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This study deals with an unsteady three-dimensional free convection flow near the 
stagnation point region over a general curved isothermal surface placed in a nanofluid. 
Nanofluids are great scientific interest because these new thermal transport 
phenomena surpass the fundamental limits of conventional macroscopic theories of 
suspensions. Since the heat and mass transfer are very extensive in the industry, the 
unsteady three-dimensional body near stagnation point can give a significant impact 
on the heat transfer process. The main objective of the present study is to investigate 
the effects of some governing parameters on the skin friction coefficients, local Nusselt 
and local sheerwood numbers as well as related profiles of unsteady free convection 
in a nanofluid. The momentum equations in x- and y-directions, energy balance 
equation, and nanoparticle concentration equation are reduced to a set of four fully-
coupled nonlinear differential equations under appropriate similarity transformations. 
The well-known technique Keller-box method is used numerically for different values 
of governing parameters entering these equations. Further, the present results have 
been compared with the previous published results for a particular case and the 
comparisons are found to be in good agreement. The skin friction, local Nusselt 
number and Sherwood number is increases with an increase in curvature parameter. 
Rising values of the Lewis number and Brownian motion parameter has enhanced the 
flow while rising values of the buoyancy and thermophoresis parameter will decelerate 
the flow. The temperature profile is increases when Brownian motion, buoyancy and 
thermophoresis parameter increases and concentration profile increase with an 
increases in buoyancy and thermophoresis parameter. 
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1. Introduction 
 

Nowadays, problems that are related to boundary layer near stagnation point can be found in 
many high technology products. Various aspects of the flow and heat transfer problem for boundary 
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layer flow near stagnation point have been explored in many investigations. Amin and Riley [1], 
Seshadri et al., [2] and Nazar et al., [3] had been extensively investigating about the unsteady laminar 
free and mixed convection boundary layer flow in the neighbourhood of a two-dimensional and 
axisymmetric stagnation point. In steady two-dimensional stagnation-point flow of an incompressible 
fluid over a stretching sheet, Pop et al., [4] investigated theoretically by taking into account radiation 
effects using the Rosseland approximation to model the radiative heat transfer. This approximation 
leads to a considerable simplification in the radiation flux. 

The steady laminar flow of an incompressible non-Newtonian micropolar fluid at a two-
dimensional stagnation point with heat transfer has been studied by Attia [5]. This author focused 
on the effect of uniform suction or blowing directed normal to the wall [5]. Salleh et al., [6] presented 
the free convection boundary layer flow on a solid sphere with Newtonian heating. Ahmad et al., [7], 
Panigrahi et al., [8], Yasin et al., [9], Shateyi et al., [10] and Dessie et al., [11] presented a problem of 
MHD near stagnation-point and Alkasasbeh [12] explored the behaviour of the Casson fluid under 
various effect and circumstances. 

On the other hand, another work had been done by Raj et al., [13]. They focused on the effects 
of thermal radiation and variable fluid viscosity on stagnation point flow past a porous stretching 
sheet embedded in a porous medium with partial slip condition. They solved the governing equation 
numerically using the same method by Dessie et al., [11] but along with the shooting technique and 
result, they are present in graphical form [11,12]. Since then, many researchers have been working 
on the stretching or shrinking sheet with various physical conditions such as Dero et al., [14] and 
Yashkun et al., [15]. Non-axisymmetric stagnation point flow and heat transfer of a viscous fluid with 
variable viscosity on a cylinder in constant heat flux studied by Alizadeh et al., [16]. Sharma et al., 
[17] considered the unsteady two-dimensional stagnation point flow of a viscous and incompressible 
nanofluid over a permeable flat plat. They investigated the heat transfer characteristics caused by 
the stagnation-point flow of a nanofluid over a permeable flat plate using finite element method. 

Nanofluids are of great scientific interest because these new thermal transport phenomena 
surpass the fundamental limits of conventional macroscopic theories of suspensions. These fluids are 
engineered colloidal suspensions of nanoparticles in a base fluid, which is the term proposed by Choi 
[18] to describe the new class of nanotechnology-based heat transfer fluids that exhibit thermal 
properties superior to those of their base fluids or conventional particle fluid suspensions. Hassani et 
al., [19] studied an analytical research for boundary layer flow of a nanofluid past a stretching sheet 
by using Homotopy Analysis Method to solve the resulting equations. Next, laminar convective heat 
transfer of CuO/water nanofluid through an equilateral triangular duct at constant wall heat flux was 
investigated by Edalati et al., [20]. Furthermore, Hajipour et al., [21] studied about transient two-
dimensional mixed convection of nanofluids in the entrance region of a vertical channel.  

A research by Farooq et al., [22] presented an analytical result on steady free convection flow 
near the stagnation point of a three-dimensional body over a general curved isothermal surfaced 
placed in a nanofluid. The previous research about free convection flow near stagnation point in 
three-dimensional body was investigated by Admon et al., [23] by using the Keller-box method 
[22,23]. Meanwhile, Hayat et al., [24] dealt with the boundary layer flow of nanofluid over power-
law stretched surface. Khan et al., [25] investigated the three-dimensional flow of nanofluid over a 
bi-directional exponentially stretching sheet. 

In this paper, we analyze the stagnation-point flow and heat transfer in a nanofluid. This study is 
an extension of the previous article by Admon et al., [23]. Different from that considered by Admon 
et al., [23], we study three-dimensional flow near the stagnation point in a nanofluid. The impacts of 
nanofluid on the skin friction coefficient, velocity profile, temperature profile and concentration 
profile will be presented and analyzed. In practical, the investigations of the stagnation-point flow 
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and heat transfer over general curved isothermal surface in a nanofluid effects is very important and 
useful mainly in many industrial manufacturing processes. Even though many investigations on the 
stagnation-point fluid flow problems have been examined, there are still limited results found. 
 
2. Problem Formulation 
 

We consider the unsteady free convection flow near the stagnation point of a heated three-
dimensional body located in a viscous and incompressible nanofluid with a uniform temperature 𝑇∞. 
It is assumed that the constant wall temperature of the body is suddenly changed from 𝑇𝑤 to 𝑇∞, 
where 𝑇𝑤 > 𝑇∞. A locally Cartesian orthogonal system(𝑥, 𝑦, 𝑧) is chosen with the origin 𝑂 at the 
nodal stagnation point, where the x- and y-coordinates were measured along the body surface, while 
the z-coordinates was measured normal to the body surface. Under these assumptions, the 
governing equations for free convection nanofluid flow in the stagnation-point region of a three-
dimensional body are [22] 
 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0,              (1) 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= −

1

𝜌𝑓∞

+ 𝑣 (
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 +
𝜕2𝑢

𝜕𝑧2)  

        + [(1 − 𝐶∞ )𝛽(𝑇 − 𝑇∞ ) −
𝜌𝑝−𝜌𝑓∞

𝜌𝑓∞

(𝐶 − 𝐶∞ )] 𝑔𝑎𝑥,     (2) 

 
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
= −

1

𝜌𝑓∞

+ 𝑣 (
𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 +
𝜕2𝑣

𝜕𝑧2)  

             + [(1 − 𝐶∞ )𝛽(𝑇 − 𝑇∞ ) −
𝜌𝑝−𝜌𝑓∞

𝜌𝑓∞

(𝐶 − 𝐶∞ )] 𝑔𝑏𝑦,     (3) 

 

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
= 𝛼 (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
𝜕2𝑇

𝜕𝑧2) + 𝜏 {
𝐷𝐵 (

𝜕𝐶

𝜕𝑥

𝜕𝑇

𝜕𝑥
+

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝜕𝐶

𝜕𝑧

𝜕𝑇

𝜕𝑧
)

+ (
𝐷𝑇

𝑇∞
) [(

𝜕𝑇

𝜕𝑥
)

2
+ (

𝜕𝑇

𝜕𝑦
)

2
+ (

𝜕𝑇

𝜕𝑧
)

2
]
},     (4) 

 
𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
+ 𝑤

𝜕𝐶

𝜕𝑧
= 𝐷𝐵 (

𝜕2𝐶

𝜕𝑥2 +
𝜕2𝐶

𝜕𝑦2 +
𝜕2𝐶

𝜕𝑧2) + (
𝐷𝑇

𝑇∞
) (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
𝜕2𝑇

𝜕𝑧2).      (5) 

 
The initial and boundary conditions given as follows 
 
𝑡 < 0:  𝑢 = 𝑣 = 𝑤, 𝑇 = 𝑇∞, 𝐶 = 𝐶∞ for any x, y, z 
𝑡 ≥ 0:  𝑢 = 𝑣 = 0, 𝑇 = 𝑇𝑤, 𝐶 = 𝐶𝑤  𝑜𝑛  𝑧 = 0, 𝑥 ≥ 0, 𝑦 ≥ 0,  
             𝑢 = 𝑣 = 0, 𝑇 = 𝑇∞, 𝐶 = 𝐶∞  𝑜𝑛  𝑥 = 0, 𝑦 ≥ 0, 𝑧 > 0,  
             𝑢 = 𝑣 = 0, 𝑇 = 𝑇∞, 𝐶 = 𝐶∞  𝑜𝑛  𝑦 = 0, 𝑥 ≥ 0, 𝑧 > 0,                                     
             𝑢 = 𝑣 = 0, 𝑇 = 𝑇∞, 𝐶 = 𝐶∞   𝑜𝑛  𝑧 → ∞, 𝑥 ≥ 0, 𝑦 ≥ 0.                                  (6) 
 

Here, t represents time, u, v, w are the velocity components along the x-, y-, z-axis, respectively, 
T is the fluid temperature, g is the magnitude of the gravity acceleration, 𝛼denoted as the coefficient 
of thermal diffusivity, while 𝑣 and 𝛽 are labelled as kinematic viscosity and volumetric coefficient of 
thermal expansion. C is the nanoparticle volume fraction, the thermophoretic diffusion coefficient 
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and the Brownian diffusion coefficient denoted by 𝐷𝑇 and 𝐷𝐵, and a and b are the parameters of the 
principal curvature at O of the body measured in the plane x and y, respectively. 

A little inspection shows that Eq. (1)-(5) along with the boundary conditions (6) admit a semi-
similar solution of the form [22,23] 
 

𝜂 = 𝐺𝑟
1
4𝑎𝜉

−1
2 𝑧, 𝑢 = 𝜈𝑎2𝑥𝐺𝑟

1
2𝑓 ′(𝜉, 𝜂), 𝑣 = 𝜈𝑎2𝑐𝑦𝐺𝑟

1
2ℎ′(𝜉, 𝜂), 

𝑤 = −𝜈𝑎𝐺𝑟
1
4𝜉

1
2(𝑓 + 𝑐ℎ), 𝜃(𝜉, 𝜂) =

(𝑇 − 𝑇∞)

(𝑇𝑤 − 𝑇∞)
, 𝜙(𝜉, 𝜂) =

(𝐶 − 𝐶∞)

(𝐶𝑤 − 𝐶∞)
 

𝜉 = 1 − 𝑒−𝜏, 𝜏 = 𝜈𝑎2𝐺𝑟
1

2𝑡            (7) 
 
Substitution of Eq. (7) in Eq. (2) - (5) gives 
 

𝑓‴ + (1 − 𝜉)
𝜂

2𝜉
𝑓″ + 𝜉[(𝑓 + 𝑐ℎ)𝑓″ − (𝑓 ′)2] + 𝜉𝜃 − 𝜉

𝑁𝑟

𝑃𝑟𝐺𝑟
𝜑 = 𝜉(1 − 𝜉) (

𝜕𝑓′

𝜕𝜉
)      (8) 

 

ℎ‴ + (1 − 𝜉)
𝜂

2𝜉
ℎ″ + 𝜉[(𝑓 + 𝑐ℎ)ℎ″ − (𝑐ℎ′)2] + 𝜉𝜃 − 𝜉

𝑁𝑟

𝑃𝑟𝐺𝑟
𝜑 = 𝜉(1 − 𝜉) (

𝜕ℎ′

𝜕𝜉
)      (9) 

 

𝜃″ + 𝑃𝑟(1 − 𝜉)
𝜂

2
𝜃 ′ + 𝜉𝑃𝑟(𝑓 + 𝑐ℎ)𝜃 ′ + 𝑁𝑏𝜃 ′𝜑′ + 𝑁𝑡(𝜃 ′)2 = 𝜉𝑃𝑟(1 − 𝜉)

𝜕𝜃

𝜕𝜉
               (10) 

 

𝜑″ + 𝐿𝑒𝑃𝑟(1 − 𝜉)
𝜂

2
𝜑′ + 𝜉𝐿𝑒𝑃𝑟(𝑓 + 𝑐ℎ)𝜑′ +

𝑁𝑡

𝑁𝑏
𝜃″ = 𝜉𝐿𝑒𝑃𝑟(1 − 𝜉)

𝜕𝜑

𝜕𝜉
                (11) 

 

where primes denote partial differentiation with respect to 𝜂, 𝐺𝑟 =
(1−𝐶∞)𝑔𝛽(𝑇𝑤−𝑇∞)

𝑎3𝑣2  is the Grashof 

number, 𝑃𝑟 =
𝜈

𝛼
 is the Prandtl number, 𝑐 =

𝑏

𝑎
 where 𝜈 =

𝜇

𝜌
 , 𝑁𝑏 =

𝜏𝐷𝐵(𝐶𝑤−𝐶∞)

𝛼
 is the Brownian motion 

parameter, 𝑁𝑟 =
(𝜌𝑝−𝜌𝑓∞)(𝐶𝑤−𝐶∞)

𝑎3𝛼𝜇
 is the buoyancy parameter and 𝑁𝑡 = 𝜏

𝐷𝑇

𝑇∞

(𝑇𝑤−𝑇∞)

𝛼
 is the 

thermophoresis parameter.  
 
The boundary conditions (6) become 
 

𝑓(𝜉, 0) = 𝑓 ′(𝜉, 0) = 0, ℎ(𝜉, 0) = ℎ′(𝜉, 0) = 0, 𝜃(𝜉, 0) = 𝜙(𝜉, 0) = 1,  
𝑓 ′ → 0, ℎ′ → 0, 𝜃 → 0, 𝜙 → 0  𝑎𝑠  𝜂 → ∞  
for 0 ≤ 𝜉 < 1.                        (12) 
 

The physical quantities of practical interest in this problem are the skin friction coefficient in the 
x- and y-directions, 𝐶𝑓𝑥 and 𝐶𝑓𝑦 and the Nusselt number, 𝑁𝑢, and Sherwood number, Sh, that are 

defined as 
 

𝐶𝑓𝑥 =
𝜇(

𝜕𝑢

𝜕𝑧
)

𝑧=0

𝜌𝜈2𝑎3𝑥
, 𝐶𝑓𝑦 =

𝜇(
𝜕𝑣

𝜕𝑧
)

𝑧=0

𝜌𝜈2𝑎3𝑐𝑦
,  

𝑁𝑢 =
𝑎−1(

𝜕𝑇

𝜕𝑧
)

𝑧=0

𝑇𝑤−𝑇∞
, 𝑆ℎ =

𝑎−1(
𝜕𝐶

𝜕𝑧
)

𝑧=0

𝐶𝑤−𝐶∞
,                     (13)  

 
where 𝜌 and 𝜇 are the density and dynamic viscosity, respectively. In terms of the non-dimensional 
variables, we have 
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𝐶𝑓𝑥𝜉
1
2

𝐺𝑟
3
4

= 𝑓″(𝜉, 0),
𝐶𝑓𝑦𝜉

1
2

𝐺𝑟
3
4

= ℎ″(𝜉, 0), 

𝑁𝑢𝜉
1
2

𝐺𝑟
1
4

= −𝜃 ′(𝜉, 𝜂),
𝑆ℎ𝜉

1
2

𝐺𝑟
1
4

= −𝜙′(𝜉, 𝜂).                      (14) 

 
For the unsteady-initial flow case, where 𝜉 is small that is 𝜉 ≈ 0, Eq. (8) - (11) become to the following 
form 
 

𝑓‴ +
𝜂

2
𝑓″ = 0,  ℎ‴ +

𝜂

2
ℎ″ = 0, 

𝜃″ + 𝑃𝑟
𝜂

2
𝜃 ′ + 𝑁𝑏𝜃 ′𝜙′ + 𝑁𝑡(𝜃 ′)2 = 0, 

𝜙″ + 𝐿𝑒𝑃𝑟
𝜂

2
𝜙′ +

𝑁𝑡

𝑁𝑏
𝜃″ = 0.                       (15)  

 
subject to the boundary conditions 
 

𝑓(0) = 𝑓 ′(0) = 0, ℎ(0) = ℎ′(0) = 0, 𝜃(0) = 1, 𝜑(0) = 1 
𝑓 ′(∞) = 0, ℎ′(∞) = 0, 𝜃(∞) = 0, 𝜑(∞) = 0                    (16) 
 
For final steady-state case, where 𝜉 = 1, Eq. (8) - (11) become to the following form 
 

𝑓‴ + (𝑓 + 𝑐ℎ)𝑓″ − (𝑓 ′)2 + 𝜃 −
𝑁𝑟

𝑃𝑟𝐺𝑟
𝜑 = 0,                     (17) 

 

ℎ‴ + (𝑓 + 𝑐ℎ)ℎ″ − (𝑐ℎ′)2 + 𝜃 −
𝑁𝑟

𝑃𝑟𝐺𝑟
𝜙 = 0,                    (18) 

 

𝜃″ + 𝑃𝑟(𝑓 + 𝑐ℎ)𝜃 ′ + 𝑁𝑏𝜃 ′𝜙′ + 𝑁𝑡(𝜃 ′)2 = 0,                    (19) 
 

𝜑″ + 𝐿𝑒𝑃𝑟(𝑓 + 𝑐ℎ)𝜙′ +
𝑁𝑡

𝑁𝑏
𝜃″ = 0,                      (20) 

 
subject to the boundary conditions (16). These equations are identical with those first found by Poots 
[26]. 
 
3. Results and Discussions 
 

The two sets of Eq. (8) - (11) and (17) -(20) subject to the boundary conditions (12) and (16) were 
solved numerically using Keller-box method described in book by Cebeci et al., [27]. Result are 
obtained of Prandtl number, 𝑃𝑟 (𝑃𝑟 = 0.72, 1), Grashof number, 𝐺𝑟(𝐺𝑟 =  −1, 1), Lewis number, 
𝐿𝑒(𝐿𝑒 = 1, 5, 10), Brownian motion parameter, 𝑁𝑏(𝑁𝑏 = 0.00001, 0.1, 0.2), buoyancy parameter, 
𝑁𝑟(𝑁𝑟 = 0, 0.1, 0.2), thermophoresis parameter, 𝑁𝑡(𝑁𝑡 = 0, 0.1, 0.2), c = 0 (plane stagnation point), 
0.5 and 1 (axisymmetric stagnation point) and the values of 𝜂 = 10 is enough to satisfied the 
boundary conditions. To access the exact of the solutions, the present results for the reduced skin 
friction coefficients 𝑓′′(0) and ℎ′′(0), and heat transfer from the surface of the body, −𝜃′(0) are 
compared with Admon et al., [23]. Table 1 is presented for 𝑃𝑟 = 0.72 and c = 0 (plane stagnation 
point) and 1 (axisymmetric stagnation point). It can be conclude that agreement between the present 
results for the case 𝜉 = 1 (final steady-state flow), and Admon et al., [23] obtained using finite-
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difference method are excellent. It can be concluding that all these results are in very good 
agreement.  
 

Table 1 
Comparison of the skin frictions 𝑓′′(0), ℎ′′(0) and heat flux rate −𝜃′(0) for 𝜉 = 1 (final steady-state), Pr = 
0.72 and various values of c 

 c = 0 c = 1 

Admon et al., [23] Present result Admon et al., [23] Present result 

𝑓′′(0) 
ℎ′′(0) 
−𝜃′(0) 

0.855909 
1.080763 
0.374102 

0.856447 
1.077572 
0.373870 

0.764685 
0.764685 
0.462223 

0.764712 
0.764712 
0.462259 

 
Figure 1 illustrates the graph of the skin friction coefficients, local Nusselt and local sheerwood 

number for various values of c keeping the other parameters such as Pr = Gr = Le = 1.0 and Nt = Nr = 
Nb = 0.1. It can be seen in this figure that the skin friction coefficients reach their maximum values in 
the stagnation point under the boundary layer effects and the increase in the value of c raised the 
skin friction. Besides that, the analysis of the parameter c on the heat and mass transfer depicts the 
increase in the values of c will increases the Nusselt number and the Sherwood number but when 
values of c more than 0.9 and reaches to 1 (axisymmetric stagnation point) result shows the values 
of Nusselt and Sherwood number slowly decrease. 

 
Fig. 1. Graph of skin friction coefficient, Nusselt and Sherwood 
number. 𝑁𝑏 = 𝑁𝑡 =  𝑁𝑟 = 0.1 and Le = 1.0 

  
Graph of skin friction coefficient for varying Nr in Figure 2 reveals the effects of Nr and Nt on the 

skin friction for value Gr = -1.0 and 1.0. For Gr = 1.0, the temperature at the stagnation points 𝑇𝑤 is 
greater than the ambient fluid temperature 𝑇∞ that is 𝑇𝑤 > 𝑇∞. When the values of Nr increase, the 
values of density and nanoparticles mass difference also increase. For Gr = -1.0, the ambient fluid 
temperature greater than temperature at stagnation point, 𝑇∞ > 𝑇𝑤 the result also shows the values 
of density and nanoparticle mass difference increase.  

Figure 3 describes the effect of Nt on skin friction coefficient. For Gr = 1.0, the increase in the 
values of Nr will increase the skin friction for both 𝑓″(0)and ℎ″(0). For Gr = -1.0, the result also 
increase for both 𝑓″(0)and ℎ″(0) same like Gr = 1.0. It can be summarizing that both values of Gr 
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increase when Nr = 0 and 0.2 but the value of Gr = 1.0 higher than Gr = -1.0 in the graph. For Figure 

4, the result demonstrates that Gr =1.0 increase for both skin friction 𝑓″(0)and ℎ″(0)for values of Nr 
= 0 and 0.2. For Gr =-1.0, the result also shows raised the skin friction but it lower than Gr =1.0. 

 
Fig. 2. Graph of skin friction coefficient for Nb = 0.2, Le = Pr 
= 1.0 and c = 0.5 with varying Nt and Gr 

 
Fig. 3. Graph of skin friction coefficient for Nb = 0.2, Le = Pr = 
1.0 and c = 0.5 with varying Nr and Gr 

 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Nr

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nt

y

𝑁𝑡 = 0, Gr= -1   

𝑁𝑡 = 0.2, Gr= -1   

 𝑁𝑡 = 0, Gr= -1   

 𝑁𝑡 = 0.2, Gr= -1   

 

𝑁𝑡 = 0.2, Gr=1   

 𝑁𝑡 = 0.2, Gr= 1   

 

𝑁𝑡 = 0, Gr=1   

 

𝑁𝑡 = 0, Gr=1   

 

𝑓′′(0) 

 

ℎ′′(0) 

 

𝑁𝑟 = 0, Gr= 1   

𝑁𝑟 = 0, Gr= 1   

𝑁𝑟 = 0.2, Gr= 1   

𝑁𝑟 = 0, Gr= -1   

𝑁𝑟 = 0.2, Gr= -1   

𝑁𝑟 = 0, Gr= -1   



CFD Letters 

Volume 12, Issue 6 (2020) 80-92 

87 
 

 
Fig. 4. Graph of skin friction coefficient for Nt =0.2, Le = Pr = 
1.0 and c = 0.5 varying Nr and Gr 
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addition, increase values of Nb will reduce thermal diffusivity therefore decrease the mass transfer 
and concentration profiles.  

 
Fig. 5. Velocity profile in x- and y-direction for various 𝜉 with Nr = Nt = 0, Nb= 0.001, 
Gr = Pr = 1.0, c = 0.5 and various values of Le 

 
Fig. 6. Temperature and concentration profile 𝜃(𝜂) and 𝜙(𝜂)for various 𝜉 with Nr = 
Nt = 0, Nb = 0.001, Gr = Pr = 1.0, c = 0.5 and various values Le 

 
Fig. 7. Velocity profile in x- and y-direction for various 𝜉 with Nt = Nb = 0.1, Le = Gr = 
Pr = 1.0, c = 0.5 and various values of Nr 
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Fig. 8. Temperature and concentration profile 𝜃(𝜂) and 𝜙(𝜂)for various 𝜉 with Nt = Nb 
= 0.1, Le = Gr = Pr = 1.0, c = 0.5 and various value of Nr 

 
Fig. 9. Velocity profile in x- and y-direction for various 𝜉 with Nr = Nb = 0.1, Le = Gr = 
Pr = 1.0, c = 0.5 and various values of Nt 

 
Fig. 10. Temperature and concentration profile 𝜃(𝜂) and 𝜙(𝜂) for various 𝜉 with Nr 

= Nb = 0.1, Le = Gr = Pr = 1.0, c = 0.5 and various values of Nt 
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Fig. 11. Velocity profile in x- and y-direction for various 𝜉 with Nr = Nt = 0.1, Le = Gr = 
Pr = 1.0, c = 0.5 and various values of Nb 

 
Fig. 12. Temperature and concentration profile 𝜃(𝜂) and 𝜙(𝜂)for various 𝜉 with Nr 

= Nt = 0.1, Le = Gr = Pr = 1.0, c = 0.5 and various values of Nb 

 
4. Conclusions 
 

The problem of unsteady flow and heat transfer of free convection boundary layer flow near the 
stagnation-point region in the presence of nanoparticles is studied numerically. The governing 
equations are non-dimensionalized using proper non-dimensional quantities. The resulting boundary 
value problem is solved by Keller-box method. The effects of the various values of the pertinent 
parameters 𝑐, 𝑁𝑏, 𝑁𝑡, 𝑁𝑟, and Le on the fluid velocity, temperature profile, and concentration profile 
are illustrated through graphs. We may extract some important findings from our results 
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v. The increase in the values of Nr, Nt, and Nb increase the temperature while quite the opposite 
is true for Le. 

vi. The increase in the values of Nr and Nt will increase the concentration profiles.  
vii. The increase in the values of Le and Nb will decrease the concentration profiles. 

 
We may conclude the flow and heat transfer properties of free convection boundary layer flow 

in the stagnation-point region in the presence of nanoparticles can be controlled by changing the 
quantity of the physical parameters. Hence Keller-box is very effective method to solve strongly 
nonlinear problems. 
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