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In this paper, the newly developed residual distribution (RD) method called the Flux-
Difference approach is combined with the Galerkin method to solve the advection-
diffusion equation in separate (non-unified) manner. It is due to the incapability of 
variation grid skewness in finite volume. This Flux-Difference RD method maintains a 
compact stencil and the whole process of solving advection–diffusion do not require 
additional equations. In order to improve the order of accuracy losses by the classic RD 
schemes, the present scheme will be tested using non-unified manners. The numerical 
results show that the Flux-Difference RD method preserves second-order accuracy up 
to about skewness 0.4 but drops to about 1.5 orders accurate when grid skewness is 
0.6. 
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1. Introduction 
 

The finite volume (FV) method is one of the commonly used discretization methods in the modern 
Computational Fluid Dynamics (CFD) simulations [1-2]. However, FV have difficulties to capture the 
multi-dimensional physics of wave propagation for hyperbolic equation and suffer from severe 
results degradation on skewed grids as reported in the past researches [3-5]. Thus, RD methods were 
introduced as an alternative to the FV methods by Roe [6]. Discretization on RD method is based on 
cell vertex solutions and cell residuals. RD methods are known to be less sensitive to grid variations 
and have been proven by Chizari, Ismail and Abgrall [7-9] for advection problems. RD methods are 
also more compact which allows a more efficient parallel computation [10] and have a natural 
platform to incorporate multidimensional fluid physics stated by Deconinck et al., [11]. However, 
there is still lot to be done for RD methods. Most RD methods are developed from mainly steady-
state inviscid equations. Most of these methods will be at best first order accurate in space for 
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unsteady calculations even if they were high order accurate for steady-state problems unless there 
is a costly implicit sub-iterative process being applied at every time-step [12].  

In order to reach the full potential of RD method, Ismail and Chizari [13] have developed a new 
class of RD method called Flux-Difference approach which ensures automatic conservation of the 
primary variables without any dependence on cell-averaging for any well-posed equations and 
preserves the spatial second-order accuracy on unsteady problems using any consistent explicit time 
integration scheme. However, since these flux-difference RD methods are new, very little has been 
done to understand the inherent properties of the scheme. As a matter of interest, the present study 
will be focusing on advection-diffusion problems. Owing to the different physics of advection and 
diffusion, it is perhaps best to discretize them in a non-unified (separate) manner. However, the RD 
and Galerkin approach for non-unified manner still not fully resolved. These issue have been 
encountered by the past research [14-16] where the results show that an accuracy loss even on ideal 
grids. To overcome this issue, Singh et al., [17] have used the Flux-Difference RD method as an 
alternative to the classic RD method. The results are very promising where the order of accuracy is 
preserved at second order accurate. But the grid skewness used is only 0.0 and there are no 
information on the highly skewed grid.  

Thus, in this paper, the Flux-Difference approach will be tested herein to see if second order 
accurate is preserved not only for ideal grids but also for highly skewed grids. The objectives of this 
paper is to provide the information on highly skewed grid and the result comparison between grids 
while maintaining all variables. The paper is organized as the following. Section 2 presents the classic 
scalar RD discretization for advection and diffusion terms while Sect. 3 presents the Flux-Difference 
RD method for advection–diffusion. The numerical results will be demonstrated in Sect. 4 while Sect. 
5 concludes this research paper. 
 
2. Methodology  
2.1 Residual-Distribution Approach for Advection-Diffusion 
 

RD schemes are numerical methods that involve two steps. The first is the residual calculation, 
followed by the distribution of the residuals to nodes where the residual drives the changes of the 
solution. Consider, as an example, the two dimensional scalar advection– diffusion equations. 
 
𝑢𝑡 + ∇. 𝐹 =  ∇. 𝐺              (1) 

 
where, 
 
𝐹 = 𝑢𝜆 = (𝑎𝑢)𝑖̂ + (𝑏𝑢)𝑗̂             (2) 

 

𝐺 = (𝑣𝑢𝑥)𝑖̂ + (𝑣𝑢𝑦)𝑗̂             (3) 

 
The 𝜆 in the equation is the characteristic vector such that 𝜆 = 𝑎𝑖̂ + 𝑏𝑗̂ where 𝑎 and 𝑏 are the 

advection speeds in 𝑥 and 𝑦 direction and 𝑣 is the positive diffusion coefficient. Then the 
computational domain is divided into a sets of triangle {𝑇} and the solution values at nodes will be 
stored by the set of nodes {𝐽}. Figure 1 shows the details of the normal direction, n and also the 
median dual-area, Si. 
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Fig. 1. Residual distributed over triangular mesh 

 
The main concept of the RD method is finding the sub-residuals (or signals) for each point from 

the total residual of a cell (element) inward scaled normal. In order to mimic the correct physics of 
the problem, the present study discretized the inviscid terms and viscous terms separately. This will 

allow a multidimensional upwind solution update from inviscid residual, ∅𝑖𝑛𝑣
𝑇  and an isotropic 

distribution of viscous residual, ∅𝑣𝑖𝑠
𝑇  to update the solution nodes. As for the advection discretization, 

by uniting the contributions from all the triangles surrounding node 𝑖, the conservative update can 

be written as in Eq. (4) where the scalar distribution coefficients, 𝛽𝑖
𝑇 sums up to unity to achieve 

consistency.  
 

𝑆𝑖
𝑑𝑢𝑖

𝑑𝑡
=  ∑ ∅𝑖,𝑖𝑛𝑣

𝑇
𝑇,𝑖∈𝑇 =  ∑ 𝛽𝑖

𝑇∅𝑖𝑛𝑣
𝑇

𝑇,𝑖∈𝑇            (4) 

 
Meanwhile, for the viscous discretization, the Finite Element (FE) Galerkin approach has been 

implemented. Thus, ∅𝑣𝑖𝑠
𝑇  can be represented as Eq. (5) where v is a cell averaged and AT is the area 

of the triangular element. 
 

∅𝑖,𝑣𝑖𝑠
𝑇 =  −

𝑣

4𝐴𝑇
∑ 𝑢𝑗𝑛𝑗 . 𝑛𝑖

3
𝑗=1              (5) 

 
By treating the advection and diffusion residual separately, the conserved, semi-discrete form of 

the governing equation for node 𝑖 is of the form below. 
 

𝑆𝑖
𝑑𝑢𝑖

𝑑𝑡
− ∑ (∅𝑖,𝑖𝑛𝑣

𝑇 + 𝑇,𝑖∈𝑇 ∅𝑖,𝑣𝑖𝑠
𝑇 ) =  0            (6) 

 
2.2 Flux-Difference Approach for Advection-Diffusion 
 

The Flux-Difference approach which is the main interest for the present study evaluates the 
residual for a triangular element based on nodal flux values. This approach consists of two 
components: isotropic signals and artificial signals as shown in Figure 2. The new RD signal 

distribution scheme for node 𝑖 of a triangular element 𝑇 can be written as ∅𝑖 =  ∅𝑖
𝑖𝑠𝑜 + ∅𝑖

𝑎𝑟𝑡 .The 

isotropic signal, ∅𝑖
𝑖𝑠𝑜 is obtained by the trapezoidal integration of the total residual within an element 

distributed equally to each node. ∅𝑖
𝑎𝑟𝑡 is the artificial signals.𝛼, 𝛽 and 𝛾 are the free parameter and 

𝛽 is set to zero for simplicity [6]. With these choices, the Flux-Difference RD approach is a central-
type method with artificial terms to stabilize it. Observe that (α, γ) are coefficients which are 
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dependent on a length-scale factor of which can be used to achieve high-order accuracy as shown in 
Ref. [12]. By Using (α, γ) = 𝑂(ℎ𝑞) with 𝑞 = 1 will yield another second order method defined as Flux-
Difference approach [12]. 

 

 
(a) (b) 

Fig. 2. Isotropic and artificial signal distribution to node i. (a) Isotropic signals and (b) Artificial 
signals 

 
2.3 Computational Domain and Boundary Condition 
 

The Flux Different RD approach and classic RD approach (Low Diffusion Advection-LDA) were 
tested on a steady two-dimensional linear advection-diffusion case. The grid used was equilateral 
grid using 101, 201 and 301 grid points (8989, 35175 and 78862 number of nodes) with variation of 
grid skewness ranged from 0.0 to 0.8 as shown in Figure 3. Meanwhile, the boundary condition was 
set to the exact solution for all sides of a square domain [0, 1] x [0, 1] and was employed with a CFL 
= 0.1 [15]. As for the benchmarking, Figure 4 shows the comparison of the exact solution between 
the present study and the work of Nishikawa [15]. Based on the figure, the present study has similar 
plot as in the previous work. 
 

 
                                          (a)                                            (b) 

Fig. 3. Comparison of grid skewness; (a) Grid skewness 0.0 and (b) Grid skewness 0.8 
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(a)                (b) 

Fig. 4. The comparison of the exact solution from (a) present study and (b) past work of Nishikawa [15] 

 
3. Results  
 

Figure 5. demonstrates the error contour for the classic RD method (LDA). The error plotted 
indicates the difference between the exact solutions with the numerical solution. Based on the figure, 
the pattern is non-uniform for the coarse grid 101. On the grid skewness 0.0 till 0.4, the error contour 
distribution is observed to be smaller and narrower. But, this error distribution becomes larger as it 
reachs 0.6 grid skewness. However as the grid goes finer (grid 201 and 301), the pattern is uniform 
where the error distribution region mitigates when the skewness increasing. As for grid comparison, 
all considered cases produce same pattern where all the finer grids tend to produce less error for all 
value of grid skewness. 
 

 
Fig. 5. Error contour for Classic LDA cases 
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On the other hand, the Flux-Difference cases produce the opposite pattern where the error 
increases as the skewness increasing which demonstrates by Figure 6. This pattern also can be seen 
on the finer grid. But by comparing both cases at skewness 0.0, the Flux-Difference case has less error 
distribution as the error contours distribution are smaller and narrower. This is due to the Flux-
Differences has preserved a second order accurate whereby the classic LDA only first order accurate. 
These patterns were proved on Figure 7 where the graph shows the order of accuracy for both cases 
with different skewness. 
 

 
Fig. 6. Error contour for Flux-Difference cases 

 

 
Fig. 7. The graph of Order of Accuracy vs Skewness 
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4. Conclusions 
 

The present study involves a numerical investigation on the effect of grid skewness on non-unified 
compact residual-distribution methods for scalar advection-diffusion problems. 2 test cases, the 
classic RD (LDA) and Flux-Difference approach have been tested using equilateral grid with several 
grid skewness values. From the results, it can be concluded that 

 
i. The Flux-Difference approach shows a better accuracy compared to the classic RD approach 

where the results demonstrate to be second order accurate without using additional 
equations for the range of 0.0 to 0.4 skewness.  

ii. This has been proven by mathematical formulation in Ref. [5], at least for skewness 0.0. 
However, the Flux-Difference approach suffers a marked accuracy drop beyond skewness 0.6, 
which is beyond the usual grid skewness limit of practical CFD.  

iii. On the classic RD case, the effect of grid skewness have non-uniform pattern where the order 
of accuracy is dropping from grid skewness 0.0 till 0.4. however, the accuracy has increases 
as the grid highly skewed (0.6 and 0.8) 

iv. Meanwhile, the Flux-Difference case has a more uniform pattern as the order of accuracy 
decreases corresponding to the high skewed grids.  
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