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The study on the effects of biological fluids in the presence of magnetic field is known 
as biomagnetic fluid dynamics (BFD) and the most common biological fluid that exhibit 
such magnetic properties is blood. An extensive research work has been done in this 
area due to its applications in medical and bioengineering. Basically, it is essential for 
a study to be justified according to certain benchmark before progressing. Hence, 
biomagnetic fluid flow in a lid driven cavity is numerically investigated by utilizing two 
numerical schemes: finite difference and finite element methods. The formulation 
adopted is consistent with the principles of ferrohydrodynamics. The mathematical 
model describes Newtonian blood flow under the influence of a spatially varying 
magnetic field. The model considers the biofluid as non-conducting. The flow is 
assumed to be two-dimensional, steady, laminar and isothermal. The implementation 
of finite element method shows stability issue due to extremely steep magnetic field 
gradient while finite difference method shows no issue. Due to this, a solution is 
proposed to alleviate the problem and the result for various magnetic field intensity 
presented.  
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1. Introduction 
 

The fluid dynamics of biological fluids under the influence of high magnetic fields strength and its 
possible medical applications, was first investigated by Haik et al., [1]. The applications in medical 
sciences include cell separation, magnetic tracers and magnetic drug targeting. Blood is a 
biomagnetic fluid that can be affected by magnetic field such as deviation in blood flow [2]. Blood is 
magnetic due to the presence of Haemoglobin, a form of iron oxide [3]. Haemoglobin is a protein 
responsible for oxygen and carbon dioxide transportation throughout the body and constitutes 
almost one third of the red blood cells. This protein influences the orientation of normal red blood 
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cells in magnetic field [4]. The magnetic property of blood changes depending on its oxygenation 
state; diamagnetic when oxygenated and paramagnetic when deoxygenated.  

Tzirtzilakis [3, 5] developed numerical models to investigate the interaction between blood flow 
and magnetic field in a rectangular channel using the principles of ferrohydrodynamics (FHD) [6]. 
With the presence of spatially varying magnetic field, flow pattern changes considerably especially in 
the vicinity of the magnetic source. Recently, Tzirtzilakis and Xenos [7] investigated the influence of 
a steady localized magnetic field on biomagnetic fluid in a lid driven cavity using finite volume 
method. The results showed formation of local vortices near the magnetic source. Abdullah et al., [8] 
carry out numerical study of biomanetic fluid dynamics (BFD) in a lid driven cavity with an oscillating 
lid using finite difference method (FDM) and study the influence of Reynolds number, magnetic 
number and oscillation frequency on the flow field. With an increase in the magnetic field intensity, 
the vortices within the cavity were observed to become increasingly large, enhancing the mixing 
process. The finite element method (FEM) has also been successfully used to solve BFD problems 
such as biomagnetic micropolar flow and magnetohydrodynamic flow in a square cavity [9-11].    

As far as author’s knowledge, very few studies concerning BFD in lid driven cavity using finite 
element method has been made. Considering the advantages of finite element method in solving 
problems involving complex geometry and/or boundary conditions, the main purpose of this paper 
is to simulate biomagnetic fluid flow in a lid driven cavity using both FEM and FDM. This serves as a 
fundamental work to investigate any stability issue in both methods especially in the presence of 
highly nonlinear body force. The results show that the FEM has issue resolving the steep magnetic 
field gradient and requires some stabilization while FDM is free from stability issue. Result concerning 
the resulting flow pattern is presented and discussed. 
 
2. Mathematical Formulation  

 
Mathematical model proposed in Tzirtzilakis [5] is adopted in this study. The problem is 

considered as two-dimensional while the flow is assumed to be steady and laminar. The biofluid is 
considered as Newtonian and non-conducting. It is also assumed that the temperature changes are 
negligible (isothermal) and magnetic field is sufficient enough to saturate the biofluid. The rotational 
forces acting on the erythrocytes, when entering and exiting the magnetic field are discarded 
(equilibrium magnetization). 

Based on the above assumptions, the governing equations for this problem are similar to those 
derive by Haik et al., [1] and Rosensweig [12] which follows the principle of FHD. The equations are 
given by, 
 

Momentum equation in x-direction: 
 

�̅� (�̅�
𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
) = −

𝜕�̅�

𝜕�̅�
+ �̅�0�̅�

𝜕�̅�

𝜕�̅�
+ �̅� (

𝜕2�̅�
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Momentum equation in y-direction: 
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Continuity equation: 
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∂�̅�

𝜕�̅�
+

∂�̅�

𝜕�̅�
= 0              (3) 

 
A simple two-dimensional rectangular domain is adopted. The top wall is moving with a constant 

velocity, �̅�𝑟 along the 𝑥-direction while no-slip boundary condition is imposed on the rest of the walls. 
Pressure is applied at a single point on the bottom left corner of the cavity. The boundary conditions 
for the problem is summarized as follows 

 
Lower wall       �̅�(�̅�, 0) = 0,         �̅�(�̅�, 0) = 0 
Upper wall �̅�(�̅�, �̅�) = �̅�𝑟 ,       �̅�(�̅�, �̅�) = 0 
Left wall �̅�(0, �̅�) = 0,         �̅�(0, �̅�) = 0 
Right wall         �̅�(�̅�, �̅�) = 0,         �̅�(�̅�, �̅�) = 0          (4) 
 

In the above dimensional equations, �̅� and �̅� are the velocity components, �̅� is the pressure, �̅� is 
the biomagnetic fluid density, �̅� is the electrical conductivity, �̅� is the dynamic viscosity and �̅�0is the 

magnetic permeability of the vacuum. �̅� is the magnetic field intensity where the component is �⃗⃗� =

(�̅�𝑥, �̅�𝑦), and �̅� = �̅�0�̅� is the magnetic induction where �⃗� = (�̅�𝑥, �̅�𝑦) = �̅�0(�̅�𝑥, �̅�𝑦). The terms  

�̅�0�̅�𝜕�̅�/𝜕�̅� and �̅�0�̅�𝜕�̅�/𝜕�̅� from Eq. (1) and Eq. (2) respectively represents the magnetization force 
per unit mass which arise due to FHD.  

Magnetization property described the behaviour of biofluid under influence of magnetic field 
(magnetized) [3]. According to the equilibrium magnetization, variation of magnetization, �̅�  with 
the magnetic intensity �̅� can be expressed in linear relation as 
 

�̅� = �̅�              (5) 

 
where  is a constant called magnetic susceptibility. The components of the magnetic field intensity 
�̅�𝑥 and �̅�𝑦 along the �̅� and �̅� coordinates are 

 

�̅�𝑥 =
𝛾

2𝜋

�̅�−�̅�

(�̅�−�̅�)2+(�̅�−�̅�)2
             (6) 

 

�̅�𝑦 = −
𝛾

2𝜋

�̅�−�̅�

(�̅�−�̅�)2+(�̅�−�̅�)2
            (7) 

 

where (�̅�, �̅�) is the point where the magnetic source is placed and 𝛾 is the magnetic field strength at 

the point (�̅� = �̅�, �̅� = �̅�). The magnitude �̅�, of the magnetic field intensity, is given by 

 

�̅� = [�̅�𝑥
2
+ �̅�𝑦

2
]

1

2
=

𝛾

2𝜋

1

√(�̅�−�̅�)2+(�̅�−�̅�)2
          (8) 

 
3. Transformation of Equation 

 
Eqs. (1 - 4) and Eq. (8) are converted to non-dimensional form using the following dimensionless 

variables: 
 

𝑥 =
�̅�

�̅�
,     𝑦 =

�̅�

�̅�
,     𝑢 =

�̅�

�̅�𝑟
,     𝑣 =

�̅�

�̅�𝑟
,     𝑝 =

�̅�

�̅��̅�𝑟
2 ,     𝐻𝑥 =

�̅�𝑥

�̅�0
,     𝐻𝑦 =

�̅�𝑦

�̅�0
      (9) 
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where �̅�0 = �̅�(�̅�, 0). Substituting the dimensionless variables into Eqs. (1- 4) and Eq. (8) resulted in 
the following set of equations: 
 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+ 𝑀𝑛𝐹𝐻

𝜕𝐻

𝜕𝑥
+

1

𝑅𝑒
(
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2)                   (10) 

 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+ 𝑀𝑛𝐹𝐻

𝜕𝐻

𝜕𝑦
+

1

𝑅𝑒
(
𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2)                   (11) 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                        (12) 

 
The dimensionless form of the boundary conditions are given by:  

 
Lower wall 𝑢(𝑥, 0) = 0,      𝑣(𝑥, 0) = 0 
Upper wall       𝑢(𝑥, 1) = 1,      𝑣(𝑥, 1) = 0 
Left wall 𝑢(0, 𝑦) = 0,      𝑣(0, 𝑦) = 0 
Right wall         𝑢(1, 𝑦) = 0,      𝑣(1, 𝑦) = 0                    (13) 
 

The magnitude 𝐻 of the magnetic field intensity at the point (𝑎, 𝑏) is also derived by applying the 
relation in Eq. (6) and Eq. (7) and is given by 
 

𝐻 =
|𝑏|

√(𝑥−𝑎)2+(𝑦−𝑏)2
                       (14) 

 
The non-dimensional parameters are defined as: 

 

𝑅𝑒 =
�̅��̅��̅�𝑟

�̅�
,      𝑀𝑛𝐹 =

�̅�0χ�̅�0
2

�̅��̅�𝑟
2  

 
where Re is Reynolds number and 𝑀𝑛𝐹 is the magnetic number arising due to FHD. The parameter 
for magnetic number 𝑀𝑛𝐹 can also be written in the form of magnetic induction, 𝐵𝑜

̅̅ ̅ and the 
magnetization, 𝑀𝑜

̅̅ ̅̅  at (𝑎, 0) where 
 

𝑀𝑛𝐹 =
𝐵𝑜̅̅ ̅̅  𝑀𝑜̅̅ ̅̅

𝑅𝑒2                         (15) 

 
When the magnetic number is zero, the problem reduces to common hydrodynamic flow of lid 

driven cavity. 
 
4. Numerical Method 
4.1 Finite Difference Formulation 

 
The finite difference method used to solve Eq. (10) to Eq. (12) is based on the Marker and Cell 

method by Harlow and Welch [13] but highly simplified. This method is introduced as a numerical 
solution algorithm for transient fluid flows (SOLA) scheme [14], a type of projection and pressure 
correction method that has been used and extended to solve many fluid flow problems [15]. In this 
method, the staggered grid is used, hence the pressure 𝑝, velocity 𝑢 and 𝑣 are not located on the 
same grid. Using the staggered grid arrangement for the flow variables prevents the pressure 
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oscillations that could occur if all the unknowns flow variables 𝑝, 𝑢, and 𝑣 are computed in the same 
grid. 

To implement this scheme, the new time step velocity fields 𝑢𝑛+1, 𝑣𝑛+1 are to be calculated from 
Eq. (19) once the corresponding pressure is known. Therefore, the first step of this method is to 
calculate the new abbreviations 𝐹 and 𝐺 at time level 𝑛 as given below, 
 

𝐹𝑛 = 𝑢𝑛 + ∆𝑡 [− (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) +

1

𝑅𝑒
(
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2) + 𝑀𝑛𝐹𝐻
𝜕𝐻

𝜕𝑥
]                 (16) 

 

𝐺𝑛 = 𝑣𝑛 + ∆𝑡 [− (𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) +

1

𝑅𝑒
(
𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) + 𝑀𝑛𝐹𝐻
𝜕𝐻

𝜕𝑦
]                 (17) 

 
where ∆𝑡 is the time step. The spatial derivatives on convection and diffusion terms are discretised 
using the finite difference central difference method, while the FHD terms are calculated analytically. 
A grid size of 150 × 150 is used and time step ∆𝑡 = 0.001. Once 𝐹 and 𝐺 at time level 𝑛, it will be 
used in the Poisson Pressure Equation given by 
 
𝜕2𝑝𝑛+1

𝜕𝑥2 + 
𝜕2𝑝𝑛+1

𝜕𝑦2 =
1

∆𝑡
(
𝜕𝐹𝑛

𝜕𝑥
+

𝜕𝐺𝑛

𝜕𝑦
)                     (18) 

 
The Poisson Pressure Equation is solved by using the preconditioned generalized minimum 

residual (GMRES) method. Other methods such as preconditioned conjugate gradient, and Successive 
Overrelaxation (SOR) has been tested as well and no difference is observed. The new velocity field 
𝑢𝑛+1 and 𝑣𝑛+1 are then evaluated by the discretize momentum equations 
 

𝑢𝑛+1 = 𝐹𝑛 − ∆𝑡
𝜕𝑝𝑛+1

𝜕𝑥
  

𝑣𝑛+1 = 𝐺𝑛 − ∆𝑡
𝜕𝑝𝑛+1

𝜕𝑦
                      (19) 

 
The above steps are iterated until steady state flow is achieved in which the tolerance is set to be 

|𝑢𝑛+1 − 𝑢𝑛| AND |𝑣𝑛+1 − 𝑣𝑛| < 10−7. 
 
4.2 Finite Element Formulation 

 
The spatial discretization of the governing equations is performed using Galerkin weighted 

residual finite element method. Mixed formulation, in which the velocity and pressure are 
approximated using different shape functions, is adopted in this study. The Galerkin weighted 
residual method is applied by forcing the integral of the product between prescribed weight functions 
and the governing equations to zero. By subsequently taking integration by parts for the second order 
derivatives terms, the following set of equations are produced: 
 

∫ 𝑁𝑙  𝐴𝑒
(𝑢

𝜕𝑁𝑗𝑢𝑗

𝜕𝑥
+ 𝑣

𝜕𝑁𝑗𝑢𝑗

𝜕𝑦
+

𝜕𝑃𝑘𝑝𝑘

𝜕𝑥
) 𝑑𝐴𝑒 + ∫  

𝐴𝑒

1

𝑅𝑒
(
𝜕𝑁𝑙

𝜕𝑥

𝜕𝑁𝑗𝑢𝑗

𝜕𝑥
+

𝜕𝑁𝑙

𝜕𝑦

𝜕𝑁𝑗𝑢𝑗

𝜕𝑦
) 𝑑𝐴𝑒 −

∫  
𝐴𝑒

𝑁𝑙𝑀𝑛𝐹𝐻
𝜕𝐻

𝜕𝑥
𝑑𝐴𝑒 − 𝐵𝑐𝑥 = 0                       (20) 

 

∫ 𝑁𝑙  𝐴𝑒
(𝑢

𝜕𝑁𝑗𝑣𝑗

𝜕𝑥
+ 𝑣

𝜕𝑁𝑗𝑣𝑗

𝜕𝑦
+

𝜕𝑃𝑘𝑝𝑘

𝜕𝑦
)𝑑𝐴𝑒 + ∫  

𝐴𝑒

1

𝑅𝑒
(
𝜕𝑁𝑙

𝜕𝑥

𝜕𝑁𝑗𝑣𝑗

𝜕𝑥
+

𝜕𝑁𝑙

𝜕𝑦

𝜕𝑁𝑗𝑣𝑗

𝜕𝑦
) 𝑑𝐴𝑒 −

∫  
𝐴𝑒

𝑁𝑙𝑀𝑛𝐹𝐻
𝜕𝐻

𝜕𝑦
𝑑𝐴𝑒 − 𝐵𝑐𝑦 = 0                       (21) 
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∫ 𝑃𝑚 (
𝜕𝑁𝑗𝑢𝑗

𝜕𝑥
+

𝜕𝑁𝑗𝑣𝑗

𝜕𝑦
)

𝐴𝑒
𝑑𝐴𝑒 = 0                     (22) 

 
In the above equation, 𝑃 and 𝑁 are linear and quadratic shape function respectively while 𝑚, 𝑗, 𝑙 

are the index of the corresponding vectors. The right-hand terms in Eq. (20) and Eq. (21) are the 
boundary terms resulted from the integration by parts. 

Eq. (20) to Eq. (22) can be written in a compact form as 
 

[

𝑘11 0 𝑘13

0 𝑘22 𝑘23

𝑘31 𝑘32 0
] {

𝑢
𝑣
𝑝
} = [

𝑓𝑢
𝑓𝑣
0

]                      (23) 

 
where 

𝑘11 = ∫ 𝑁𝑙  𝐴𝑒
𝑢

𝜕𝑁𝑗

𝜕𝑥
+

1

𝑅𝑒
(
𝜕𝑁𝑙

𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥
+

𝜕𝑁𝑙

𝜕𝑦

𝜕𝑁𝑗

𝜕𝑦
) 𝑑𝐴𝑒  

𝑘13 = ∫ 𝑁𝑙  𝐴𝑒

𝜕𝑃𝑘

𝜕𝑥
𝑑𝐴𝑒  

𝑘22 = ∫ 𝑁𝑙  𝐴𝑒 𝑙
𝑣

𝜕𝑁𝑗

𝜕𝑥
+

1

𝑅𝑒
(
𝜕𝑁𝑙

𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥
+

𝜕𝑁𝑙

𝜕𝑦

𝜕𝑁𝑗

𝜕𝑦
)  𝑑𝐴𝑒  

𝑘23 = ∫ 𝑁𝑙  𝐴𝑒

𝜕𝑃𝑘

𝜕𝑦
 𝑑𝐴𝑒  

𝑘31 = ∫ 𝑃𝑚
𝜕𝑁𝑗

𝜕𝑥𝐴𝑒
𝑑𝐴𝑒  

𝑘32 = ∫ 𝑃𝑚
𝜕𝑁𝑗

𝜕𝑦𝐴𝑒
𝑑𝐴𝑒  

𝑓𝑢 = 𝑁𝑙𝑀𝑛𝐹𝐻
𝜕𝐻

𝜕𝑥
+ ∫

1

𝑅𝑒
(𝑁𝑙

𝜕𝑁𝑗𝑣𝑗

𝜕𝑥
𝑛𝑥 + 𝑁𝑙

𝜕𝑁𝑗𝑣𝑗

𝜕𝑦
𝑛𝑦) 𝑑𝑆

𝐴𝑒
  

𝑓𝑣 = 𝑁𝑙𝑀𝑛𝐹𝐻
𝜕𝐻

𝜕𝑦
+ ∫

1

𝑅𝑒
(𝑁𝑙

𝜕𝑁𝑗𝑣𝑗

𝜕𝑥
𝑛𝑥 + 𝑁𝑙

𝜕𝑁𝑗𝑣𝑗

𝜕𝑦
𝑛𝑦) 𝑑𝑆

𝐴𝑒
  

 
Eq. (23) is assembled into the global form before boundary condition from Eq. (13) are applied. 

Finally, the matrix system is solved using Gauss elimination technique with pivoting.  
 
5. Results and Discussion  
 

In this study, blood with density and dynamic viscosity of �̅� = 1050kgm−3 and �̅� = 3.2 ×
10−3kgm−1s−1respectively, is used as the fluid of interest. The computational domain consists of a 
square cavity with the side lengths of 0.05m. The top lid is moving with a horizontal velocity of �̅�𝑟 =
2.438 × 10−2ms−1 in the positive x-direction. The corresponds Reynolds number is 𝑅𝑒=400, 
consistent with the parameter used in Tzirtzilakis and Xenos [7].  

The source code for hydrodynamic problem without any magnetic source (𝑀𝑛𝐹 = 0) is validated 
with an established lid driven cavity solution by Ghia et al., [16]. A comparison for the velocity in both 
𝑥 and 𝑦 direction at the centre of the domain between the present numerical methods and Ghia et 
al., [16] for 𝑅𝑒=400 is presented in Figure 1. It is clear from the figure that excellent agreement 
between the present methods and benchmark result is demonstrated. 

With the application of magnetic source term at the bottom center of the domain, it is expected 
that similar result obtained by Tzirtzilakis and Xenos [7] would be observed for both FDM and FEM. 
Unfortunately, this is not the case. The FEM fail to predict the expected result. The streamline plot 
for cavity flow with magnetic field strength of 𝐵0 = 8T, corresponding to 𝑀𝑛𝐹 = 512.7, using FEM 
for various grid size density is presented in Figure 2. Despite the disturbance of the streamline near 
the magnetic source, no vortices were observed even for increasing grid density. A detail 



CFD Letters 

Volume 12, Issue 12, Issue 4 (2020) 43-53 

49 
 

investigation of the flow field for the FEM result is carried out by observing the velocity vector near 
the magnetic source. This is presented in Figure 3. From the figure, it can be clearly seen that the 
velocity vector does not behave entirely smooth, indicating some sort of numerical instability. This 
stability issue will be address next. FDM on the other hand does not suffer this problem and able to 
produce the desired result.  

    

  
(a) 𝑢-center velocity (b) 𝑣-center velocity 

Fig. 1. Velocity at the center of the domain between present method and Ghia et al., [16] for 𝑅𝑒=400 

 

  

 

(a) 100 × 100 (b) 151 × 151 (c) 200 × 200 

Fig. 2. Streamlines for lid driven cavity flow at 𝑅𝑒=400 and 𝑀𝑛𝐹 = 512.70 for difference grid size using 
FEM 

 

 
Fig. 3. Velocity vectors (near magnetic source) 
for lid driven cavity flow at 𝑅𝑒=400 and 𝑀𝑛𝐹 =
512.70 using FEM 
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The source of numerical instability for the FEM result is believed to originate from the magnetic 
term in the momentum equation. Due to the nature of the magnetic field intensity, the magnetic 
field has a sharp gradient especially at the bottom center of the domain. Similarly, the derivatives of 
the magnetic field intensity, 𝐻, have a very sharp gradient near the source. These derivatives also 
have a large magnitude and could be another cause of numerical instability.  

To mitigate this problem, a stabilization terms is added to the magnetic source term to dampen 
out of the sharp magnetic field gradient near the source. The stabilization term, 𝐾 is spatially varying 
in nature, with zero value at the magnetic source and rapidly takes the value of unity outward. The 
term has the following form 

 

𝐾 = 1 − [
|𝑐|

√(𝑥−𝑎)2+(𝑦−c)2
]                      (24) 

 
where 𝑎 and 𝑐 are the constants that control the intensity of the term. The stabilization term is added 
to the momentum equations as follows  

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+ 𝑀𝑛𝐹𝐾𝐻

𝜕𝐻

𝜕𝑥
+

1

𝑅𝑒
(
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2)                   (25) 

 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+ 𝑀𝑛𝐹𝐾𝐻

𝜕𝐻

𝜕𝑦
+

1

𝑅𝑒
(
𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2)                               (26) 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                        (27) 

 
Figure 4 shows the results of the streamline for both FDM and FEM with and without the 

stabilization term. The results show with the application of the stabilization term, the correct result 
can be obtained, highlighting the success of the proposed solution. 
 

  

 

(a) (b) (c) 

Fig. 4. Streamlines for 𝑅𝑒=400 and 𝑀𝑛𝐹 = 512.70 for (a) FDM without stabilization term (b) FDM with 
stabilization term (d) FEM with stabilization term. The constant 𝑎 = 0.5  and 𝑐 = 0.0001 

  
With the treatment applied to the FEM, Figure 5 shows the streamline of BFD flow between 

present study and Tzirtzilakis and Xenos [7] for various magnetic field strength. For magnetic field 
strength of 𝐵0 = 0T, 1T, 4T and 8T, the corresponding magnetic numbers are 𝑀𝑛𝐹 =
0, 64.09, 256.35 and 512.70 respectively. From the figure, it can be seen that the solutions show 
excellent agreement for all cases.  
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Tzirzilakis and Xenos [6] Finite Difference Method Finite Element Method 

 

 

 

(a) 𝑀𝑛𝐹 = 0 

 
 

 

(b) 𝑀𝑛𝐹 = 64.09 

 
 

 

(c) 𝑀𝑛𝐹 = 256.35 

 

 

 

(d) 𝑀𝑛𝐹 = 512.70 
Fig. 5. Streamlines for 𝑅𝑒=400 for various magnetic field strength between Tzirtzilakis and Xenos [7] (first 
column), finite difference method (second column) and finite element method (third column) 
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For flow without magnetic field, only two vortices are present at the bottom left and right of the 
domain as shown in Figure 1(a). With an increase in the magnetic field strength, a pronounced vortex 
can be seen at the bottom center. For 𝐵0 = 1T, the vortex is barely noticeable. As the magnetic field 
strength increases (𝐵0 = 4T), the vortex at the center become increasingly larger and start 
entrapping the vortex at the bottom left corner. Finally, with the highest magnetic field strength of 
𝐵0 = 8T, the recirculation pattern for the two vortices cannot be distinguished as they act as a single 
vortex. This vortex has a strong flow recirculation at magnetic field source. 
 
6. Conclusion 

 
The biomagnetic fluid flow in a lid driven cavity has been investigated numerically. The solution 

is obtained using both FDM and FEM. A stabilization term is introduced in the FEM formulation to 
mitigate stability issue relating to steep magnetic field gradient. Considering that FEM is excellent for 
problem involving complex geometry, the present result can be extended to model blood flow 
involving realistic domain subjected to spatially varying magnetic field. 
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