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The scalar convection-dominated flows are found in different science and designing 
applications which incorporates those concerning the computational fluid dynamics 
problems of mesh structure in the numerical estimations. These flows are thus 
essential in nature. Despite the fact that these types of flow have been widely 
discussed among fluid dynamists, the contribution of mesh and flow parameters in 
predicting spurious-oscillation free solutions remains unclear. In this research, the 
significance of the connections between the mesh structure and the scalar convection-
dominated flow parameters is accentuated. A systematic technique is applied in the 
setting of the parameters of interest. In particular, we present the a priori formulation 
of condition to avoid spurious oscillatory solutions, which depends on both Peclet 
number as well as the number of grid. The condition is useful in a more efficient 
decision-making in the selection of the computational domain grid, and in eradicating 
some heuristic parts of the scalar concentration estimate. The results of the test case 
affirm the consistency of the condition. It is found that, given the right constant value 
in the amplification factor term within the spatial error growth model, the condition is 
able to capture the presence of kinks which mark the beginning of the oscillations. 
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1. Introduction 
 

Conservation equation in its generic form is given by 
 

𝜕𝑡(𝜌𝜑) + 𝜕𝑥𝑗(𝜌𝑢𝑗𝜑) − 𝜕𝑥𝑗 (𝜖𝜕𝑥𝑗𝜑) = 𝑠𝜑,          (1) 

 
where 𝜌 is the density, 𝜑 is the conserved property, 𝑢𝑗 are velocity components of the fluid in the 

axes directions at the point (𝑥1, 𝑥2, 𝑥3) at time 𝑡, 𝜖 is the diffusivity of 𝜑, and 𝑠𝜑 is the source or sink 

of 𝜑. We assume that 𝑠𝜑 = 1. Thus Eq. (1) is expressed as 
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𝐷𝑡(𝜌𝜑) − 𝜕𝑥𝑗 (𝜖𝜕𝑥𝑗𝜑) = 1            (2) 

 
This is scalar convection-dominated equation (SCDE). The substantial derivative in Eq. (2) is 

mathematically expressed by 
 

𝐷𝑡(𝜌𝜑) = 𝜕𝑡(𝜌𝜑) + 𝜕𝑥𝑗(𝜌𝑢𝑗𝜑)           (3) 

 
Substituting Eq. (3) into Eq. (2) we have 

 

𝜕𝑡(𝜌𝜑) + 𝜕𝑥𝑗(𝜌𝑢𝑗𝜑) − 𝜕𝑥𝑗 (𝜖𝜕𝑥𝑗𝜑) = 1          (4) 

 
We can further simplify Eq. (4) into 

 

𝜕𝑡(𝜌𝜑) − 𝜕𝑥𝑗 (𝜖𝜕𝑥𝑗𝜑) = 1            (5) 

 

by assuming that the fluids are at rest, or the velocity is small (𝑢𝑗 ≈ 0), or diffusivity 𝜖 is large. 

The steady one-dimensional convection-diffusion problem reduces Eq. (4) into 
 
𝜕𝑥(𝜌𝑢𝜑) − 𝜕𝑥(𝜖𝜕𝑥𝜑) = 1            (6) 
 
involving the scalar whose concentration is denoted by 𝜑. Details on these equations can be found 
in Ferziger et al., [1]’s study. The abrupt growth of 𝜑 provides a severe test for computational 
methods, particularly in the selection of compatible grid structure over the computation domain. 

We establish the relationship between the flow parameter of interest (i.e. the Peclet number 𝑃𝑒) 
in SCDE and the appropriate grid number 𝑁, by formulating the criteria which is necessary in 
achieving physically accurate solution of the equation, thus unify the deduction of heuristic selections 
of 𝑁 for solving the contaminated fluids problem that leads to less pre-computation time. Note that 
inappropriate pair of 𝑃𝑒 and 𝑁 results in numerical oscillation [2]. The work presented in this paper 
follows the line initiated in Abdullah [2,3]’s studies for defining the sequence of both low Peclet 
numbers 𝑃𝑒 and grid numbers 𝑁. 

Various numerical methods for solving SCDE are by now well formulated and many useful 
schemes can be found such as finite differences, finite elements, spectral procedures, and the 
method of lines [4-17]. For instance, well-known a priori error estimates for the discontinuous 
Galerkin approximation of convection-dominated equation solutions which carry over to the 
subspace of the discontinuous piecewise-quadratic space was summarized in Melanie et al., [4]’s 
study, while in Hailiang et al., [5]’s study, the approximation of high order alternating evolution was 
proposed. 

In Li et al., [6]’s study, a comparative study between two most popular Lattice Boltzmann (LB) 
models for the equations (i.e. those in two dimensions with five and nine discrete lattice velocities, 
respectively) was presented. Other variants include multiple-relaxation-time LB model for the 
axisymmetric, as well as isotropic and anisotropic diffusion processes whose both applicability and 
accuracies have been investigated by previous studies [7,8], respectively; for the latter case, a finite-
difference LB model for nonlinear equations was proposed by Huili et al., [9]. In the problem where 
no scalar or flux jump exists, a numerical scheme for dealing with curved interfaces with second-
order spatial accuracy was introduced by Ze-Xi et al., [10] in conjunction with the LB method. 
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In both studies [11,12], compact difference scheme for solving convection-dominated equations 
was considered; It was claimed by Jun et al., [11] that the fourth-order scheme requires only 15 grid 
points, while in Haiwei et al., [12]’s study, it was successfully proven that this scheme is 
computationally more efficient than the standard second-order central difference scheme. 

Introduction to a Schwarz waveform relaxation algorithm was introduced by Martin [13] for the 
convection-dominated equations that converge without overlap of the subdomains. 

Recent methods include those to solve nonlinear fractional convection-dominated equations, as 
homotopy analysis transform and homotopy perturbation Sumudu transform methods whose 
reliability and efficiency were clearly demonstrated Jagdey et al., [14], and that based on the 
operational matrices of shifted Jacobi polynomials of high accuracy [15]. 

The choice of suitable computational grid to discretize the governing partial differential equations 
(e.g. by means of polynomial fitting, Taylor series expansion and compact scheme to obtain 
approximations to the derivatives of the variables with respect to the coordinates) is necessary at 
the onset of numerical modelling of the scalar convection-dominated problems as in some studies 
[4-21]. It is worth to note here that the variable values at locations other than the defined grid nodes 
can also be determined by interpolation. Another important aspect is the method to solve the 
discretized algebraic equations. The solution is obtained via either direct [22-24] or iterative [25-28] 
methods. 

In the following section, the SCDE is discretized on uniform grids, where the expansion factor 𝑟𝑒 =
1. A Fourier series is utilized to model the spatial error resulting from insufficient grid number. The 
criterion for predicting 𝜑 profile without non-physical oscillation is then formulated. 

Notwithstanding the fact that scalar convection-dominated flows have been widely studied 
among researchers, the contribution of the Peclet number𝑃𝑒and the grid number𝑁in predicting non-
oscillatory solutions remains unclear. It is important to study such contribution in order to increase 
the efficiency in selecting the computational domain grid, and in eliminating some heuristic parts of 
the scalar concentration estimate. This research aims at formulating the condition to avoid spurious 
oscillatory solutions, which depends on both𝑃𝑒and𝑁. 
 
2. Methodology 
2.1 Discretization and Solution of The Governing Equation 
 

The starting point is the SCDE in differential form as given by Eq. (6); 
 
𝜕𝑥(𝜌𝑢𝜑) − 𝜕𝑥(𝜖𝜕𝑥𝜑) = 1 
 

Defining the boundary conditions as 
 
𝜑(0) = 𝜑(1) = 0             (7) 
 

Here we define the Peclet number 𝑃𝑒 as 
 

𝑃𝑒 =
𝜌𝑢𝐿

𝜖
  

 
The influence of the Peclet number 𝑃𝑒 on the diffusivity coefficient 𝜖 can be found in Yuezhen et 

al., [26]’s study. The profiles for different ranges of 𝑃𝑒 are illustrated in Figure 1. 
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Fig. 1. Boundary conditions and solution profiles 
as a function of the Peclet number 

 
A grid covers the corresponding solution domain. We define the independent variables 𝑥 whose 

domain is discretized. The interval 𝑥 = [0,1] is subdivided into (𝑁 − 1)/ℎ subintervals where 𝑁 and 
ℎ are integers. The nodes are defined by 
 
𝑥𝑖+1 = 𝑥𝑖 + 𝑟𝑒𝑥𝑖 
 

where 1 ≤ 𝑖 ≤ (𝑁 − 1), 𝑖 ∈ ℤ, and 𝑟𝑒 is the grid expansion factor. Clearly 1 1ix   . The grid is 

shown in Figure 2. 
 

 
Fig. 2. Computational molecules 

 
At each node, the governing equation is approximated by replacing the partial derivatives with 

nodal values. The result is an algebraic SCDE per node, in which the variables at that and immediate 
nodes appear as unknowns. The system of equations is expressed by 
 
𝐶𝑃𝜑𝑃 + ∑ 𝐶𝑚𝜑𝑚𝑚 = 𝑄𝑝,            (8) 

 
where P signifies the nodes at which the equations are assigned and 𝑚 index runs over the immediate 
nodes. The corresponding matrix 𝐶 in Eq. (8) has non-zero terms only on its main diagonal 
(represented by 𝐶𝑖𝑖) and the diagonals immediately above and below it (represented by 𝐶𝑅 and 𝐶𝐿, 
respectively). The matrix elements are stored as three 𝑛 × 𝑛 array. Using the three-point 
computational molecules, Eq. (8) becomes 
 
𝐶𝑃𝜑𝑃 + 𝐶𝑅𝜑𝑖+1 + 𝐶𝐿𝜑𝑖−1 = 𝑄𝑃           (9) 
 

Since the scalar convection-dominated differential equation is linear, then the approximation 
contains only linear terms, and the numerical solution will not require linearization. The central 
difference scheme (CDS) is used to discretize the diffusion term, both for the outer derivative 
 

−[𝜕𝑥(𝜖𝜕𝑥𝜑)]𝑖 ≈
(𝜖𝜕𝑥𝜑)𝑖+1

2
−(𝜖𝜕𝑥𝜑)𝑖−1

2
1

2
(𝑥𝑖−1−𝑥𝑖+1)

 (10) 

L' L P R R'
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and the inner derivative 
 

(𝜖𝜕𝑥𝜑)𝑖+1
2

≈ 𝜖
𝜑𝑖+1−𝜑𝑖

𝑥𝑖+1−𝑥𝑖

−(𝜖𝜕𝑥𝜑)𝑖−1
2

≈ 𝜖
𝜑𝑖−𝜑𝑖−1

𝑥𝑖−1−𝑥𝑖

} (11) 

 
as well as the convection term 
 

−[𝜕𝑥(𝜌𝑢𝜑)]𝑖 ≈ 𝜌𝑢
𝜑𝑖+1−𝜑𝑖−1

𝑥𝑖−1−𝑥𝑖+1
 (12) 

 
The contributions of the diffusion and convection terms to the coefficients of the algebraic Eq. 

(8) are therefore 
 

  1 1 1 1 1

 

2
;

conv diff

R R R

i i i i i i

C C C

u

x x x x x x



    

 

 
  

 

  1 1 1 1 1

 

2
;

conv diff

L L L

i i i i i i

C C C

u

x x x x x x



    

 

  
  

 

 

  conv diff

P P P

diff diff

R L

C C C

C C

 

  
 

 
Tridiagonal matrix algorithm is applied for solving linear system of the algebraic Eq. (9). We set 

 
𝜌 = 1.0,  𝑢 = 1.0,  𝑟𝑒 = 1 (13) 
 

Note that the minimization of grid number might lead to spurious oscillation, i.e. the solution is 
nonphysical as depicted in Figure 3. 
 

 
Fig. 3. Nonphysical behaviour of scalar concentration 
profile 𝜑 due to the insufficient grid number in 
computational domain 
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2.2 Sequences of The Peclet Numbers and The Grid Numbers 
 

The range of low Peclet numbers 𝑃𝑒 of interest is [0,100]. The mathematical relationship 

between 𝑃𝑒 and grid numbers 𝑁 is represented by a set of pairs (𝑃𝑒𝑖 ,  𝑁𝑗). 

We define a sequence of 𝑃𝑒𝑖 by 
 
𝑃𝑒𝑖 , 
𝑃𝑒𝑖+1 = 𝑃𝑒𝑖(𝑝), 
𝑃𝑒𝑖+2 =  𝑃𝑒𝑖+1(𝑝), 
𝑃𝑒𝑖+3 = 𝑃𝑒𝑖+2(𝑝), (14) 
𝑃𝑒𝑛 = 𝑃𝑒𝑛−1(𝑝), 
 
where the constants 𝑖,  𝑝 ∈ ℤ+. Next, defining a sequence of 𝑁 by 
 
𝑁𝑗  , 

𝑁𝑗+1 = 𝑓𝑙𝑜𝑜𝑟 (
𝑁𝑗 + 1

𝑞
)  , 

𝑁𝑗+2 =  𝑓𝑙𝑜𝑜𝑟 (
𝑁𝑗+1 + 1

𝑞
) ,   

𝑁𝑗+3 =  𝑓𝑙𝑜𝑜𝑟 (
𝑁𝑗+2+1

𝑞
), (15) 

𝑁𝑚 = 𝑓𝑙𝑜𝑜𝑟 (
𝑁𝑚−1 + 1

𝑞
), 

 
where the constants 𝑗,  𝑞 ∈ ℤ+. Let 
 
𝑖 = 𝑗 = 1, 𝑛 = 𝑚 = 6, 𝑃𝑒1 = 3.125,𝑁1 = 81, and 𝑝 = 𝑞 = 2, (16) 
 
such that the sequence in Eq. (14) and Eq. (15) become 
 
3.125,6.25,12.5,25,50,100  
 
and 
 
81,  41,  21,  11,  6,  3 
 
respectively. All 36 possible pairs (𝑃𝑒,  𝑁)based on the elements in these sequences are considered 
as test cases, following the line used in previous studies [2,3,29,30]. 
 
2.3 Spatial Error Growth Model 
 

Substituting Eq. (10), Eq. (11), and Eq. (12) into Eq. (6); 
 
𝜑𝑖+1−𝜑𝑖−1

2𝜀
=

𝜑𝑖+1−2𝜑𝑖+𝜑𝑖−1

𝛥𝑥
+

𝛥𝑥

𝜀
 (17) 

 
The spatial error is defined as 
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𝛾 = 𝑁 − 𝐸, (18) 
 
where 𝑁 and 𝐸 are finite accuracy numerical solution from a real computer and exact solution of 
difference equation, respectively. Note that the numerical solution 𝑁 satisfies the difference Eq. (17). 
A Fourier series model can be used to analytically represent the random variation of 𝛾 with respect 
to space; 
 

𝛾(𝑥) = ∑ 𝑒𝛼𝑥𝑒𝑖𝑘𝑙𝑥,𝑙  𝑙 = 1,2,3. .., (19) 
 
where 𝑒𝛼𝑥 is the amplification factor, 𝑘𝑙 is the wave number, and 𝛼 is a constant. Lets 𝑒𝛼𝑥 in Eq. (19) 
be proportional to 𝑥 when numerical oscillation occurs as represented in Figure 3. Thus it is sufficient 
to consider only the growth of 𝑒𝛼𝑥. Direct substitution of 𝑒𝛼𝑥into the finite difference Eq. (17) gives 
 
𝑒𝛼(𝑥+𝛥𝑥)−𝑒𝛼(𝑥−𝛥𝑥)

2𝜖
=

𝑒𝛼(𝑥+𝛥𝑥)−2𝑒𝛼𝑥+𝑒𝛼(𝑥−𝛥𝑥)

𝛥𝑥
 (20) 

 
Divide Eq. (20) by 𝑒𝛼𝑥, we have 

 
𝑒𝛼𝛥𝑥 − 𝑒−𝛼𝛥𝑥

2𝜖
=
𝑒𝛼𝛥𝑥 − 2 + 𝑒−𝛼𝛥𝑥

𝛥𝑥
 

 
which, after some rearrangement, becomes 
 

𝑒𝛼𝛥𝑥 =
𝑒−𝛼𝛥𝑥(𝛥𝑥 + 2𝜖) − 4𝜖

𝛥𝑥 − 2𝜖
 

 

If 𝑒𝛼𝑥 presumably grows with respect to 𝑥, then 
𝑒𝛼(𝑥+𝛥𝑥)

𝑒𝛼𝑥
> 1, or simply 𝑒𝛼𝛥𝑥 > 1. Therefore, in 

order to have a non-growing error amplification, the criterion 
 
𝑒−𝛼𝛥𝑥(𝛥𝑥+2𝜖)−4𝜖

𝛥𝑥−2𝜖
≤ 1 (21) 

 
must be fulfilled. 
 
3. Result and Discussion 
 

Rewriting Eq. (21) in terms of 𝑃𝑒 and 𝑁; 
 

𝑒
−

𝛼
𝑁−1(

1

𝑁−1
+

2

𝑃𝑒
)−

4

𝑃𝑒
1

𝑁−1
−

2

𝑃𝑒

≤ 1 (22) 

 
We define 

 

𝐺 =
𝑒−

𝛼
𝑁−1 (

1
𝑁 − 1

+
2
𝑃𝑒

) −
4
𝑃𝑒

1
𝑁 − 1

−
2
𝑃𝑒
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Thus Eq. (22) becomes 
 
𝐺 ≤ 1 (23) 
 

The criterion in Eq. (23) was checked against all 36 possible pairs (𝑃𝑒𝑖 ,  𝑁𝑗) based on sequences 

Eq.  (14) and Eq. (15). The output is given in Table 1. For 𝑃𝑒 = 3.125, all grid numbers in sequence 
Eq. (15) are appropriate in achieving physically accurate non-oscillatory solutions. This is indicated by 
𝐺 being less than or equal to 1. The appropriate range of 𝑁 shrinks by one element each time the 
next 𝑃𝑒 in sequence Eq. (14) is considered. 

The values of 𝐺 tabulated in Table 1 were verified by plotting the concentration 𝜑 which are 
numerically calculated for 𝑃𝑒 against 𝑁 as shown in Figure 4 and 5. It is confirmed now that in any 
case where 𝐺 > 1, the numerical oscillations appear, and the amplitudes grow with respect to 𝑥. The 
only exception is 𝜑 profile at (𝑃𝑒, 𝑁) = (6.25,3) in Figure 4 and 5 which appear to be non-oscillating 
despite 𝐺 > 1 as shown in Table 1. This will be briefly explained in the next section. 

It is interesting to note that the numerical oscillations which appear in shaded plots in Figure 4 
and 5 begin with a kink. These kinks are highlighted further in Figure 6 for better visual understanding. 
 

Table 1 
Range of grid numbers 𝑁 that fulfils to the criterion in Eq. (23) where 𝛼 = −0.1. The shaded cells indicate 
cases where 𝐺 > 1 

Pe = 3.125 Pe = 6.25 Pe = 12.5 Pe = 25 Pe = 50 Pe = 100 

N G N G N G N G N G N G 

81 

≤ 1  

81 

≤ 1  

81 

≤ 1  

81 

≤ 1  

81 
≤ 1  

81 ≤ 1  
41 41 41 41 41 41 

> 1  

21 21 21 21 21 

> 1  

21 

11 11 11 11 

> 1  

11 11 

6 6 6 
> 1  

6 6 6 

3 3 > 1  3 3 3 3 

 

 𝑃𝑒 = 3.125 𝑃𝑒 = 6.25 𝑃𝑒 = 12.5 𝑃𝑒 = 25 𝑃𝑒 = 50 𝑃𝑒 = 100 
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Fig. 4. Concentration profile φ/ φmax at 𝑃𝑒 as in sequence Eq. (14) and 𝑁 = 81,41,21. The shaded 
plots indicate cases where the numerical oscillations appear 

 
 
 

.0

1.0

.0 1.0

N = 81
.0

1.0

.0 1.0

N = 81
.0

1.0

.0 1.0

N = 81
.0

1.0

.0 1.0

N = 81

.0

1.0

.0 1.0

N = 81

.0

1.0

.0 1.0

N = 81

.0

1.0

.0 1.0

N = 41 .0

1.0

.0 1.0

N = 41 .0

1.0

.0 1.0

N = 41 .0

1.0

.0 1.0

N = 41

.0

1.0

.0 1.0

N = 41

.0

1.0

.0 1.0

N = 41

.0

1.0

.0 1.0

N = 21 .0

1.0

.0 1.0

N = 21
.0

1.0

.0 1.0

N = 21
.0

1.0

.0 1.0

N = 21

.0

1.0

.0 1.0

N = 21

.0

1.0

.0 1.0

N = 21



CFD Letters 

Volume 12, Issue 4 (2020) 24-34 

32 
 

 

 
𝑃𝑒 = 3.125 𝑃𝑒 = 6.25 𝑃𝑒 = 12.5 𝑃𝑒 = 25 𝑃𝑒 = 50 𝑃𝑒 = 100 
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Fig. 5. Concentration profile φ/ φmax at 𝑃𝑒 as in sequence Eq. (14) and 𝑁 = 11,6,3. The shaded plots 
indicate cases where the numerical oscillations appear 
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Fig. 6. Concentration profile φ/ φmax with clearer kinks which mark the beginning of the spurious 
oscillations at next 𝑃𝑒 sequence. The kinks are marked by the circles 

 
4. Conclusions 
 

A condition to avoid numerical oscillation in the solution of scalar convection-dominated 
equations, SCDE, with source, 𝑠𝜑, has been devised. The condition represents a qualitative guideline 
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that improves our understanding on the contribution of pair (𝑃𝑒,  𝑁)to the oscillation, where 𝑃𝑒 and 
𝑁 are Peclet number and grid number, respectively. The condition also gives the nominal values of 
𝑁 below which non-physical solutions occur. This sheds light on the possibility of a more general 
framework for the selection of grid type in computational fluid dynamics, the relationship between 
the flow parameter/s and the grid quality, as well as the influence of (𝑃𝑒,  𝑁) on various numerical 
error patterns. 

It is found that the condition is able to capture the presence of kinks which mark the beginning 
of the oscillations. It is this capability that explains the anomaly involving the 𝜑 profile at (𝑃𝑒, 𝑁) =
(6.25,3) in Figure 4 where there is no sign of oscillation despite 𝐺 > 1; Even though the oscillations 
are preceded by a kink, it is impossible to capture the latter in a curve of three points (i.e. 𝑁 = 3). 
Thus no oscillation can be captured in such profile. 
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