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The Williamson stagnation nanofluid flow over a stretching/shrinking surface with 
active and passive control are numerically studied. The main focus of the present study 
is to investigate the impacts of partial slip and suction at the boundary on the velocity, 
temperature, and nanoparticle volume fraction profiles and heat transfer 
characteristics. It is crucial to analyze the fluid flow and heat transfer problems with 
the inclusion of partial slip and suction effects due to an extensive variety of 
applications in the industry. The governing partial differential equations are reduced 
to a set of coupled nonlinear ordinary differential equation systems using non-
dimensional variables and then it is solved using the boundary value problem solver 
(bvp4c) in MATLAB. Results show that both velocity and nanoparticle volume fraction 
increase as the suction parameter increases while the temperature acts in the opposite 
manner. The magnitude of the reduced skin friction coefficient, the reduced Nusselt 
number and the reduced Sherwood number are notably increased for the first solution 
with the increasing suction parameter. It is seen that the nanofluid velocity increases 
as the partial slip parameter increases whereas the temperature and nanoparticle 
volume fraction of the nanofluid are decreased. As partial slip parameter enhanced, 
the reduced skin friction coefficient has decreased while the magnitude of both the 
local Nusselt number and the local Sherwood number are increasing. Dual solutions 
exist up to a certain range of the stretching/shrinking parameter in the shrinking flow 
region. The critical values of stretching/shrinking parameter increases with the 
increasing in suction and partial slip effect strength suggest that both parameter 
widens the range of dual solutions exist. Physically, the increment of the suction and 
slip effects has delayed the boundary layer separation. The first solution is found to be 
stable and physically applicable but the second solution is not based on the literature 
for the similar problem presented by researchers. 
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1. Introduction 
 

The nanofluid has brought a revolutionary change in the field of fluid dynamics. These are types 
of modern fluids that include a based fluid and nano-particles. The term “nanofluid” was first coined 
by Choi [1] by suspending different nanoparticles into base fluids. It was reported that nanofluid has 
much better thermal properties than their base fluids. Additionally, nanofluid plays a key role to meet 
the cooling rate requirements with high thermal conductivity.  

Over the last few years, many researchers have investigated the attribute of nanofluid and its 
heat transfer enhancement capability. Researchers employed nano materials to improve the 
efficiency of heat transfer fluids. One of the popular nanofluid model was introduced by Buongiorno 
[2]. He found that the absolute velocity of nano-particles was the resultant of the velocity of the base 
fluid and slip velocity of the nano-particles. He reported the seven slip mechanisms i.e. 
thermophoresis, fluid drainage, magnus effects, inertia, gravity, diffusiophoresis and Brownian 
diffusion. At the end, he concluded that the Brownian diffusion and thermophoresis are the main slip 
mechanisms. Since the pioneering work by Buongiorno [2], the study of flow of a nanofluid in 
different kinds of aspects and boundary conditions generate much interest among researchers. For 
example, Wakif et al., [3] applied the Buongiorno nanofluid model to study the thermal radiation and 
surface effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid 
nanofluids. Effects of viscous dissipation and magnetic field on fluid flow and heat transfer in a 
nanofluid has been analyzed by Sheri and Thumma [4], Thumma et al., [5], and Rout et al., [6]. Khan 
et al., [7] investigated the heat transfer performance of nanofluid in the presence of non-linear 
radiation. They examined the velocity slip and magnetic field effects on the nanofluid flow. They 
found that the heat transfer rate decreases as the power-law increases. Ali et al., [8] solved the heat 
and mass transfer mechanism for Carreau nanofluid flow due to a radially stretching/shrinking sheet. 
One significant from their study is the heat and mass transfer rates are raised by higher Weissenberg 
number for the first solution while the opposite trend for the second solution. Recently, Hamid et al., 
[9] simulated the fluid flow over a past a continuously moving thin needle immersed in a nanofluid 
by means of bvp4c collocation formula. They performed stability analysis to examine which solution 
stable and physically realizable. Different from other studies, Dero et al., [10] successfully obtained 
triple solutions for the problem of MHD micropolar nanofluid boundary layer flows over an 
exponentially stretching/shrinking sheet with radiation and suction effect using the Buongiorno 
nanofluid model by employing shooting method. 

There are several other non-Newtonian fluid models, for example pseudoplastic fluids and Casson 
fluids. In heat transfer applications, Casson fluids are widely used in the processing of chocolate, 
foams, syrups, nail, toffee, and many other foodstuffs (see Ramachandra Prasad et al., [11]). 
Recently, Alkasasbeh [12] examined the steady laminar MHD natural convection flow suspended 
micropolar Casson fluid over a solid sphere by using the Keller-box method. However, in non-
Newtonian fluids, the most commonly found fluids are pseudoplastic fluids. The flow of layers of 
pseudoplastic fluids is of great interest because of its wide range of applications in a sector such as 
the extrusion of polymer sheets, emulsion-coated sheets such as high molecular weight photographic 
films, solutions and melts weight of polymers, etc (Nadem et al., [13]). Williamson [14] analyzed the 
flow of pseudoplastic materials. He proposed a model to describe the flow of pseudoplastic fluids 
and experimentally verified the results. Pseudo-plastic fluids get better results when both the 
minimum and maximum effective viscosities are considered in the Willaimson fluid model. Nadeem 
et al., [13] were the first who investigated the two-dimensional boundary layer equation for the flow 
of the Williamson fluid past a stretching sheet. The problem is solved analytically with the help of the 
Homotopy analysis method (HAM). Nadeem and Hussain [15] analyzed the nanoparticle effect on the 
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boundary layer flow of the Williamson fluid over a stretching surface. The governing non-linear 
equations are solved analytically with the help of the homotopy analysis method (HAM). Halim et al., 
[16] were the first to solve Williamson’s nanofluid flow fields involving active and passive solvents 
regulating the normal mass flow in the flow signal. The expression of passive control on nanoparticles 
was previously proposed by Kuznetsov and Nield [17] to investigate the passive control of the normal 
mass flux on the flow characteristics towards a stretching surface. Most recently, Hamid et al., [18] 
analyzed the physical properties of Williamson fluid flow due to a stretching/shrinking surface. They 
have obtained multiple solutions for the flow fields and also found that the range of dual solutions 
exist expand with unsteadiness parameter. 

Recently, many researchers investigated the aspect of heat transfer and flow problems with 
suction because of the numerous industrial applications. It was reported that the suction or injection 
plays an important role in aerodynamics and space science for example to control the fluid flow on 
the surface of the subsonic aircraft (Uwanta & Hamza [19]). Suction or injection (blowing) of a fluid 
through the bounding surface can significantly change the flow field. In general, suction tends to 
increase the skin friction, whereas injection acts in the opposite manner. The effect of suction on 
MHD natural convective flow of nanofluid over a stationary and moving inclined porous plate by 
considering temperature and concentration gradients has been investigated by Thumma et al., [20].  

Another physical effect to be considered in this study is the partial slip effect. It is known that the 
slip-flow condition in a Newtonian fluid over a linearly stretching sheet was first introduced by 
Andersson [21]. No-slip condition is one of the main ideas in developing the Navier-Stokes theory. 
However, in some non-Newtonian fluids, the no-slip condition is found to be inadequate. This is 
because of some polymer melt often gives microscopic wall slip and has a controlling influence by a 
nonlinear and monotone relation between the slip velocity and the traction. Slip impacts can happen 
at the boundary of pipes, walls, curved surfaces etc (Prasannakumara et al., [22]). There are certain 
cases, for example, particulate fluids and rarefied gases can occur slip between the boundary and the 
fluid (see Shidlovskiy [23], Yoshimura & Prudhomme [24]. Thus, this present study has been 
motivated by the fact that partial slip effect has many applications for example the cleaning of 
artificial heart valves and inside cavities (Alblawi et al., [25]). Mahian et al., [26] stated that the partial 
slip effect has great applications in many industrial developments of the boundaries of pipes, walls 
or curved surfaces. The study of slip, viscous dissipation and Joule heating effects on 
magnetohydrodynamic Jeffery in a nanofluid has been conducted by Thumma and Mishra [27]. 
Thumma et al., [28], Bég et al., [29], and Thumma and Mishra [30] investigated the effect of heat/sink 
on flow and heat transfer in a nanofluid over a non-linear inclined stretching/shrinking sheet, from 
an oscillating inclined porous plate with variable temperature, and with convective conditions past a 
stretching sheet, respectively. Since no attempt has been made to examine the hybrid effects of 
suction and partial slip effects on a steady stagnation point flow of Williamson nanofluid towards a 
linearly stretching/shrinking sheet with both active and passive controls on the wall mass flux, this 
present study is conducted. 

Motivated from the above-mentioned studies, the objective of the present study is to analyze the 
effects of partial slip and suction on Williamson stagnation point flow over a stretching/shrinking 
sheet with active and passive control in nanofluid. The effects suction and partial slip on velocity, 
temperature, concentration, skin friction, local Nusselt number and local Sherwood number are also 
thoroughly examined and presented in graphs and tables. This present study is basically the extension 
of the work done by Halim et al., [16]. Different from that investigated by Halim et al., [16], we 
consider partial slip and suction in a nanofluid with active and passive controls on the wall mass flux. 
Comparisons with previous results are presented and found in good agreement. In practical, the 
studies of the stagnation-point flow and heat transfer past a stretching/shrinking sheet in the 
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presence of partial slip and suction effects are very significant and useful especially in many industrial 
manufacturing processes. Even though various kinds of research on the stagnation-point fluid flow 
have been considered, there are still limited published articles identified on the partial slip and 
suction impacts. We believe that the present numerical results are new and have not been published 
elsewhere. 

 
2. Methodology  
 

Consider the steady two-dimensional boundary layer flow of an incompressible Williamson 

nanofluid past a horizontal linearly stretching/shrinking sheet with the linear velocity  wu x cx , 

where c  is a constant and x  is the coordinate measured along the stretching/shrinking sheet, as 

shown in Figure 1. The flow takes place at 0y  , where y  is the coordinate measured normal to the 

stretching/shrinking sheet.  
 

 
(a) (b) 

Fig. 1. Physical model of present study (a) Stretching sheet; (b) Shrinking sheet 

 
It is assumed that at the stretching/shrinking sheet, the temperature T  and the nanoparticle 

volume fraction C take constant values wT  and wC , respectively. The ambient temperature and 

concentration, attained as y  tending to infinity are denoted by T  and C , respectively while the 

ambient fluid is moving with a velocity  eu x ax , where a  is positive constant. The nanoparticle 

volume fraction for passively controlled mass flux is defined separately by the temperature gradient 
resulting in zero nanoparticles normal flux. Under the above assumptions, the basic steady 
conservation of mass, momentum, thermal energy and nanoparticles equations for Williamson 
nanofluids can be written in Cartesian coordinates x  and y  as confirmed by Nadem et al., [13], 

Nadeem and Hussain [15], and Halim et al., [16]. 
 

,0
u v

x y

 
 

 
                                                  (1) 
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                                  (4) 

 
where u  and v  are the velocity components in the x  and y  directions, respectively,   is the 

kinematic viscosity, 0 0
x


     0x   is a time constant,   is the thermal diffusivity, c  and p pc  

are heat capacities of nanofluid and nanoparticles respectively, BD  is the Brownian diffusion 

coefficient and TD  is the thermophoretic diffusion coefficient. The nanoparticle volume fraction at 

the surface is controlled passively by the temperature gradient resulting in zero nanoparticles normal 
flux.  

The new boundary conditions for the flow are given as (see Halim et al., [16]): 
 

 w slipu u x U  ,     wv v ,      wT T ,       at 0y  ,                                                          (5) 

 

0T
B

DC T
D

y T y

 
 

 
(Passive control of  ),  wC C (Active control of  )   at 0y  ,                         (6)   

                                 

 eu u x ax  ,   T T ,   C C ,      as y .                                                          (7) 

  
Here,   is the stretching/shrinking parameter with 0   for stretching case, 0   for the 

shrinking case, and 0  for the static sheet, respectively, wv  is the constant mass flux velocity with 

0wv     for suction and 0wv     for injection. Furthermore, it is assumed that slipU  is the slip velocity 

at the sheet, which is given by Fang et al., [31]. 
 

slip

u
U A

y





                                                                                                   (8) 

 
where A  is the dimensional slip coefficient. 

The governing equations in Eqs. (1) – 4) can be transformed to a set of coupled nonlinear ordinary 
differential equations by introducing the following non-dimensional variables (see Halim et al., [13]). 
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where   is the stream function which satisfies Eq. (1) 

 

 u cxf
y





 


      and       v cv f

x





   


,                                                                    (12) 

 
By substituting Eqs. (9)-(12) into Eqs. (2)-(4), the following coupled nonlinear ordinary differential 

equations will be obtained 
 

 
2 2 0f f ff r f f         ,                                                                      (13) 

 

 
2
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bt

N N
f

Le LeN
,                                                                     (14) 

 

1
0.c

bt

S f
N

                                                                                          (15) 

 
The corresponding boundary conditions in Eqs. (5)-(7) become 

 

 0f  ,       0 0f f    ,       0 1  ,                                                       (16) 

 

   0 0 0c
c

bt

N
N

N
    (Passive control of  ),   0 =1 (Active control of  ) ,                                  (17) 

 

 f r   ,      0   ,        0   ,                                                                      (18) 

 

where primes denote the differentiation with respect to  .  Here r a c  is the stagnation parameter, 

Pr   is the Prandtl number, BeL D  is the Lewis number, BcS D  is the Schmidt number,

A c    denotes the slip parameter and  
1 2

wv cv    is the suction/injection parameter where 

0   corresponds to suction and 0   for injection. The following non dimensional parameters are 

introduced by Nadeem and Hussain [15], and Halim et al., [16]. 
 

32c
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c
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



                                          (19) 

      

Here,   is the non-Newtonian Williamson parameter, cN  is the heat capacity ratio between 

nanoparticle heat capacity and nanofluid heat capacity while btN  is the diffusivity ratio between 

Brownian diffusivity and thermophoretic diffusivity. It is important to note that we redefined the 

Williamson parameter   by introducing the term 0 0
x


     to eliminate x  (see Halim et al., [16]).  

The physical quantities of interest are the reduced skin friction coefficient, 
xCf , the reduced 

Nusselt number, 
xNu  and the reduced Sherwood number, 

xSh  which can be defined as (see Halim 

et al., [16]). 
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where the wall shear stress w , wall heat flux wq  and the wall mass flux mq are given by (see Halim 

et al., [16]). 
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By using Eqs. (9)-(11), (20) and (21), we obtain  

 

   
21/2Re " 0 " 0

2x xCf f f


  ,  1/2Re ' 0x xNu   ,    1/2Re ' 0x xSh  ,                                               (22) 

 

where  Re /x wu x x   is the local Reynolds number. 

 
3. Numerical Method: Bvp4c Solver 
 

The Williamson stagnation nanofluid flow and heat transfer over a stretching/shrinking sheet 
with inclusion suction and partial slip is investigated using appropriate governing equations. The 
governing PDEs in Eqs. (2)-(4) are reduced to a set of coupled nonlinear ODEs in Eqs. (13)-(15) by 
means of non-dimensional variables and then solved using the boundary value problem bvp4c solver 
in MATLAB. The purpose of reducing ODEs is to make it simpler in finding numerical solutions. In this 
section, we will discuss in detail the implementation of the bvp4c for the present problem. 

It was reported by Hale [32] that the development and implementation of the bvp4c solver has 
been founded by Kierzenka and Shampine [33]. They developed the bvp4c solver to solve the 
boundary layer problem for a coupled nonlinear ordinary differential equation in easier technique. 
The bvp4c solver routine is a finite difference code that employs three order Lobatto IIIa formula 
which provides a fourth-order numerical solution. 

The first and second solutions were obtained after solving the coupled nonlinear ordinary 
differential equations in Eqs. (13)-(15) subject to boundary conditions in Eqs. (16)-(18). Dual solutions 

obtained by setting different initial guess or different values of boundary layer thicknesses 
max while 

the velocity, temperature and nanoparticle volume fraction profiles satisfy the infinity boundary 
conditions in Eq. (18) asymptotically but with different shapes. 
 
STEP 1: Introduce new variables for the following coupled nonlinear ODES in Eqs. (13)-(15): 
 

     
   
   

1 , 2 , 3 ,
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y f y f y f
y y
y y

 
 

   
 
 

                                                                                                                                   (23) 

 
STEP 2: Write the new variables Eq. (23) into first order system of equations: 
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STEP 3: Transform the boundary conditions in Eqs. (16)-(18) according to new variables introduced: 
 

       
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, , ,

Passive control , Active control

, ,

                                                  (25) 

 

Here, the subscript a  represents the position on the sheet, that is 0  and subscript b

represent the condition far from the sheet, for example 10  .  

 
STEP 4: Write first order system of equations in Eq. (24) with boundary conditions in Eq. (25) in 
MATLAB software using bvp4c solver with two different guessing values to obtain dual solutions. 
Using the bvp4c solver, providing an initial guess for the first solution is easy since the solution will 
converge to the first solution even for poor guesses. This contrary to the initial guesses for the second 
solution. 
 
4. Results and Discussion 
 

The coupled nonlinear ordinary differential equations in Eqs. (13) – (15) subject to boundary 
conditions in Eqs. (16)-(18) are solved using the bvp4c solver in MATLAB software. The code is 
developed based on the finite difference method and is used to solve boundary value problems for 
ordinary differential equations by the collocation method (Halim et al., [13]). In the present study, 

the parameter values used are fixed as follows: Pr 10 , 2btN  , 0.5cN  , 4Le  , 0.2  , 2Sc   and 

1r  . To ensure the accuracy of the present results, comparison has been made with the available 
published results of Halim et al., [16] in the absence of the suction and slip effects as tabulated in 
Tables 1 and 2. The comparisons are found to be in good agreement, and thus we are confident that 
the present numerical results are correct and accurate. It was established by Merkin [34], Weidman 
et al., [35], Harris et al., [36] and Adnan et al., [37] that for various problems, the common ordinary 
differential equations generally reported the existence of multiple solutions, whereby the upper 
branch solution is stable and the lower branch solutions are not stable. Hence, we expect this finding 
hold to the present study and the process of validating the stability of solutions is not repeated here. 
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Table 1 

Results comparison for 
1/2Rex xCf  and 

1/2Rex xNu 
for both active and passive control with different values of 

r when Pr 10 , 2btN  , 0.5cN  , 4Le  , 0.2  , 2Sc  and 1   in the absence of suction  0  and 

slip effect  0  . 

 1/2Rex xCf  1/2Rex xNu  

r  Halim et al., [16] Present results Halim et al., [16] Present results Halim et al., [16] Present results 
   Active Passive 

0.2 -0.885587 -0.885587 2.223107 2.223107 2.316252 2.316251 
0.3  - -0.821908  - 2.240288  - 2.335781 
0.5 -0.650677 -0.650676 2.282267 2.282267 2.382625 2.382625 
0.7  - -0.426639  - 2.330306  - 2.435468 
1.0 0.000000 0.000000 2.407227 2.407226 2.519242 2.519242 
1.2 0.341642 0.341641  - 2.459335 2.575648 2.575648 
1.4  - 0.727524  - 2.511044  - 2.631444 
1.5 0.936789 0.936788 2.536589 2.536588 2.658957 2.658956 
1.6  - 1.156825  - 2.561871  - 2.686159 

 

Numerical solutions for the skin friction coefficient 1/2Rex xCf , the reduced Nusselt number 
1/2Rex xNu  and the reduced Sherwood number 1/2Rex xSh   for several parameters are tabulated for 

the passive control of mass transfer in Tables 3 and 4. Following Thumma et al., [20], we used a 

suction parameter values between [0,2] in Table 3 where 0  indicates no suction effect. Also, 

following the work done by Sharma et al., [38], the partial slip parameter used must be non-negative 
values. Thus, the partial slip parameter used in the present study between [0.5,3] as tabulated in 

Table 4. Table 3 shows the values of 1/2Rex xCf , 1/2Rex xNu   and 1/2Rex xSh  for passive control with 

different values of   when Pr 10 , 2,btN  , 0.5cN  , 4Le  , 0.2  , 2Sc  , 1  , 1r   and 

2    (shrinking sheet). From Table 3, we notice that the increasing values of suction parameter   

are likely to increase the values of  1/2Rex xCf , 1/2Rex xNu  and 1/2Rex xSh  for the first solution, while 

the opposite behavior is shown for the second solution. However, the values of 1/2Rex xCf  decrease 

for the second solution. Table 4 shows the values of 1/2Rex xCf , 1/2Rex xNu  and 1/2Rex xSh  for different 

values of   for fixed parameters: Pr 10 , 2btN  , 0.5cN  , 4Le  , 0.2  , 2Sc  , 1r  , 0.5 

and 2    (shrinking sheet) in the passive control condition. It is notified that from Table 4 the dual 

solution exists with the first and second solutions, and the values of 1/2Rex xNu  and 1/2Rex xSh  

increase with the increasing slip parameter   for the first solution. Conversely, the values of 1/2Rex xCf  

decrease as parameter   increases for the first solution. 
Figures 2-4 show the effects of suction parameter   towards the velocity, temperature and 

nanoparticle volume fraction profiles for passive control when Pr 10 , 2btN  , 0.5cN  , 4Le  , 

0.2  , 2Sc  , 1r  , 1  and 2   (shrinking). It is observed that the velocity and nanoparticle 
volume fraction increase as   increases, while the temperature reacts in the opposite manner for 

the first solution. As depicted in Figure 2, with the increasing suction strength in flow, as the external 
heat velocity increases, heat is dispersed faster around it, reducing the temperature of the fluid (see 
Figure 3). Moreover, the momentum boundary layer thickness is also decreasing and in turn the 
velocity gradient at the surface has increased as illustrated in Figure 2. From Figure 3, the thermal 
boundary layer thickness and surface temperature are also decreased. As consequence, the 
temperature gradient at the surface is increasing. 
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Table 2 

Results comparison for 1/2Rex xSh for both active and passive control with different values of r  when Pr 10 ,

2btN  , 0.5cN  , 4Le  , 0.2  , 2Sc   and 1   in the absence of suction  0  and slip effect  0   

 1/2Rex xSh  

r  Halim et al., [16] Present results Halim et al., [16] Present results 
 Active Passive 

0.2 0.11880 0.118880 -1.158126 -1.158125 
0.3   - 0.144955    - -1.167890 
0.5 0.196667 0.196666 -1.191313 -1.191312 
0.7   - 0.245265    - -1.217734 
1.0 0.311215 0.311214 -1.259621 -1.259621 
1.2   - 0.350948 -1.287824 -1.287824 
1.4   - 0.387772    - -1.315722 
1.5 0.405215 0.405214 -1.329478 -1.329478 
1.6   - 0.422068    - -1.343079 

 
Table 3 

The values of 1/2Rex xCf , 1/2
eR 

x xNu and 1/2
eR 

x xSh for passive control with different values of    when 

Pr 10 , 2btN  , 0.5cN  , 4Le  , 0.2  , 2Sc  , 1r  , 2    and 1   

  1/2Rex xCf  1/2
eR 

x xNu  1/2
eR 

x xSh  

0 
1.575097287 
(0.835478581) 

0.303031445 
(0.000000023) 

-0.151507226 
(-0.000000012) 

0.3 
1.819832429 
(0.650826081) 

2.780826834 
(0.00000009) 

-1.390413417 
(-0.000000004) 

0.5 
1.942836993 
(0.558498556) 

4.840158604 
(0.00000003) 

-2.420079302 
(-0.000000015) 

0.8 
2.096478604 
(0.435597378) 

7.921538187 
(0.00000858) 

-3.960769093 
(-0.000000429) 

1.0 
2.184623620 
(0.357019219) 

9.953386623 
(0.000016063) 

-4.976693312 
(-0.000008031) 

1.5 
2.370331950 
(0.154079963) 

14.98597889 
(0.075949089) 

-7.492989445 
(-0.037974544) 

( ) dual solution 

 
Table 4 

The values of 1/2Rex xCf , 1/2
eR 

x xNu and 1/2
eR 

x xSh for passive control with different values of   when 

Pr 10 , 2btN  , 0.5cN  , 4Le  , 0.2  , 2Sc  , 1r  , 2     and 0.5     

  1/2Rex xCf  1/2
eR 

x xNu  1/2
eR 

x xSh  

0.5 
2.090585631 
(1.110190642) 

2.787418707 
(0.001698732) 

-1.383709354 
(-0.000849366) 

1 
1.942836993 
(0.558498556) 

4.840158604 
(0.0000003) 

-2.420079302 
(-0.000000015) 

1.5 
1.545344892 
(0.392237104) 

5.356379321 
(0) 

-2.678189660 
(0) 

2 
1.255073481 
(0.305573746) 

5.607480600  
(0) 

-2.803740300 
(0) 

2.5 
1.049168281 
(0.251438545) 

5.756030567 
(0) 

-2.878015283 
(0) 

3 
0.898580622 
(0.214123717) 

5.854025737 
(0) 

-2.927012869 
(0) 

( ) dual solution 
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Figure 4 shows that nanoparticle volume fraction increases with the increasing in  . Generally, 

it is noticed that the suction effect has a great impact on the concentration profile as it is shown in 
Figure 4. It is seen that the suction effect causes the nanoparticle volume fraction gradient on the 
surface. As a result, the magnitude of the reduced Sherwood number is expected to be increased. 
 

  
Fig. 2. The velocity profiles  f   for different 

values of   in shrinking case                 

Fig. 3. The temperature profiles     for 

different values of   in shrinking case 

 

 
Fig. 4. The nanoparticle volume fraction profiles     

for different values of   shrinking case 

 

Figures 5-7 demonstrate the variation of 1/2Rex xCf , 1/2Rex xNu   and 1/2Rex xSh   with   for different 

values of   in passive control when Pr 10 , 2btN  , 0.5cN  , 4Le  , 0.2  , 2Sc  , 1   and 

1r  . These figures indicate that the dual solutions exist in the shrinking region for a certain range of 
the stretching/shrinking parameter  . The first solution meets the second solution at a particular 

point or specifically the critical value   is denoted by c . It appears that, the solution domain 

increases with c   which shifted to the left as the suction parameter    increases. Based on our 

findings, the critical values   for 0,0.5   and 1.5  are 2.239c   , 2.920 and 04.82 , respectively. 

Thus, it is justified that the boundary layer separation has been delayed with the increment of  .  

From Figure 5, it seems that the values of 1/2Rex xCf  increase as   increases for the first solution, 

while the opposite trend is shown for the second solution. This observation occurs due to the fact 
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that as   increases, the wall shear stress decreases, the fluid velocity increases and as the result, the 

velocity gradient decreases at the surface, consistent with the graph presented in Figure 2.  On the 

other hand, Figure 6 points out that the heat transfer rate at the surface represented by 1/2Rex xNu   is 

enhanced due to the increasing suction effect for both solutions. Physically, this phenomenon occurs 
because of the decreasing thermal boundary layer thickness due to the suction effect, then it 
increases the temperature gradient on the surface and in turn it causes more fluid to move away 

from the boundary layer. This finding is consistent with the temperature profile     presented in 

Figure 3.  

Figure 7 displays that the values of magnitude of 1/2Rex xSh   increase as   increases for the first 

solution. With the addition of the suction effect, the nanoparticle volume fraction boundary layer 
thickness is reduced, thereby increasing the nanoparticle volume fraction of fluid and as a result it 
increases the nanoparticle volume fraction gradient on the surface which is consistent with the 

nanoparticle volume fraction profile     illustrated in Figure 4. From Figures 2-3, it is noticed that 

the velocity gradient, temperature gradient, and nanoparticle concentration gradient increase with 
the reduction in momentum, thermal and concentration boundary layer thicknesses as   increases. 

It is worthy to highlight that the decrement of these boundary layers tends to enhance the skin 
friction coefficient, the heat transfer, and the mass transfer rate at the surface which consistent with 
the graph exhibited in Figures 5-7. 

 

  
Fig. 5. Variation of 

1/2Rex xCf  with   for different 

values of    

Fig. 6. Variation of 1/2Rex xNu   with   for different 

values of    

 
Fig. 7. Variation of the local Sherwood number 1/2Rex xSh   

with   for different values of   
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The effects of the partial slip parameter  on the velocity, temperature and nanoparticle volume 

fraction for passive control when 4Le  , 0.2  , 2Sc  , 1r  , 0.5  , Pr 10 , 2btN  , 0.5cN   and 

2   (shrinking) are exhibited in Figures 8 –10 . In Figure 8, when the values of  increase, the fluid 
velocity for the first solution is increased, then heat is dispersed more quickly in the surrounding and 
as the consequence, the fluid temperature is reduced, as shown in Figure 9.  This phenomenon occurs 
because of the increasing partial slip parameter has accelerated the fluid inside the boundary layer. 
From Figure 10, the temperature is found to be decreased with increasing in   indicating that a 
shrinking sheet heat the boundary layer. Figure 10 displays that a similar trend is recognized for the 
nanoparticle volume fraction profile to that in Figure 9 for temperature profile. As partial slip 
parameter increases, nanoparticle volume fraction is depressed. 

Similar to the suction effect on the domain of the solution, the critical value   moves to the left 
side as the slip parameter   increases. Based on the numerical computation obtained, the critical 

values   are as follows for 0.5  , 1.5and 2.5  is 2.120c   , 3.780  and 5.539 , respectively. We 

can say that the partial slip effect also widens the range of the existing dual solution and indirectly 
delays the separation of the boundary layer. 

 

  
Fig. 8. The velocity profiles  f  for different 

values of   in shrinking case                                                                           

Fig. 9. The temperature profiles     for different 

values of   in shrinking case 
 

 

 
Fig. 10. The nanoparticle volume fraction profiles     

for different values of  in shrinking case 
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Figures 11-13 exhibit the variation of 1/2Rex xCf , 1/2Rex xNu   and 1/2Rex xSh   with   for different 

values of  when Pr 10 , 2btN  , 0.5cN  , 4Le  , 0.2  , 2Sc  , 1r  and 0.5   for passive 

control. In detail, Figure 11 shows the variation of the skin friction coefficient with   for different 
values of the partial slip parameter  . It is observed that the reduced skin friction coefficient 

1/2Rex xCf  increases when   increases. The results also indicate that the skin friction coefficient is 

larger on the shrinking surface compared to that of the stretching surface. In Figure 12, the effects of 

  on the reduced Nusselt number which represents the heat transfer rate are presented. It is noted 
that the rate of heat transfer is increasing as   increases for the first solution. It is also revealed that 
the range of dual solution exists, also expands to the left as   increase suggests that the partial slip 
effect widens the range of the dual solution. Also, it is observed that the heat transfer on the 
stretching surface is higher than the heat transfer on the shrinking surface as illustrated in Figure 12.  

 

  
Fig. 11. Variation of 1/2Rex xCf  with  for different 

values of   in shrinking case                                                                                         

Fig. 12. Variation of 1/2Rex xNu   with  for different 

values of   in shrinking case 
 

Based on Figure 12, it is also expected that the values of 1/2Rex xNu   gradually increase and remain 

at a constant value as   increases. Referring to Figure 13, it can be seen that the magnitude of the 

reduced Sherwood number 1/2Rex xSh   increases as  increases for the first solution. From Figures 8-

10, the reduction in momentum, thermal and concentration boundary layers thicknesses with the 
increase in partial slip strength tend to enhance the skin friction coefficient, the reduced Nusselt 
number, and the reduced Sherwood number as displayed in Figures 11-13. 

Finally, the velocity, temperature and nanoparticle volume fraction profiles shown in Figures 2-4, 
8-9 and 10 fulfill the far field boundary conditions in Eqs. (16)-(18) asymptotically, which gives 
confidence to the numerical results of the present study and the existence of the dual solutions 
attained. 
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Fig. 13. Variation of the local Sherwood number 

1/2Rex xSh   with  for different values of    

 
5. Conclusions 
 

The problem of a two-dimensional steady stagnation point flow of an incompressible Williamson 
nanofluid is solved numerically on both the shrinking and stretching surfaces. This present study 
focuses only on the passive control on the wall mass flux. Both conditions of zero and nonzero normal 
fluxes are introduced at the surface while considering the effects of both Brownian motion and 
thermophoresis for validation and to obtain new numerical results. The numerical results are 
produced by converting the governing partial differential equations into a set of coupled nonlinear 
ordinary differential equations. Two main effects considered in this study namely, the partial slip 
parameter and the suction parameter. Numerical solution is obtained by using the boundary value 
problem solver bvp4c in MATLAB software. Furthermore, the impacts of partial slip parameter and 
the suction parameter over the skin friction coefficient, the reduced Nusselt number and the reduced 
Sherwood number are presented through tables and graphs. The main results of the present study 
are listed below: 

 
I. Both velocity and nanoparticle volume fraction increase as the suction parameter 

increases while the temperature acts in the opposite manner. 
II. The velocity increases as the partial slip parameter increases whereas temperature and 

nanoparticle volume fraction decrease. 
III. The magnitude of the skin friction coefficient, the reduced Nusselt number and the 

reduced Sherwood number are notably increased for the first solution with the increasing 
suction parameter. 

IV. An increase in partial slip parameter decreases the skin friction coefficient but the 
opposite is true in the reduced Nusselt number and the reduced Sherwood number. 

V. The increment of the suction and partial slip effects has increase the range of dual 
solutions exist and indirectly delayed the boundary layer separation. 

VI. The reduction in momentum, thermal and concentration boundary layers thicknesses 
with the increase in partial slip and suction impacts tend to enhance the skin friction 
coefficient, the reduced Nusselt number, and the reduced Sherwood number. 

VII. Dual solutions exist up to a specific range of the stretching/shrinking parameters in the 
shrinking region. 

VIII. The first solution is found to be stable and physically applicable but the second solution is 
not based on the literature for the similar problem presented by other researchers. 
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