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The present work is connected with fluid dynamics aspects of circular slider. It is study 
about flow of Casson fluid through circular porous bearing. In this model Casson fluid 
is forced through the porous bottom of a circular slider which is moving laterally on a 
horizontal plane. The governing Navier Stokes equations are derived and reduced to 
nonlinear ordinary differential equations through transformations. The problem is 
analysed through Homotopy Perturbation Method (HPM) and Finite Difference 
Method (FDM). The effective terms in the HPM representing the physical parameters 
reveal the qualitative features of the flow. The results are presented for the velocity, 
wall gradients of vertical velocity functions and lateral velocity functions values in its 
absolute values with cross Reynolds number. The results are validated by two methods 
and are in good agreement. They show that they are increasing at one wall and 
decreasing at the other wall. It is clear that the efficiency of porous slider bearing 
increases in case of the Cason fluid. The model has application in hydrostatic thrust 
bearings and air cushioned vehicles. Further friction is greatly reduced in the present 
case. So it has importance in industry and technology. 
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1. Introduction 
 

The study about the porous slider bearing is vital in the field of research, as the application is used 
in the growth of industry and technology. Sliding friction is greatly reduced if a fluid is forced between 
two solid surfaces. The porous sliders are important in fluid cushioned moving pads (examples 
include hydrostatic thrust bearings and air cushioned vehicles). Many authors [1-3] contributed their 
efforts to understand these types of problems, firstly C Y Wang [4] in 1976 studied about the circular 
porous slider. In 1984 R. Subba reddy [5] analysed the flow and thermal characteristics of a circular 
porous slider for a Newtonian fluid for Reynolds number 0.01 to 50. In 1993 N. M. Bujurke [6] and his 
associates studied the circular porous slider through computer extended series. Recent 
developments about slider bearing can be obtained from the articles [7,8].  
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Method of solution is also plays an important role for these kind of problems, many authors used 
the numerical technique to solve the problem in the past. Solving these type of problems using semi-
numerical method is an alternative technique. Homotopy perturbation method first proposed by Ji-
Huan He [9] in 1998. HPM is the combination of traditional perturbation method and homotopy in 
topology. In 2013 Sumit gupta [10] and his associates applied this method for solving nonlinear wave-
like equations. This method is useful for solving the different class of problems in the applied 
mathematics (like, functional integral equations [11], coupled system of reaction diffusion equation 
[12], Helmholtz equation and fifth-order Kdv equation [13], the epidemic model [14] etc.). Homotopy 
perturbation method for squeezing flow between parallel plates has been successfully used [15-19]. 
Recently, different kind of study about the fluid flow is done by Shaw and his associates [20,21]. 

The present work is concerned with the Non-Newtonian fluid flow through the circular porous 
slider bearing and presents the importance of Non-Newtonian fluid compared to Newtonian fluid. 
The governed Navier stokes equations are reduced to coupled non-linear differential equations. In 
the present paper we analysed the considered problem with HPM and compared the results with 
classical FDM. The main advantage of HPM is that it yields a very rapid convergence of the series 
solution, only with the few iterations. For simple domains the HPM has advantages over pure 
numerical results. A single computer program gives the solution for a large range of expansion 
quantity. Once the convergence is guaranteed the results can be obtained for the desired accuracy. 
Further the method reveals the analytic structure of the solution which is not found in numerical 
solutions.  
 
2. Problem Formulation 
 

This model is representing a flow between two plates 𝑇1 and 𝑇2. Whereas one plate is solid (lower 
plate 𝑇1) and the upper one is porous through which fluid is injected. An incompressible Casson fluid 
is forced through the porous wall of the slider with a velocity 𝑊 as shown in Figure 1 below. 

 

 
Fig. 1. Geometry of the problem 

 
The ground is the plane 𝑧 = 0 moving in the 𝑥 direction with velocity 𝑢. Since the gap width 𝑑 is 

small we may assume that both plane extended to infinity. The continuity and momentum equations 
for the problem is as follows 
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The boundary conditions are 
 
 𝑧 = 0 𝑢 = 𝑈, 𝑣 = 𝑤 = 0 , 𝑇 = 𝑇1 
 
 𝑧 = 𝑑 𝑢 = 𝑣 = 0, 𝑤 = −𝑊 , 𝑇 = 𝑇2 
 

By using the following transformation 
 

𝜂 =
𝑧

𝑑
 , 𝑢 = 𝑈𝑓(𝜂) +𝑊

𝑥

𝑑
𝐻′(𝜂), 𝑣 =

𝑊

𝑑
𝑦 𝐻′(𝜂), 𝑤 =  −2𝑊𝐻(𝜂)        (5) 

 
Substituting Eq. (5) in Eq. (2) to Eq. (4) one can get  

 

(1 +
1

𝛾
)𝐻′′′′ + 2𝑅𝐻𝐻′′′ = 0            (6) 

 

(1 +
1

𝛾
) 𝑓′′ + 2𝑅𝐻𝑓′ − 𝑅 𝐻′𝑓 = 0           (7) 

 
Subjected to the boundary conditions 

 
𝐻(0) = 𝐻′(0) = 0 , 𝑓(0) = 1            (8) 
 

𝐻(1) =
1

2
 , 𝐻′(1) = 0, 𝑓(1) = 0 

 
3. Method of Solution 
 

We adopt two methods to solve the considered problems. 
 
3.1 Homotopy Perturbation Solution (HPM) 
 

To describe the HPM solution for the system of non-linear differential equations, we consider  
 
𝐷1[𝐻(𝜂)] − 𝑓1(𝜂) = 0             (9) 
 
𝐷2[𝑓(𝜂)] − 𝑓2(𝜂) = 0                       (10) 
 
where 𝐷1 and 𝐷2 denotes the operator, 𝐻(𝜂) and 𝑓(η) are unknown functions, 𝜂 denote the 
independent variable and 𝑓1, 𝑓2 are known functions. 𝐷1 and 𝐷2 can be written as 
 
𝐷1 = 𝐿1 + 𝑁1 
 
𝐷2 = 𝐿2 + 𝑁2 
 
where 𝐿1 and 𝐿2 are simple linear part, 𝑁1 and 𝑁2 are remaining part of the Eq. (9) and Eq. (10) 
respectively.  

The proper selection of 𝐿1, 𝐿2 , 𝑁1, and 𝑁2 form the governing equations one can get the 
homotopy Eq. (9) and Eq. (10) as follows 
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𝐻1(𝜙1(𝜂, 𝑞; 𝑞)) = (1 − 𝑞)[𝐿1(𝜙1, 𝑞) − 𝐿1(𝑣0(𝜂))] + 𝑞[𝐷1(𝜙1, 𝑞) − 𝑓1(𝜂)] = 0               (11) 

 

𝐻2(𝜙2(𝜂, 𝑞; 𝑞)) = (1 − 𝑞)[𝐿2(𝜙2, 𝑞) − 𝐿2(𝑣0(𝜂))] + 𝑞[𝐷2(𝜙2, 𝑞) − 𝑓2(𝜂)] = 0               (12) 

 
where 𝑣0(𝜂) is the initial guess to the Eq. (11) and Eq. (12). We assume the solution of Eq. (11) and 
Eq. (12). as follows, 
 
𝜙1(𝜂 , 𝑞) =  ∑ 𝑞𝑛∞

𝑛=0 𝐻𝑛(𝜂)                      (13) 
 
𝜙2(𝜂 , 𝑞) =  ∑ 𝑞𝑛∞

𝑛=0 𝑓𝑛(𝜂)                      (14) 
 

The solution to the considered problem is Eq. (13) and Eq. (14) at 𝑞 = 1. The zeroth and first order 
solutions for the considered problem are as follows 
 
𝐻0(𝜂) = 1.5𝜂

2 − 𝜂3 
 

𝐻1(𝜂) =

𝑅𝛾𝜂2

(

 
 

0.09286−0.12857𝜂+0.05𝜂2−0.01429𝜂5

+𝛾(
0.185714−0.25714𝜂+0.1𝜂4

−0.02857𝜂5
)

+𝛾2(0.092857−0.12857𝜂+0.05𝜂4−0.01428𝜂5))

 
 

(1+𝛾)3
  

 
𝑓0 = 1 − 𝜂  
 

𝑓1 =
0.05𝑅𝛾𝜂(−6+10𝜂2−5𝜂3+𝜂4)

1+𝛾
  

 
3.2. Finite Difference Method (FDM) 
 

The equations mentioned above Eq. (6), Eq. (7) and Eq. (8) were solved numerically by FDM to 
confirm the results obtained by us. Using standard finite difference method, i.e stepping from 𝜂𝑗−1  

to 𝜂𝑗, a Crank-Nicolson's scheme was used. These tridiagnal systems are easily solved to update the 

values on each grid point. Calculations were performed by dividing the interval into 104 sub intervals 
to find the associated parameters. These system of equations were solved using Mathematica. 
 
4. Results and Discussion 
 

In the present study, we consider the problem of circular porous slider bearing for Casson fluid. 
The problem is analysed through HPM for velocity distribution, wall gradients of velocity functions 
for the various values of cross flow Reynolds number with Casson parameter. In case of HPM, first 
we generate two terms manually, as algebra becomes cumbersome we use mathematica code 
systematically to get the terms up to order of 𝑛 = 15. Further an efficient finite difference scheme 
is used to solve the same boundary value problem. In this discretization process an interval [0, 1] is 
divided in to 104 subdivisions to get accurate results.  

The HPM results for velocity distributions are shown in Figure 2, Figure 3 and Figure 4. We 
observed from Figure 2 that the vertical velocity 𝐻(𝜂) increases within the gap width as 𝑅 increases. 
On increasing the non-Newtonian characteristic parameter (𝛾) the same nature observed from Figure 
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3 and Figure 4, however a small change one can observe from Figure 3 and Figure 4, it is due to the 
non- Newtonian characteristics of the fluid, as 𝛾 increases the fluid flow between plates acquire the 
characteristic of the non-Newtonian fluid. The fluid becomes thicker and the velocity of the fluid for 
various values of R becomes more distinguishable. 

 

  
Fig. 2. Vertical velocity profile 𝐻(𝜂), 𝛾 = 0.1 Fig. 3. Vertical velocity profile 𝐻(𝜂), 𝛾 = 0.2 

 

 
Fig. 4. Vertical velocity profile 𝐻(𝜂), 𝛾 = 0.3 

 
Figure 5, Figure 6 and Figure 7 represents the lateral velocity profile 𝐻′(𝜂). From Figure 5 one can 

notice that the lateral velocity profile 𝐻′(𝜂) is parabolic for small values of 𝑅 and becomes highly 
unsymmetrical as 𝑅 increases. On increasing the cross-flow Reynolds numbers, the amplitude of 
𝐻′(𝜂) increases whereas the position of maximum velocity tends to move closer to the moving wall. 
Figure 6 and Figure 7 also show the same pattern for different values of the 𝛾. In a way from Figure 
5, Figure 6 and Figure 7 it is notable that the vertical velocity 𝐻′(𝜂) increases in 0 ≤ 𝜂 ≤ 0.5 as 𝑅 
increases and decreases in 0.5 ≤ 𝜂 ≤ 1. 

 

 
Fig. 5. Lateral velocity profile 𝐻′(𝜂), 𝛾 = 0.1 
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Fig. 6. Lateral velocity profile 𝐻′(𝜂), 𝛾 = 0.2 Fig. 7. Lateral velocity profile 𝐻′(𝜂), 𝛾 = 0.3 

 
The semi-numerical results for lateral velocity 𝑓(𝜂) presented in Figures 8 to 10. In all these 

figures the lateral velocity is linear for the small values of the parameter 𝑅 while it becomes highly 
non-linear for increasing the values of cross-flow Reynolds numbers. Other side one can observe that 
the value of 𝑓(𝜂) decreases as 𝑅 increases. More importantly from these figures we observed that 
lateral velocity becomes highly non-linear for increasing the non-Newtonian characteristic of the 
fluid. 

 

  
Fig. 8. Lateral velocity profile 𝑓(𝜂), 𝛾 = 0.1 Fig. 9. Lateral velocity profile 𝑓(𝜂), 𝛾 = 0.2 

 

 
Fig. 10. Lateral velocity profile 𝑓(𝜂), 𝛾 = 0.3 

 
Wall gradients of vertical velocity functions for various values of the cross flow Reynolds number 

are presented in Table 1, Table 2, Table 3 and Table 4. Wall gradients of lateral velocity functions for 
various values of the cross flow Reynolds number are presented in Table 5 and Table 6. Also, we 
compared the HPM solution with FDM to validate the results and observed that they are in good 
agreements. It is observed that the absolute values of wall gradients 𝐻′′(0), 𝐻′′′(0) and 𝑓(0) are 
increasing with increase in 𝑅 and 𝛾 values. But Table 2, Table 4 and Table 6 indicate the absolute 
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values of 𝐻′′(1), 𝐻′′′(1) and 𝑓′(1) decrease as 𝑅 and 𝛾 increase. This is due to non-Newtonian 
characteristics parameter and injection effect at the wall.  
 

Table 1 
The values of 𝐻′′(0) 
𝑅 𝛾 HPM FDM 𝛾 HPM FDM 𝛾 HPM FDM 

1 0.1 3.01691 3.01609 0.2 3.03106 3.03076 0.3 3.04306 3.04227 
5  3.08518 3.08518  3.15726 3.15684  3.21893 3.21850 
10  3.17178 3.17070  3.31874 3.31761  3.44508 3.44418 
15  3.25961 3.25874  3.48325 3.48278  3.67524 3.67460 
20  3.34846 3.34749  3.64956 3.64825  3.90635 3.90554 
25  3.43815 3.43733  3.81654 3.81573  4.13583 4.13514 
30  3.52848 3.52771  3.98314 3.98111  4.36165 4.36073 
35  3.61924 3.61922  4.14848 4.14702  4.58248 4.58156 
40  3.71026 3.70973  4.31186 4.31132  4.79767 4.79580 

 
Table 2 
The values of 𝐻′′(1) 
𝑅 𝛾 HPM FDM 𝛾 HPM FDM 𝛾 HPM FDM 

1 0.1 −2.97164 −2.97124 0.2 −2.94832 −2.94663 0.3 −2.92881 −2.92853 
5  −2.86231 −2.86044  −2.75529 −2.75459  −2.67004 −2.66914 
10  −2.73471 −2.73455  −2.54336 −2.54335  −2.40092 −2.40096 
15  −2.61680 −2.61627  −2.36144 −2.36047  −2.18482 −2.18403 
20  −2.50814 −2.50754  −2.20647 −2.20717  −2.01329 −2.01327 
25  −2.40825 −2.40799  −2.07524 −2.07454  −1.87802 −1.87767 
30  −2.31664 −2.31602  −1.96457 −1.96494  −1.77147 −1.77148 
35  −2.23279 −2.23169  −1.87141 −1.87184  −1.68729 −1.68661 
40  −2.15618 −2.15528  −1.79301 −1.79238  −1.62126 −1.61982 

 
Table 3 
The values of 𝐻′′′(0) 
𝑅 𝛾 HPM FDM 𝛾 HPM FDM 𝛾 HPM FDM 

1 0.1 −6.07039 −6.06860 0.2 −6.12946 −6.12949 0.3 −6.17972 −6.17841 
5  −6.35720 −6.35869  −6.66471 −6.66459  −6.93170 −6.93168 
10  −6.72727 −6.72462  −7.37135 −7.36812  −7.94138 −7.93168 
15  −7.10973 −7.10784  −8.11659 −8.11639  −9.01923 −9.01875 
20  −7.50409 −7.50174  −8.89645 −8.89306  −10.15380 −10.1527 
25  −7.90973 −7.90857  −9.70658 −9.70499  −11.33320 −11.33310 
30  −8.32602 −8.32484  −10.54250 −10.53600  −12.54680 −12.54560 
35  −8.75228 −8.75438  −11.39990 −11.39620  −13.78530 −13.7842 
40  −9.18778 −9.18753  −12.27470 −12.27480  −15.04390 −15.03500 

 
Table 4 
The values of 𝐻′′′(1) 
𝑅 𝛾 HPM FDM 𝛾 HPM FDM 𝛾 HPM FDM 

1 0.1 −5.80025 −5.80306 0.2 −5.63807 −5. 63422 0.3 −5.50384 −5.50611 
5  −5.05615 −5.05086  −4.36864 −4.37014  −3.85088 −3. 84827 
10  −4.24116 −4.24125  −3.13242 −3.13691  −2.40081 −2.40746 
15  −3.54137 −3.54191  −2.21298 −2.21168  −1.45639 −1.45615 
20  −2.94383 −2.94079  −1.54154 −1.5471  −0.86164 −0.86394 
25  −2.43643 −2.43943  −1.05973 −1.05512  −0.49849 −0.49892 
30  −2.00791 −2.00790  −0.71965 −0.71788  −0.28276 −0.28546 
35  −1.64795 −1.64880  −0.48327 −0.48724  −0.15690 −0.15913 
40  −1.34714 −1.34524  −0.32124 −0.32270  −0.07271 −0.08410 
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Table 5 
The values of 𝑓′(0) 
𝑅 𝛾 HPM FDM 𝛾 HPM FDM 𝛾 HPM FDM 

1 0.1 −1.02714 −1.0405 0.2 −1.04956 −1.07363 0.3 −1.06840 −1.10122 
5  −1.13317 −1.19472  −1.23951 −1.34366  −1.32640 −1.46170 
10  −1.26030 −1.37214  −1.45998 −1.63757  −1.61826 −1.8389 
15  −1.38184 −1.53543  −1.66400 −1.89593  −1.88179 −2.16140 
20  −1.49823 −1.68688  −1.85374 −2.12758  −2.12196 −2.44594 
25  −1.60986 −1.82839  −2.03106 −2.33904  −2.34277 −2.70287 
30  −1.71708 −1.96143  −2.19755 −2.53408  −2.54739 −2.93858 
35  −1.82022 −2.08728  −2.35453 −2.71633  −2.73840 −3.15756 
40  −1.91957 −2.20666  −2.50318 −2.88785  −2.91773 −3.36269 

 
Table 6 
The values of 𝑓′(1) 
𝑅 𝛾 HPM FDM 𝛾 HPM FDM 𝛾 HPM FDM 

1 0.1 −0.95984 −0.95126 0.2 −0.92751 −0.91248 0.3 −0.90093 −0.88092 
5  −0.81349 −0.77913  −0.68298 −0.63303  −0.58787 −0.53103 
10  −0.65931 −0.60729  −0.46073 −0.40076  −0.33760 −0.28156 
15  −0.53239 −0.47331  −0.30712 −0.25316  −0.18967 −0.14839 
20  −0.42835 −0.36872  −0.20243 −0.15940  −0.10447 −0.07759 
25  −0.34344 −0.28757  −0.13203 −0.09994  −0.05654 −0.04022 
30  −0.27441 −0.22324  −0.08529 −0.06239  −0.03013 −0.02068 
35  −0.21854 −0.17342  −0.05462 −0.03877  −0.01573 −0.01055 
40  −0.17350 −0.134573  −0.03470 −0.02398  −0.00615 −0.00534 

 
5. Conclusions 
 

A careful analyses of literature review and our results makes us to conclude, Casson fluid enhance 
the efficiency of porous slider bearing. The values representing for 𝐻′′(0),𝐻′′′(0), 𝑓′(0) with fixed 
value of Casson parameter 𝛾 are increasing in magnitude as Reynolds number increases. But in case 
of 𝐻′′(1), 𝐻′′′(1), 𝑓′(1) for fixed value of 𝛾 absolute values are decreasing in magnitude with 
increasing in Reynolds numbers. It is observed that this is due to the injection effect at 𝜂 = 1. Further 
friction between two plates is greatly reduced due to lubrication of Casson fluid. Due to this, the 
application of such models is used in the growth of industry and technology.  
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