement 
when 𝑏 𝜖⁄ > 0. 
 

 
Fig. 5. Solution profiles for different ranges 
of 𝑏 𝜖⁄  where boundary conditions are fixed 

 
4. Conclusions 
 

A comparative study of the condition to avoid spurious oscillation in the solution of a singularly 
perturbed problem on the uniform mesh and that of piecewise-uniform which is represented by the 
Shishkin mesh has been performed. The condition represents a qualitative guideline that improves 
our understanding on the contribution of pair (𝜖−1, 𝑁) to the oscillation, where 𝜖 and 𝑁 are singular 
perturbed parameter and mesh number, respectively. Interestingly to note that the condition as 
given in Eq. (21) is applicable not only for the solution on a uniform mesh as discussed in a study by 
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Aslam [28], but also a piecewise-uniform mesh; it gives the values of 𝑁 below which non-physical 
solutions occur. 

The solution on the uniform mesh reflects that the linear relationship between both parameters 
of interest (i.e. 𝜖 and 𝑁) is wider in comparison to that on the piecewise-uniform mesh as revealed 
in Figure 6.  
 

 
Fig. 6. Minimum mesh number 𝑁𝑚𝑖𝑛 as a linear 

function of 𝜖
-1

, where ‘x’ and ‘o’ represent linear 
relation 1 and 2, respectively, while black and red 
dots denote numerical relations corresponding to 
Shishkin and uniform meshes, respectively 

 
It has also been proven in this paper that there is a common value of 𝜖−1 where both types of 

mesh can no longer be distinguished with regard to the mesh number 𝑁. Furthermore, in general the 
usage of the uniform mesh can reduce 50% of the mesh number compared to the piecewise-uniform 
mesh. 
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