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This paper deals with a stagnation-point boundary layer flow and heat transfer of a 
Casson fluid towards a stretching/shrinking sheet. The main objective of the present 
study is to analyse the effects of the injection parameter and heat source on the 
velocity and temperature profiles as well as the skin friction coefficient and the Nusselt 
number. It is vital to study the heat transfer and fluid flow problems in the presence of 
injection and heat source effects due to a wide variety of applications in engineering 
and industry. The governing nonlinear partial differential equations are transformed 
into a system of nonlinear ordinary differential equations by using similarity 
transformation, before being solved numerically using the boundary value problem 
solver bvp4c routine in MATLAB. Dual solutions are found to exist for the shrinking 
sheet case, whereas the solution is unique for the stretching case. The stability analysis 
has been performed to determine the stable solution. It is shown that the first 
solutions are stable and physically reliable while the second solutions are not. Further, 
the present results have been compared with the previous published results for a 
particular case and the comparisons are found to be in good agreement. The local 
Nusselt number is decreases with an increase in heat source parameter. Rising values 
of the injection parameter has decreases both the skin friction coefficient and the local 
Nusselt number. 
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1. Introduction 
 

Stagnation-point is a rest point in the moving fluid. The stagnation-point region encounters the 
highest pressure, the highest heat transfer and the highest rates of mass decomposition, exists on all 
solid bodies moving in a fluid (Patel and Timol [1]). Hiemenz was the first who examined the two-
dimensional flow of a fluid near a stagnation-point. He was demonstrated that the governing flow 
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equations of Navier-Stokes equations can be reduced to an ordinary differential equation of third 
order using similarity transformation. Stagnation-point flow is continuing to be an interesting area of 
research among scientists and investigators due to its importance in a wide variety applications both 
in industrial and engineering processes such as cooling of electronic devices by fans, cooling of 
nuclear reactors during emergency shutdown, polymer extrusion, wire drawing and drawing of 
plastic sheets (Makinde et al., [2]). Since then, many investigators have extended the idea to different 
aspect of the stagnation-point flow problems. Nandy and Pop [3] studied the effects of magnetic field 
and thermal radiation on the stagnation flow and heat transfer of a nanofluid over a shrinking 
surface. Later, Fauzi et al., [4] investigated the effect of the slip parameter on the stagnation-point 
flow and heat transfer over a nonlinear shrinking sheet. Besides that, the problem of the stagnation-
point flow of Maxwell fluid towards a permeable surface in the presence of nanoparticles has been 
considered by Ramesh et al., [5]. Furthermore, Mahapatra and Gupta [6] studied the steady two-
dimensional stagnation-point flow of an incompressible viscous fluid over a flat deformable sheet 
when the flow is started impulsively from rest and suddenly stretched in its own plane with a velocity 
proportional to the distance from the stagnation-point. Nazar et al., [7] presented the unsteady two-
dimensional stagnation-point flow of an incompressible viscous fluid over a flat deformable sheet 
when the flow is started impulsively from rest and suddenly stretched in its own plane with a velocity 
proportional to the distance from the stagnation-point. More studies on the stagnation-point flow 
include those by Othman et al., [8], Rehman et al., [9], Naganthran et al., [10] and Sharma et al., [11]. 

Problems involving fluid flow over stretching or shrinking surfaces can be found in many industrial 
manufacturing processes such as hot rolling, paper production, metal spinning, drawing plastic films, 
glass blowing, continuous casting of metals and spinning of fibers (Roşca and Pop [12]). Due to the 
numerous applications, the study of stretching/shrinking sheet was subsequently extended by many 
authors to explore various aspects of skin friction coefficient and heat transfer in a fluid. For example, 
Yasin et al., [13] numerically examined the steady two-dimensional magnetohydrodynamic flow past 
a permeable stretching/shrinking sheet with radiation effects. Recently, Naganthran et al., [14] 
investigated the unsteady stagnation-point flow and heat transfer of a special third grade fluid past 
a permeable stretching/shrinking sheet. Since then, many researchers have been working on the 
stretching or shrinking sheet with various physical conditions such as Alam et al., [15], Jamaludin et 
al., [16], Jusoh et al., [17], Nasir et al., [18], Seth et al., [19], Hamid et al., [20], Soid et al., [21], Dero 
et al., [22] and Yashkun et al., [23]. 

Casson fluid is defined as a shear thinning liquid which is assumed to have an infinite viscosity 
when rate of shear is zero, a yield stress below which no flow occurs and a zero viscosity at an infinite 
rate of shear (Dash et al., [24]). Casson fluid is one of the non-Newtonian fluids, which has attracted 
much attention because of their extensive variety of applications in engineering and industry 
especially in extraction of crude oil from petroleum products, production of plastic materials and 
syrup drugs (Animasaun et al., [25]). Hayat et al., [26] investigated the mixed convection stagnaton-
point flow of a Casson fluid with convective boundary conditions. On the other hand, Bhattacharyya 
[27] analyzed the steady boundary layer stagnation-point flow of a Casson fluid and heat transfer 
towards a stretching/shrinking sheet. This work has been extended by Kameswaran et al., [28] with 
the inclusion of Soret and Dufour effects over a stretching sheet. Afterwards, the researcher explored 
the behaviour of the Casson fluid under various effect and circumstances (see El-Aziz and Yahya [29], 
Abdul Hakeem et al., [30], Khan et al., [31], Maity et al., [32], Medikare et al., [33], Raju and Sandeep 
[34-35], Raju et al., [36], Rehman et al., [37], Shateyi et al., [38], and Alkasasbeh [39]). 

In this paper, we analyze the behavior of the stagnation-point flow and heat transfer towards a 
stretching/shrinking sheet with heat source and injection effects in a Casson fluid. This study is an 
extension of the previous work done by Bhattacharyya [27]. Different from that investigated by 
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Bhattacharyya [27], we consider the injection effect and heat source effects into flow. The effects of 
injection and heat source on the velocity profile, temperature profile, skin friction coefficient and 
local Nusselt number will be presented and discussed. The dual solutions are expected to exist for 
the shrinking case. A temporal stability analysis is conducted to verify which solution is stable and 
has real physical implication. Practically, the investigations of the stagnation-point flow and heat 
transfer over a permeable stretching/shrinking sheet with the inclusion of injection and heat source 
effects is very significant and beneficial particularly in many industrial manufacturing processes. Even 
though many investigations on the stagnation-point fluid flow problems have been examined, there 
are still limited published results and articles found on the injection and heat source impacts. We 
believe that the present results are new, original and have not been published elsewhere. 
 
2. Methodology  
 

Consider the steady two-dimensional stagnation-point flow of an incompressible Casson fluid 
located at 0y  , with the flow being confined in 0y  . It is assumed that the velocity of the 

stretching/shrinking sheet is  wu x ax , where 0a   is for the stretching sheet and 0a    is for the 

shrinking sheet, while the free stream velocity is  eU x bx  where b  is a positive constant. We also 

assume that the surface temperature wT  is constant. The physical model and the coordinate system 

is shown in Figure 1, where the x-axis is taken along the direction of the stretching/shrinking sheet 
and the y  axis is measured normal to it. The rheological equations of the state for an isotropic and 

incompressible flow of the Casson fluid is given by (see Bhattacharyya [27,40]) 
 

 

 

,

,

2 2  ,

2 2  ,

B y ij c

ij

B y c ij c

p e

p e

   


   

  


 
 



                      (1) 

  
where B  is plastic dynamic viscosity of the non-Newtonian fluid, 

yp  is the yield stress of fluid,   is 

the product of the component of deformation rate with itself, namely ,ij ije e   ije  is the  ,i j  -th 

component of deformation rate and c  is a critical value of   based on non-Newtonian model. 

 

 
(a) (b) 

Fig. 1. Physical model and coordinate system: (a) Stretching sheet, (b) Shrinking sheet 

 
Under above conditions, the boundary layer equations can be written as: 
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u v
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                                     (2) 
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



   
    

   
          (3) 

 

 
2

0

2
,

p p

QT T T
u v T T

x y C y C



 


  
   

  
                     (4) 

 
where u  and v  are the velocity components in the x  and x  directions, respectively,   is the 

kinematic viscosity, 2B c yp    is the Casson fluid parameter,   is the thermal diffusivity,   

is the density, 
pC  is the specific heat and 

0Q  is the temperature dependent heat 

generation/absorption. 
 

We assume that Eqs. (2)-(4) are subjected to the boundary conditions: 
 

       

     

0 ,

,

,0 ,    ,0 ,    ,0

, ,    ,      .

w w

e

u x u x v x v T x T

u x y U x T x y T y

  

  as
                                                                                          (5) 

 
We look for a similarity solution of Eqs. (2) - (4) of the following form: 
 

     

1
1 2
2 ,  ,  ,e

e

w

UT T
xU f y

T T x
     






  
    

  
                    (6) 

 

where  ,x y  is the stream function defined as u
y





 and v
x


 


, which identically satisfies 

Eq. (2). By substituting Eq. (6) into Eqs. (3) and (4), the following ordinary differential equations are 
obtained: 
 

21
1 ''' '' ' 1 0,f ff f



 
     

 
                                   (7) 

 

 '' Pr ' 0.f Q                                        (8) 

 
The boundary conditions in Eq. (5) become 

 

     

   

0 ,  ' 0 ,  0 1,

' 1,  0  .

f f

f

  

   

  

  as
                                                                                                                 (9) 
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Here, Pr
pC


  is the Prandtl number, 0

p

Q
Q

C b
 is the heat source parameter, 0 0

b





    

is the injection parameter, a b   is the stretching  0   or shrinking   0  parameter and 

prime denotes differentiation with respect to  . 

The physical quantities of interest are the skin friction coefficient, fC   and the local Nusselt 

number, 
xNu  which are defined as 

 

   2
,  .w w

f x

e w

xq
C Nu

u x k T T



 

 


                                (10) 

 

Here, w  is the skin friction or surface shear stress along the plate and 
wq  is the heat flux from 

the plate which are given by 
 

0 0

,  ,w w

y y

u T
q k

y y
 

 

    
     

    
                                (11) 

 
where k  is the fluid thermal conductivity. 
 

Substituting Eq. (6) into Eq.  (11) and using Eq. (10), the following expression are obtained 
 

   1/2 1/21
Re 1 '' 0 ,  Re ' 0 ,x f x xC f Nu 



 
    
 

                              (12) 

 

where Re e
x

U x


  is the local Reynolds number. 

 
3. Stability Analysis 
 

Following Weidman et al., [41], to study the temporal stability of the solutions of Eqs. (7)-(8) 
subject to boundary conditions in Eq. (9), we consider the unsteady case for Eqs. (3)-(4) which are 
replaced by 

 
2

2

1
1 ,e

e

dUu u u u
u v U

t x y dx y




    
     

    
                               (13) 

 

 
2

0

2
,

p p

QT T T T
u v T T

t x y C y C



 


   
    

   
                              (14) 

 
where t   denotes the time. The new similarity transformation of the unsteady-state problem by 
considering dimensionless time variable    is introduced as 
 



CFD Letters 

Volume 12, Issue 6 (2020) 1-15 

6 
 

   

   

,  , ,  , ,

, ,  .w

b f
y u bx v b f

T T T T bt

     
 

    


   



   

                                                                                         (15) 

 
By substituting Eq. (15) into Eqs. (13) and (14), the following equations are obtained: 
 

23 2 2

3 2

1
1 1 0,

f f f f
f

     

      
        

       
                                          (16) 

 
2

2

1
0,

Pr
f Q

  


  
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   
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                                                        (17) 

 
subject to boundary conditions 
 

     0, ,  0, ,  0, 1,
f

f      



  


 

   , 1,  , 0,  as .
f
     




  


                                                                                                        

(18) 

 

To test the stability of the steady flow and heat transfer solution,    0f f   and 

   0     satisfying the boundary value problem in Eqs. (7)-(9), let us write (see Weidman et al., 

[41]) 
 

     

     

0

0

, ,

, ,

f f e F

e G





   

     





 

 
                                                                                                                       (19) 

 

where   is an unknown eigenvalue, and  F   and  G   are small relative to  0f   and  0  . 

Solutions of the eigenvalue problem in Eqs. (16)-(18) give an infinite set of eigenvalues 
1 2 3     

…, if 1  is negative, there is an initial growth of disturbances and the flow is unstable but when 1  is 

positive, there in an initial decay and the flow is stable.  
By substituting Eq. (19) into Eqs. (16) and (17), one obtains the following linearized problem: 

 

 ''' '' '' ' '

0 0 0

1
1 2 0,F f F f F f F



 
      

 
                                                       (20) 

 

 '' ' '

0 0

1
0,

Pr
G f G F Q G                                                              (21) 

 
along with the following boundary conditions: 
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     

   

'

'

0 0,  0 0,  0 0,

0, 0  .

F F G

F G  

  

  as
                                                                                                                 (22) 

 
It should be mentioned that for particular values of Pr , Q ,   and  , the stability of the 

corresponding steady flow solution  0f   and  0   is determined by the smallest eigenvalue .  

 
4. Results  
 

The ordinary differential Eqs. (7) and (8) subject to the boundary conditions in Eq. (9), were solved 
numerically using the bvp4c function in Matlab software. The results from the numerical solution are 

presented in terms of the skin friction coefficient 1/2Rex fC , the local Nusselt number (represents the 

heat transfer rate) 1/2Rex xNu  velocity profile, ( )f    and temperature profile,     for different 

values of the non-dimensional parameters, namely the injection parameter  , stretching/shrinking 

parameter   and heat source parameter Q , while the Prandtl number Pr  is fixed at Pr 1   for the 

comparison. 
For the validation purpose, we have compared the numerical results with those reported by 

Mahapatra and Gupta [6], and Bhattacharyya [27]. Table 1 shows the comparison values of  ' 0   

with those of Mahapatra and Gupta [6] for the case of a stretching sheet without injection and heat 

source effects by setting     and 0Q   in Eqs. (7) and (8),  ' 0 1f   and  0 0f    in the 

boundary conditions in Eq. (9) and 1a c    in Eqs. (12)-(13) of the paper by Mahapatra and Gupta 

[6]. The present results were also compared with those obtained by Bhattacharyya [27] for the case 

of Newtonian fluid case    , without heat source  0Q   in Eqs. (7) and (8), injection effect is 

absent, i.e.  0 0f   in the boundary conditions in Eq. (9)  and 1c a   in Eq. (10) of the paper by 

Bhattacharyya [27] for several values of   as presented in Table 2. Both comparisons are found to 
be in a very good agreement, and thus we are confident that the present numerical results are correct 
and accurate. 
 

Table 1 

Comparison of the values  ' 0   with those of Mahapatra and Gupta [6] 

for the case of a stretching sheet in Newtonian fluid case without injection 
and heat source effects by setting    and 0Q   in Eqs. (7) and (8), 

 ' 0 1f   and  0 0f   in the boundary conditions in Eq. (9) and taking 

1a c    in Eqs. (12)-(13) of the paper by Mahapatra and Gupta [6] 

Pr  Mahapatra and Gupta [6] Present study 

0.05 -0.178 -0.178413806 
0.1  -0.252313245 
0.5 -0.563 -0.564189588 
1.0 -0.796 -0.797884572 
1.5 -0.974 -0.977205026 
2.0  -1.128379165 
3.0  -1.381976604 
4.0  -1.595769135 
5.0  -1.784124125 
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Figures 2-4 demonstrate the variation of the skin friction coefficient 1/2Rex fC and the local Nusselt 

number 1/2Rex xNu  with   for some values of   and Q  when   and Pr  are fixed. For these Figures 

2-4, the solid lines representing first (upper branch) solution while the dotted lines indicate the 
second (lower branch) solution.  Based on Figures 2-4, the dual solutions exist for a certain range of 
the shrinking strength. Thus, there is a necessity to conduct the stability analysis to verify which 
solution could be utilized in the real world phenomena. A stability analysis is carried out by solving 
eigenvalue problems in Eqs. (20)-(21) with boundary conditions in Eq. (22). The stable solution is 
identified based on the positive smallest eigenvalues  , whereas the unstable solution is recognized 
based on the negative smallest eigenvalues  . Positive values of   gives an initial decay of 
disturbance which results in a stable flow, whereas negative values of   results in the growth of 

disturbance and causes an unstable flow. For the present problem, the smallest eigenvalues, 1  at 

several values of    when 5,   0.2    and Pr 1Q   are tabulated in Table 3, which reports 

that the smallest eigenvalues are 1 0    for the first solution and 1 0   for the second solution. So, 

the first solution is stable and is physically reliable while the second solution is unstable. 
 

Table 2 

Comparison of the values  '' 0f  with those of Bhattacharyya [27] for 

the case of Newtonian fluid case    , without heat source effect 

 0Q  in Eqs. (7) and (8), neglecting injection effect   0 0f   in the 

boundary conditions in Eq. (9)  and taking c a    in Eq. (10) of the 

paper by Bhattacharyya [27] for both stretching/shrinking sheet 
  Bhattacharyya [27] Present study 

0 1.2325878 1.232587653 
0.1 1.1465608 1.146560998 
0.2 1.0511299 1.051129992 
0.3  0.946816117 
0.4  0.834072086 
0.5 0.7132951 0.713294954 
0.8  0.306094758 
1.0 0 0 
-0.25 1.4022405 1.402240807 
-0.5 1.4956697 1.495669765 
-0.6  1.507024704 
-0.7  1.500360770 
-0.75 1.4892981 1.489298235 
-0.8  1.472388354 
-0.9  1.418077379 
-1.0 1.3288169 (0) 1.328816865 (0) 
-1.05  1.266227907 (0.012177915) 
-1.1 1.1866806 (0.0492286) 1.186680255 (0.049228945) 
-1.15 1.0822316 (0.1167023) 1.082231137 (0.116702101) 
-1.2 0.9324728 (0.2336491) 0.932473321 (0.233649679) 
-1.22  0.845110242 (0.308849262) 
-1.24 0.7066020 (0.4356712) 0.706605223 (0.435672076) 

  ( ) second solution 
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Table 3 

Smallest eigenvalue, 1  for some values of   when 5,  0.2   and Pr 1Q   

  First solution (Upper branch), 1  Second solution (Lower branch), 1  

-1.1 0.6984 - 
-1.13 0.5215 - 
-1.16 0.2521 -0.2388 
-1.163 0.2084 -0.1993 
-1.166 0.1535 -0.1485 
-1.169 0.0633 -0.0625 
-1.1693 0.0457 -0.0453 
-1.1696 0.0136 -0.0136 

 
Figures 2 and 3 show the variations of the skin friction coefficient and the local Nusselt number, 

respectively, for different values of injection parameter  . From Figures 2-3, it is found that it is 

possible to obtain dual solutions of the similarity equations in Eqs. (7) and (8) subject to the boundary 

conditions in Eq. (9). These Figures 2-3 indicate that there are dual solutions for 1c    , unique 

solutions for 1    and no solutions obtained for 0c   , where c  is the critical values of   for 

which Eqs. (7) and (8) have no solutions and the full Navier–Stokes and energy equations should be 

solved. Based on our computation, the critical values c  obtained for 0, 0.2    and 0.4  are 

1 1.24657c   , 2 1.16962c    and 3 1.10580c   , respectively as shown in Figures 2- 3. 

Figure 2 reveals the skin friction coefficient 1/2Rex fC  appears to decrease with increasing 

magnitude of injection parameter  . This is because of injection effect that decreasing the surface 

shear stress, delay the fluid flow and thus, decrease the velocity gradient at the surface which is 

consistent with the graph in Figure 5. As it can be seen in Figures 2 and 3, the values of c   increase 

with decreasing of magnitude   suggests that reducing injection effect increases the range of 

existence of solutions to the similarity equations in Eqs. (7) and (8) subject to boundary conditions in 
Eq. (9). Physically, decreasing   appears to delay the boundary layer separation. 

 

 
Fig. 2. Variation of the skin friction coefficient 

1/2
Rex fC  with   for different 

values of   when Pr 1 , 1Q   and 5   
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Figure 3 displays the variation in the local Nusselt number as a function of the stretching/shrinking 
parameter   with some values of the injection parameter . As the magnitude of   increases, the 

temperature gradient at the surface decreases. As a result, the heat transfer rate at the surface 
decreases with the increasing magnitude of injection parameter.   

 

 
Fig. 3. Variation of the local Nusselt number 1/2

Rex xNu
  with   for different 

values of   when Pr 1 , 1Q   and 5   

 

Figure 4 shows the influence of the heat source parameter Q   on the local Nusselt number. It is 

noticed that the values of 1/2Rex xNu , which indicate the heat transfer rate at the surface decrease 

with an increase in Q .  

 

 
Fig. 4. Variation of the local Nusselt number 1/2

Rex xNu
  with   for different 

values of Q  when Pr 1 , 0.2    and 5   
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Figures 5 and 6 show the effect of the injection parameter   on the dimensionless velocity and 

temperature profiles, respectively. It is seen that the boundary layer thickness for the second solution 
is higher than that of the first solution, as depicted in Figures 5 and 6.  Meanwhile, Figures 5 and 6 
show that increasing magnitude of   is to increase the momentum and thermal boundary layer 

thicknesses for the first solutions and thus decreasing the velocity and temperature gradients, in 
consequence decreases the skin friction coefficient and the heat transfer rate at the surface which 
are consistent with the graphs in Figures 2 and 3. In contrast, the second solution shows an opposite 
trends. 

 

 
Fig. 5. The velocity profiles  'f    for different values of    when Pr 1

, 1Q  , 5  and 1.1     (shrinking case) 

 

  
(a) (b) 

Fig. 6. The temperature profiles      for (a) first solution and (b) second solutionfor different values of    

when Pr 1 , 1Q  , 5   and 1.1    (shrinking case) 

 
It is clear that the temperature decreases as the value of heat source increases as plotted in Figure 

7. This is due to the fact that additional energy is generated in the boundary layer in the presence of 
heat source. This additional energy increases the thickness of the thermal boundary layer, so that 
decreases the temperature gradient and in consequences the heat transfer rate at the surface is 
enhanced (reduce) which is consistent with the graph in Figure 4.  
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(a) (b) 

Fig. 7. The temperature profiles     for (a) first solution and (b) second solution for different values of 

Q  when Pr 1 , 0.2   , 5   and 1.1    (shrinking case) 

 
Furthermore, it is worth highlighting that in all Figures 5-7 presented here, the velocity and 

temperature profiles satisfy the far field boundary conditions in Eq. (9) asymptotically. This helps to 
validate the numerical results of the boundary value problem in Eqs. (7)-(9) and the existence of the 
dual solutions presented in Figures 2-4. 
 
5. Conclusions 
 

In this paper, the problem of the stagnation-point flow and heat transfer over a 
stretching/shrinking sheet with heat source and injection effect in a Casson fluid was investigated 
and solved numerically using bvp4c in MATLAB. The analysis shows that the skin friction coefficient 
and the local Nusselt number as well as the velocity and temperature were influenced by injection 
parameter, stretching/shrinking parameter and heat source parameter. The skin friction coefficient 
was not affected by heat source effect. It is also found that the local Nusselt number decreases with 
an increase in heat source parameter. The skin friction coefficient and the heat transfer rate at the 
surface decrease as the magnitude of injection parameter increases. Dual solutions were found to 
exist for the certain range of shrinking strength and the unique solution was exist for the stretching 
case. The stability analysis has been conducted to show that the first solution is stable, whereas the 
second solution is unstable. 
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