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In this paper we consider the unsteady thermal convection due to the imposed 
traveling thermal wave boundary through a vertical channel bounded by flat walls. 
Before in few papers have discussed the two dimensional free and forced convection 
flow and heat transfer in a vertical wavy channel with traveling thermal waves 
embedded in a porous medium but here we are considering The effect of free 
convective heat and mass transfer flow have been discussed by solving the governing 
unsteady non-linear equations under perturbation scheme. The velocity, the 
temperature and the concentration have been analyzed for different variations of the 
governing parameters. The shear stress, rate of heat transfer and rate of mass transfer 
have been evaluated and tabulated for these sets of parameters and also from tables 
we analyze rate of heat and mass transfer for different parametric values.                

Keywords:  
Shear stress; Heat transfer; Mass 
transfer; convection Copyright © 2019 PENERBIT AKADEMIA BARU - All rights reserved 

 
1. Introduction 
 

There are many transport processes in nature and in many industries where flows with free 
convection currents caused by the temperature differences are affected by the differences in 
concentration or material constitutions. In a number of engineering applications foreign gases are 
injected to attain more efficiency, the advantage being the reduction in wall shear stress, the mass 
transfer conductance or the rate of heat transfer. Gases such as H2, H2O, CO2, etc., are usually used 
as foreign gases in air flowing past bodies. So the problems of heat and mass transfer past vertical 
bodies in boundary layer flows have been studied by many of whom the names of Somers [1], Gil et 
al. [2], Adeams and Lowell [3] and Gebhart and Peera [4] are worth mentioning. Lavanya [5] studied 
Unsteady MHD Convective laminar flow between two Vertical Porous plates with mass transfer. 

The combined effects of thermal and mass diffusion in channel flows has been studied in the 
recent times by a few authors notably. Nelson and wood [6, 7] have presented numerical analysis of 
developing laminar flow between vertical parallel plates for combined heat and mass transfer natural 
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convection with uniform wall temperature and concentration boundary conditions. Lavanya [8, 9] 
studied Effects of Dissipation and Radiation on Heat Transfer Flow of a Convective Rotating Cuo-
Water Nano-fluid in a Vertical Channel and MHD Rotating flow through a porous medium with Heat 
and mass transfer. 

Vajravelu and Debnath [10] have made an interesting and a detailed study of non-linear 
convection heat transfer and fluid flows, induced by traveling thermal waves. Lavanya [11, 12] have 
studied the radiation and chemical reaction effects on MHD flow over an infinite vertical oscillating 
porous plate with soret effect and the author also studied radiation and mass transfer effects on 
MHD marangoni convection over a flat surface in presence of joule heating, viscous dissipation, heat 
generation with suction and injection. Guria and Jana [13] have discussed the two dimensional free 
and forced convection flow and heat transfer in a vertical wavy channel with traveling thermal waves 
embedded in a porous medium. The set of non-linear ordinary differential equations are solved 
analytically. The velocity and temperature fields have been obtained using perturbation technique. 
Ny et al. [14] studied Numerical Study on Turbulent-Forced Convective Heat Transfer of Ag/Heg 
Water Nanofluid in Pipe. Dero et al. [15] studied MHD micropolar nanofluid flow over an 
exponentially stretching/shrinking surface. H.A. Mohammed, et.al studied Mixed Convective 
Nanofluids Flow in a Channel having Forward-Facing Step with Baffle Lavanya et al. [17] studied the 
effect of radiation on free convection heat and mass transfer flow through porous medium in a 
vertical channel with heat absorption/generation and chemical reaction. 

In this paper we consider the unsteady thermal convection due to the imposed traveling thermal 
wave boundary through a vertical channel bounded by flat walls. The effect of free convective heat 
and mass transfer flow have been discussed by solving the governing unsteady non-linear equations 
under perturbation scheme. The velocity, the temperature and the concentration have been 
analyzed for different variations of the governing parameters. The shear stress, rate of heat transfer 
and rate of mass transfer have been evaluated and tabulated for these sets of parameters. We found 
that The effect of wall waviness on u It is found that higher the dilation of the channel walls smaller 
the axial velocity in the flow region. The effect of dissipation u is Higher the dissipative heat smaller 
u in the flow region. With respect to the buoyancy ratio N, it is found that when the molecular 
buoyancy force dominates over the thermal buoyancy force |u| enhances irrespective of the 
directions of the buoyancy forces. 

 
2. Methodology  
 

We consider the motion of a viscous, incompressible fluid through a porous medium in a vertical 
wavy channel bounded by wavy walls (as shown in Figure 1). The thermal buoyancy in the flow field 
is created by a traveling thermal wave imposed on the boundary wall at )(mxLfy   while the 

boundary at )(mxLfy   is maintained at constant temperature T1. The walls are maintained at 

constant concentrations. A uniform magnetic field of strength Ho is applied transverse to the walls. 
Assuming the magnetic Reynolds to be small we neglect the induced magnetic field in comparison to 
the applied magnetic field. Assuming that the flow takes place at low concentration we neglect the 
Duffor effect. The Boussinesq approximation is used so that the density variations will be considered 
only in the buoyancy force. The viscous and Darcy dissipations are taken into account to the transport 

of heat by conduction and convection in the energy equation. Also the kinematic viscosity , the 
thermal conductivity  k  are  treated  as constants. We choose a rectangular Cartesian system 0 (x, y) 
with x-axis in the vertical direction and y-axis normal to the walls. The walls of the channel are at 

)(mxLfy  . 
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Fig. 1. Schematic diagram of the flow 

    
The governing equations of the unsteady flow and heat transfer are: 

 
Equation of continuity:   
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Equation of linear momentum: 
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Equation of energy: 
 

)())(())()(()(

)(

'

1

222222

2

2

2

2

eoe

pe

CCQvuH
Kx

v

y

u
Q

y

T

x

T

y

T
v

x

T
u

t

T
C











































                                       (4)                                                                                                                                                                          

 
Equation of Diffusion: 
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Equation of state: 
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where e  is the density of the fluid in the equilibrium state, Te and Ce are the temperature and 

concentration in the equilibrium state, (u, v) are the velocity components along O (x, y) directions, p 

is the pressure, T and C are the temperature and concentration in the flow region,  is the density of 

the fluid,  is the constant coefficient of viscosity, Cp is the specific heat at constant pressure,  is the 
coefficient of thermal conductivity, k is the permeability of the porous medium, D1 is the molecular 

diffusivity, '

1Q  is the radiation absorption coefficient,  is the coefficient of thermal expansion, * 
 is 

the volume expansion with mass fraction, k1 is the chemical reaction coefficient, Q is the strength of 

the constant internal heat source,   is electrical conductivity of the medium, e is magnetic 
permeability and qr is the radiative heat flux. 
 
In the equilibrium state: 
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where DDe pppp ,  being the hydrodynamic pressure. 

 
The flow is maintained by a constant volume flux for which a characteristic velocity is defined as: 
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The boundary conditions for the velocity and temperature fields are: 

 
u = 0, v = 0, T=T1, C = C1 on )(mxLfy   

22 ,)(,0,0 CCntmxSinTTTvu e   on )(mxLfy                                                               (9) 

 

where 12 TTTe   and )( ntmxSin   is the imposed traveling thermal wave 

 

In view of the continuity equation we define the stream function  as: 
 

u = - y , v =  x                                                                                                                                  (10) 
 
Eliminating pressure, p from Eq. (2) and (3) and using the governing equations of the flow in terms 

of  are: 
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Introducing the non-dimensional variables in Eq. (11) – (13) as: 
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The governing equations in the non-dimensional form (after dropping the dashes) are: 
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The energy equation in the non-dimensional form is: 
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The Diffusion equation is: 
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The corresponding boundary conditions are: 
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The value of  on the boundary assumes the constant volumetric flow in consistent with the 
hypothesis Eq. (8). Also the wall temperature varies in the axial direction in accordance with the 
prescribed arbitrary function t. 

 
3. Analysis of The Flow 
 

The main aim of the analysis is to discuss the perturbations created over a combined free and 
forced convection flow due to traveling thermal wave imposed on the boundaries.  
 
Introducing the transformation:  
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The perturbation analysis is carried out by assuming   the aspect ratio   to be small. We adopt 
the perturbation scheme and write: 
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Assuming Ec<<1 to be small we take the asymptotic expansions as: 
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Substituting the expansions Eq. (28) in Eq. (25) - (28) and separating the like powers of Ec we get 

the following: 
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4. Solution of The Problem 

 
Solving the equations (35) – (46) subject to the relevant boundary conditions we obtain: 
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Where ,....,.........,,......,........., 792110521 bbbaaa  are constants given in the appendix 

 

0 and reduces with >0 in the heating case and in the cooling case it reduces at  = +1 with >0 

and enhances it  = -1 with <0 (Table 12 and Table 17 Lesser the molecular diffusivity larger |Sh| at 

 = 1. For higher Q12, it enhances at  = +1 and reduces at  = -1. 
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5. Shear Stress, Nusselt Number and Sherwood Number  
  
The shear stress on the channel walls is given by: 
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which in the non- dimensional form reduces to: 
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and the corresponding expressions are: 
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The local rate of heat transfer coefficient (Nusselt number Nu) on the walls has been calculated 

using the formula: 
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The local rate of mass transfer coefficient (Sherwood number) (Sh) on the walls has been 

calculated using the formula: 
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and the corresponding expressions are: 
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where e1………..e98 are constants. 

 
6. Solution of The Problem 

 
Solving the equations (35)- (46) subject to the relevant boundary conditions we obtain 
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7. Results and Discussion  
 

We analyze the effect of radiation absorption, chemical reaction and dissipation on the unsteady 
convective heat and mass transfer flow of a viscous, electrically conducting fluid in a vertical wavy 
channel in the presence of heat source. The equations governing the flow, heat and mass transfer 

are solved by using a regular perturbation technique with the slope  as a perturbation parameter. 

The axial velocity (u) is exhibited in Figure 2 to Figure 10 for different values of G, R, M, , N, Sc, 

k, Q, Ec,  and x+t. The actual axial flow is in the vertically upward direction and hence u<0 
represents a reversal flow. Figure 2 represents u with Grashof number G. It is found that u exhibits a 
reversal flow for G<0 and the region of reversal flow enlarges with increase in G<0. Also the 

magnitude of u enhances with increase in |G| with maximum |u| attained at  = 0. An increase in 
the Reynolds number R depreciates with increase in R. u exhibits a reversal flow at R = 140 (Figure 
3). Figure 4 represents u with Hartmann number M. It is found that higher the Lorentz force larger 

the axial velocity. Figure 5 represents u with heat source parameter . It is found that u exhibits a 

reversal flow with 4. |u| depreciates with 4 and enhances with higher 6. Also u enhances 

with ||(<0). Figure 6 represents u with Sc and Q1. u exhibits a reversal flow with higher Sc = 2.01. It 
is found that lesser the molecular diffusivity smaller |u| in the entire flow region. An increase in the 
radiation absorption Q1 results in an enhancement in |u|. Figure 7 represents u with chemical 

reaction parameter k. It is found that u exhibits a reversal flow with higher values of k 1.5 and the 
region of reversal flow enlarges with increase in k. Also |u| enhances with k in the entire flow region. 
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The effect of wall waviness on u is shown in Figure 8. It is found that higher the dilation of the channel 
walls smaller the axial velocity in the flow region. The effect of dissipation u is shown in Figure 9. 
Higher the dissipative heat smaller u in the flow region. With respect to the buoyancy ratio N, it is 
found that when the molecular buoyancy force dominates over the thermal buoyancy force |u| 
enhances irrespective of the directions of the buoyancy forces. Also u exhibits a reversal flow with 

|N| (<0). (Figure 10). Figure 11 represents u with the phase x+t of the boundary temperature. It is 

found that the axial velocity depreciates with x+t/2, and enhances with higher x+t =  and again 

depreciates with still higher x+t = 2. 
 

  
Fig. 2. Variation of u with G Fig. 3. Variation of u with R 

 I II III IV V VI  I II III 

G 100 300 500 -100 -300 -500 R 35 70 140 

  

  
Fig. 4. Variation of u with M Fig. 5. Variation of u with  

 I II III  I II III IV V VI 

M 2 4 6  2 4 6 -2 -4 -6 
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Fig. 6. Variation of u with Sc & Q1 Fig. 7. Variation of u with k 

 I II III IV V VI VII  I II III 

Sc 0.24 0.6 1.3 2.01 1.3 1.3 1.3 k 0.5 1.5 2.5 

Q1 0.5 0.5 0.5 0.5 1 1.5 2  

  

  
Fig. 8. Variation of u with  Fig. 9. Variation of u with Ec 

 I II III IV  I II III IV V 

 0.3 0.5 0.7 0.9 Ec 0.01 0.03 0.05 0.07 0.09 

 

  
Fig. 10. Variation of u with N Fig. 11. Variation of u with x+t 

 I II III IV  I II III IV 

N 1 2 -0.5 -0.8 x+t /4 /2  2 
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The secondary velocity (v) which is due to the non-uniform boundary and boundary temperature 
is shown in Figure 12 to Figure 22 for different parametric values. Figure 12 represents v with G. It is 
found that v is towards the boundary for G>0 and is towards the midregion. |v| enhances with 

increase in G>0 and reduces with G<0 with maximum |v| attained at  = 0. The magnitude of v 
depreciates with R and enhances with increase in M (Figure 13 & Figure 14). From Figure 15 we find 

that the secondary velocity enhances with increase in >0 and depreciates with ||(<0). From Figure 
16, the variation of v with Sc shows that lesser the molecular diffusivity larger v and for further 
lowering of the molecular diffusivity smaller v in the flow region. |v| depreciates with increase in 

Q11 and enhances with higher Q11.5 (Figure 17). With respect to the buoyancy ratio N we find that 
the magnitude of v enhances with increase in |N| irrespective of the directions of the buoyancy 
forces (Figure 18). Figure 19 represents v with chemical reaction parameter k. It is found that higher 
the dissipative heat smaller |v| in the entire flow region. From Figure 20 it can be seen that |v| 

enhances with increase in . Thus higher the dilation of the channel walls larger the secondary 
velocity in the flow region. The effect of dissipation on v is exhibited in Figure 21. Higher the 

dissipative heat larger v in the entire flow region. An increase in the phase x+t depreciates |v| 

and enhances it for higher x+t = 2 (Figure 22). 
 

  
Fig. 12. Variation of v with G Fig. 13. Variation of v with R 

 I II III IV V VI  I II III 

G 100 300 500 -100 -300 -500 R 35 70 140 

  

  
Fig. 14 Variation of v with M Fig. 15. Variation of v with  

 I II III  I II III IV V VI 

M 2 4 6  2 4 6 -2 -4 -6 
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Fig. 16. Variation of v with Sc Fig. 17. Variation of v with Q1 

 I II III IV  I II III IV 

Sc 0.24 0.6 1.3 2.01 Q1 0.5 1 1.5 2.0 

  

  
Fig. 18. Variation of v with N Fig. 19. Variation of v with k 

 I II III IV  I II III IV 

N 1 2 -0.5 2.0 k 0.5 1.5 2.5 3.5 

 

  
Fig. 20. Variation of v with  Fig. 21. Variation of v with Ec 

 I II III IV  I II III IV V 

 0.3 0.5 0.7 0.9 Ec 0.01 0.03 0.05 0.07 0.09 
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Fig. 22. Variation of v with x+t 

 I II III IV 

x+t /4 /2  2 

 

The non-dimensional temperature () is shown in Figure 23 to Figure 32 for different parametric 
values. We follow the convention that the non-dimensional temperature is positive or negative 

according as the actual temperature is greater/lesser than the temperature T2 on the right wall  = 

+1. Figure 23 represents  with G. It is found that the actual temperature reduces with increase in 
|G| in the entire flow region. An increase in R reduces the actual temperature in flow region (Figure 
24). With respect to M it can be seen that higher the Lorentz force smaller the actual temperature 
(Figure 25). The actual temperature enhances with increase in the strength of the heat source α and 
decreases with that of heat sink (Figure 26). With respect to Sc we find that lesser the molecular 
diffusivity larger the actual temperature and for further lowering of the molecular diffusivity smaller 
the actual temperature (Figure 27). From Figure 28 we find that an increase in Q1 enhances the actual 
temperature in the left half and reduces in the right half of the channel. With respect to the chemical 
reaction parameter k, it can be seen that the actual temperature reduces with increase in k = 2.5, it 
enhances and for still higher k = 3.5, it reduces in the entire flow region (Figure 29). From Figure 30 
we find that higher the dissipative heat smaller the actual temperature. The effect of wall waviness 

on  is shown in Figure 31. It is found that higher the dilation of the channel walls larger the actual 

temperature. The actual temperature enhances with smaller and higher values of x+t and 

depreciates with intermediate value of x+t =  (Figure 32). 
 

  
Fig. 23. Variation of  with G Fig. 24. Variation of  with R 

 I II III IV V VI  I II III 

G 100 300 500 -100 -300 -500 R 35 70 140 
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Fig. 25. Variation of  with M Fig. 26. Variation of  with  

 I II III  I II III IV V VI 

M 2 4 6  2 4 6 -2 -4 -6 

 

  
Fig. 27. Variation of  with Sc Fig. 28. Variation of  with Q1 

 I II III IV  I II III IV 

Sc 0.24 0.6 1.3 2.01 Q1 0.5 1 1.5 2 

  

  
Fig. 29. Variation of  with k Fig. 30. Variation of  with Ec 

 I II III IV  I II III IV V 

k 0.5 1.5 2.5 3.5 Ec 0.01 0.03 0.05 0.07 0.09 
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Fig. 31. Variation of  with  Fig. 32. Variation of  with N & x+t 

 I II III IV  I II III IV V VI VII 

 0.3 0.5 0.7 0.9 N 1 -0.5 0 -0 1 1 1 

     x+t /4 /4 /4 /4 /2  2 

  
The non-dimensional concentration (C) is exhibited in Figure 33 to Figure 43 for different 

parametric values. We follow the convention that the non-dimensional concentration is positive or 
negative according as the actual concentration is greater/lesser than the concentration on the right 
wall. Figure 33 represents C with G. It is found that the actual concentration enhances with increase 
in G>0 and reduces with |G| (<0). An increase in R reduces the actual concentration (Figure 34). The 
actual concentration enhances in the left half and depreciates in the right half of the channel with 
increase in M (Figure 35). From Figure 36 it can be seen that the actual concentration enhances with 

>0 and reduces with || (<0). With respect to Sc we find that lesser the molecular diffusivity larger 
the actual concentration in the left half and smaller in the higher half and for further lowering of the 
molecular diffusivity the region where the actual concentration is positive is confined for a narrow 

region adjacent to  = -1 (Figure 37). An increase in Q1 enhances C in the left half and reduces in the 
right half of the channel (Figure 38). From Figure 39 it can be seen that the actual concentration 

reduces with increase in k2.5 and enhances with higher k = 3.5. The effect of wall waviness on C is 
shown in Figure 40. It can be seen that higher the dilation of the channel walls larger in the right half 
and smaller in the right half of the channel. With respect to the buoyancy ratio N we find that when 
the molecular buoyancy dominates over the thermal buoyancy force the actual concentration 
enhances when the buoyancy forces act in the same direction and for the forces acting in opposite 
directions, it depreciates in the entire flow region (Figure 41). The variation of C with Ec shows that 
higher the dissipative heat larger the actual concentration in the left half and smaller in the right half 

of the channel (Figure 42). The actual concentration enhances with increase in x+t and reduces with 

higher x+t = 2 ( Figure 43). 
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Fig. 33. Variation of C with G Fig. 34. Variation of C with R 

 I II III IV V VI  I II III 

G 100 300 500 -100 -300 -500 R 35 70 140 

  

  
Fig. 35. Variation of C with M Fig. 36. Variation of C with  

 I II III  I II III IV V VI 

M 2 4 6  2 4 6 -2 -4 -6 

 

  
Fig. 37. Variation of C with Sc Fig. 38. Variation of C with Q1 

 I II III IV  I II III IV 

Sc 0.24 0.6 1.3 2.01 Q1 0.5 1 1.5 2 
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Fig. 39. Variation of C with k Fig. 40. Variation of C with  

 I II III IV  I II III IV 

k 0.5 1.5 2.5 3.5  0.3 0.5 0.7 0.9 

 

  
Fig. 41. Variation of C with N Fig. 42. Variation of C with Ec 

 I II III IV  I II III IV V 

N 1 2 -0.5 -0.8 Ec 0.01 0.03 0.05 0.07 0.09 

 

 
Fig. 43. Variation of C with x+t 

 I II III IV 

x+t /4 /2  2 

 

The local rate of heat transfer (Nusselt number) at  = 1 is shown in Table 1 to Table 10 for 

different values of G, R, M, Sc, Q1, N, k, , Ec and x+t. It is found that the rate of heat transfer 

enhances at  = 1 with increase in G>0 and for G<0, |Nu| depreciates at   = +1 and enhances at  

= -1 in the heating case while in the cooling case it reduces at   = +1 and enhances at  = -1. The 

variation of Nu with M shows that at  = +1, |Nu| enhances with M4 and for higher M6, it 
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enhances for G>0 and reduces for G<0. At    = -1, |Nu| reduces with M for all G. The variation of Nu 

with the phase x+t of the boundary temperature shows that the rate of heat transfer enhances with 

smaller and higher values of x+t in the heating case and reversed effect is observed in |Nu| in the 
cooling case at both the walls (Table 1and Table 6). The variation of Nu with heat source parameter 

 shows that at  = +1, |Nu| enhances for G>0 and reduces for G<0 with increase in the strength of 

the heat source and at  = -1, it reduces for all G, while for <0, it reduces in the heating case and 

enhances in the cooling case, at  = 1, (tables 2&7). With respect to Schmidt number Sc, we find 

that lesser the molecular diffusivity larger |Nu| at  = 1 in the heating case and in the cooling case 

|Nu| reduces at  = +1 and enhances at  = -1. An increase in the radiation absorption parameter Q1 

leads to a depreciation in |Nu| at  = +1 and an enhancement at  = -1. With respect to  it can be 

seen that the rate of heat transfer reduces |Nu| with 0.5 and enhances with higher 0.7 at both 
the walls (Tables 3 and Table 8). When the molecular buoyancy force dominates over the thermal 

buoyancy force |Nu| enhances at  = 1 for G>0 and for G<0, it reduces at =+1 and enhances at at 

 = -1 when the buoyancy forces act in the same direction and for the forces acting in opposite 

directions, |Nu| enhances at  = +1 and reduces at  = -1. The rate of heat transfer depreciates with 

increase in k1.5 and enhances with higher 1.5 at =1 (Tables 4 and Table 9). From Table 5 and 

Table 10 we find that the rate of heat transfer enhances at =+1 and reduces at  = -1 with increasing 
Ec in the heating case while in the cooling case it reduces at both the walls. Thus higher the dissipative 

heat larger |Nu| at  = 1 and smaller at  = -1 for G>0 and for G<0, smaller (Nu| at  = 1. 
                                                              

Table 1 
Average Nusselt number (Nu) at y = +1 
G I II III IV V VI VII VIII 

103 0.0063 -0.2949 -0.3711 -1.8401 -1.9169 0.1186 -0.0932 -0.1889 
3x103 -1.1844 -1.5453 7.6509 -1.7860 -1.9225 -1.2281 -1.0638 -1.1083 
-103 -0.5110 -0.4929 -0.4773 -2.9093 -1.9389 -0.4823 -0.5901 -0.5609 
-3x103 -0.5204 -0.5142 -0.5051 -1.9988 -1.9298 -0.4622 -0.5307 -0.5121 
R 35 70 140 35 35 35 35 35 
M 5 5 5 10 15 5 5 5 

x+t /4 /4 /4 /4 /4 /2  2 

 
Table 2 
Average Nusselt number (Nu) at y = +1 
G I II III IV V VI 

103 0.0063 -0.5299 -0.7214 -0.9764 -0.8987 -0.8660 
3x103 -0.4844 -0.7242 -0.8277 -0.9651 -0.9589 -0.9419 
-103 -0.5110 -0.5829 -0.6220 0.1209 0.7548 -1.8676 
-3x103 -0.4804 -0.5776 -0.6274 -0.0023 0.6270 2.4821 

 2 4 6 -2 -4 -6 

   
 
Table 3 
Average Nusselt number (Nu) at y = +1 
G I II III IV V VI VII VIII IX X 

103 0.0710 -0.3047 0.0163 -0.3421 0.0103 0.0095 0.0085 -10.4467 -0.2571 -0.3712 
3x103 -0.1207 -0.4886 -1.1844 02.0792 -1.0844 -0.954 -0.9014 -0.8278 -0.3057 0.9089 
-103 0.3018 -0.1655 -0.5110 -0.4921 -0.3610 -0.2524 -0.2095 -0.4410 -0.5477 -0.5650 
-3x103 0.6254 0.1376 -0.4804 -0.4593 -0.4004 -0.3512 -0.3096 -0.3383 -0.5652 -0.6063 
Sc 0.24 0.6 1.3 2.01 1.3 1.3 1.3 1.3 1.3 1.3 

 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.7 0.9 
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Table 4 
Average Nusselt number (Nu) at y = +1 
G I II III IV V VI VII 

103 -0.6063 -1.4592 -0.5158 -1.5468 -0.5418 -5.0873 34.6988 
3x103 -1.1844 -1.2607 -0.4736 -1.6762 -0.7982 -11.9711 -49.6355 
-103 -0.5110 -0.5016 0.1219 3.0234 -0.3033 5.7107 -17.5893 
-3x103 -0.4804 -0.1748 -1.2012 -1.69774 -0.0788 27.5725 -37.9570 
N 1 2 -0.5 -0.8 1 1 1 
k 0.5 0.5 0.5 0.5 1.5 2.5 3.5 

 
Table 5 
Average Nusselt number (Nu) at y = +1 
G I II III IV V 

103 -0.0111 -0.0284 0.0363 0.0434 0.0830 

3x103 -1.1175 -1.1554 -1.1844 -1.2073 -1.2259 

-103 -0.5366 -0.5239 -0.5110 -0.4978 -0.4843 

-3x103 -0.5914 -0.5387 -0.4804 -0.4158 -0.3436 

Ec 0.01 0.03 0.05 0.07 0.09 

 
Table 6 
Average Nusselt number (Nu) at y = -1 
G I II III IV V VI VII VIII 

103 2.0486 2.4859 3.1064 -0.1285 -0.0606 3.1417 1.8105 8.1274 
3x103 -5.3604 -9.8826 -14.3051 -0.1423 -0.0802 -3.6521 -2.7540 -12.9506 
-103 -0.8566 -0.9495 -1.0090 0.2316 0.1106 -0.8073 -1.0300 -0.9584 
-3x103 -1.6057 -1.8189 -2.0086 0.3496 0.2602 -1.5467 -1.7944 -1.7198 
R 35 70 140 35 35 35 35 35 
M 5 5 5 10 15 5 5 5 

x+t /4 /4 /4 /4 /4 /2  2 

                               
         Table 7 

Average Nusselt number (Nu) at y = -1 
G I II III IV V VI 

103 4.0486 0.6363 0.1503 -1.3812 -1.0425 -0.8871 
3x103 -3.3604 1.8832 0.5294 -1.4483 -1.2847 -1.1618 
-103 -0.8566 -0.4023 -0.1326 -4.9654 60.7819 7.0139 
-3x103 -1.6057 -0.9226 -0.3599 -3.9729 -6.7404 -14.9052 

 2 4 6 -2 -4 -6 

 
Table 8 
Average Nusselt number (Nu) at y = -1 
G I II III IV V VI VII VIII IX X 

103 -0.0141 -0.2982 -1.6486 2.0810 1.8486 2.9292 2.1296 -1.3863 1.9480 2.1286 

3x103 -0.0125 -0.2361 -3.3604 5.8921 -3.4609 -3.8619 -3.9526 -1.2855 -3.4592 -3.2482 

-103 -0.0158 -0.2601 -0.8566 -0.7835 -0.9066 -0.9526 -0.9896 -0.5982 -0.9091 -1.0125 

-3x103 -0.0185 -0.3375 -1.6057 -1.9198 -1.6267 -1.8596 -1.9256 -0.9958 -1.9509 -2.0126 

Sc 0.24 0.6 1.3 2.01 1.3 1.3 1.3 1.3 1.3 1.3 

 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.7 0.9 
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Table 9 
Average Nusselt number (Nu) at y = -1 
G I II III IV V VI VII 

103 4.0486 -4.6452 -0.8844 0.4889 0.1323 0.1511 -0.3730 
3x103 -4.3604 -4.8172 -1.6378 0.1757 0.4018 0.3690 1.9824 
-103 -0.8566 -1.4151 2.8777 1.9842 -0.1315 -0.2031 0.6629 
-3x103 -1.6057 -2.6908 -3.1737 -2.4223 -0.3942 -0.9847 0.3386 
N 1 2 -0.5 -0.8 1 1 1 
K 0.5 0.5 0.5 0.5 1.5 2.5 3.5 

 

Table 10 
Average Nusselt number (Nu) at y = -1 
G I II III IV V 

103 4.2833 4.1705 4.0846 3.9162 3.7721 
3x103 -4.9009 -4.0377 -3.3604 -2.8147 -2.3657 
-103 -0.9609 -0.9093 -0.8566 -0.8029 -0.7841 
-3x103 -1.6578 -1.6331 -1.6057 -1.5752 -1.5409 
Ec 0.01 0.03 0.05 0.07 0.09 

 

The rate of mass transfer (Sherwood number) at  = 1 is exhibited in Tables 11 to Table 20 for 

different parametric values. It is found that the rate of mass transfer enhances at   = +1 and 

depreciates at  = -1 with increase in G>0 and for G< 0 |Sh| enhances at both the walls. An increase 

in R reduces |Sh| at  = +1 and enhances at  = -1 in the heating case while in the cooling case, it 

depreciates at  = 1. With respect M we find that higher the Lorentz force larger |Sh| at both the 

walls. An increase in the phase x+t, enhances |Sh| at  = +1 and reduces at  = -1, while for higher 

x+t2, it reduces at  = +1 and enhances at  = -1 (Table 11 and Table 16). The variation of Sh with 

heat source parameter  shows that |Sh| reduces with >0 and enhances with <0 at  = +1 while 

at  = -1, it enhances with >Sh| at  = +1 and enhances at  = -1 and for higher Q12, it enhances 

at  = +1 and reduces at  = -1 (Table 13 and Table 18). When the molecular buoyancy force 

dominates over the thermal buoyancy force the rate of mass transfer enhances at  = 1 when the 
buoyancy forces act in the same direction and for the forces acting in opposite directions |Sh| 

enhances at  = +1and depreciates at  = -1. The variation of Sh with chemical reaction parameter k 

shows that |Sh|| at  = +1 depreciates with k1.5 and enhances with higher |k|2.5 and at  = -1, 

|Sh| enhances with k for all G. An increase in Ec0.01 enhances |Sh| for G>0 and reduces for G<0 

and for higher Ec0.09, it enhances for all G. At  = -1, |Sh| enhances with Ec0.07 and reduces with 

higher Ec0.09 (Table 15 and Table 20). 
 
Table 11 
Average Sherwood Number (Sh) at y = +1 
G I II III IV V VI VII VIII 

103 0.0758 0.0756 0.0755 0.3983 5.0483 0.0984 0.1654 0.1242 
3x103 0.2145 0.2139 0.2137 1.3284 -6.4322 0.2586 0.3652 0.3242 
-103 -0.0579 -0.0575 -0.0572 -0.3417 -2.0787 -0.0786 -0.0846 -0.8042 
-3x103 -0.1868 -0.1864 -0.1862 -0.9445 -3.9396 -0.2842 -0.3126 -0.2942 
R 35 70 140 35 35 35 35 35 
M 5 5 5 10 15 5 5 5 

x+t /4 /4 /4 /4 /4 /2  2 
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Table 12 
Average Sherwood Number (Sh) at y = +1 
G I II III IV V VI 

103 0.0758 0.0506 0.0257 0.1272 0.1534 0.1800 
3x103 0.2145 0.1358 0.0601 0.3818 0.4707 0.5635 
-103 -0.0579 -0.0337 -0.0092 -0.1054 -0.1287 -0.1517 
-3x103 -0.1868 -0.1171 -0.0446 -0.3188 -0.3812 -0.4414 

 2 4 6 -2 -4 -6 

 
Table 13 
Average Sherwood Number (Sh) at y = +1 
G I II III IV V VI VII VIII IX X 

103 0.0131 0.0380 0.0758 0.0963 0.0658 0.0549 0.0849 0.0676 0.0873 0.1026 
3x103 0.0351 0.1041 0.2145 0.2798 0.2046 0.1948 0.2296 0.1887 0.2521 0.3043 
-103 -0.0090 -0.0274 -0.0579 -0.0761 -0.0526 -0.0506 -0.0626 -0.0515 -0.0675 -0.0806 
-3x103 -0.0309 -0.0922 -0.1868 -0.2383 -0.1762 -0.1729 -0.1969 -0.1685 -0.2130 -0.2475 
Sc 0.24 0.6 1.3 2.01 1.3 1.3 1.3 1.3 1.3 1.3 

 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.7 0.9 

 
Table 14 
Average Sherwood Number (Sh) at y = +1 
G I II III IV V VI VII 

103 0.0758 0.1708 -0.0611 0.1507 0.0436 0.0996 -0.3284 
3x103 0.2145 0.5216 -0.1944 0.4382 0.1211 0.3110 -0.8978 
-103 -0.0579 -0.1462 0.0798 0.1082 -0.0312 -0.0893 0.3671 
-3x103 -0.1868 -0.4340 0.2292 0.3198 -0.1034 -0.2592 1.2357 
N 1 2 -0.5 -0.8 1 1 1 
K 0.5 0.5 0.5 0.5 1.5 2.5 3.5 

 
Table 15 
Average Sherwood Number (Sh) at y = +1 
G I II III IV V 

103 0.0558 0.0628 0.0758 0.0849 0.0950 
3x103 0.1945 0.2042 0.2145 0.2249 0.2353 
-103 -0.0779 -0.0628 -0.0579 -0.0684 -0.0786 
-3x103 -0.2069 -0.1949 -0.1868 -0.1984 -0.2164 
Ec 0.01 0.03 0.05 0.07 0.09 

 
Table 16 
Average Sherwood Number (Sh) at y = -1 
G I II III IV V VI VII VIII 

103 0.0523 0.0533 0.0538 -0.0843 -2.3627 0.516 0.0496 0.0564 
3x103 0.0162 0.0192 0.0208 -0.4579 11.8070 0.0152 0.0149 0.0164 
-103 0.0870 0.0861 0.0856 0.2071 0.9977 0.0742 0.0712 0.0745 
-3x103 0.1204 0.1176 0.1161 0.4407 1.7896 0.1182 0.1169 0.1284 
R 35 70 140 35 35 35 35 35 
M 5 5 5 10 15 5 5 5 

x+t /4 /4 /4 /4 /4 /2  2 
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Table 17 
Average Sherwood Number (Sh) at y = -1 
G I II III IV V VI 

103 0.0523 0.0592 0.0661 0.0382 0.0310 0.0236 
3x103 0.0162 0.0378 0.0586 -0.0300 -0.0267 -0.0206 
-103 0.0870 0.0804 0.0737 0.1001 0.1064 0.1127 
-3x103 0.1204 0.1013 0.0814 0.1564 0.1733 0.1897 

 2 4 6 -2 -4 -6 

 
Table 18 
Average Sherwood Number (Sh) at y = -1 
G I II III IV V VI VII VIII IX X 

103 0.0111 0.0299 0.0523 0.0704 0.0623 0.0645 0.0512 0.0733 0.0695 -0.0989 
3x103 0.0236 0.0472 0.0662 0.0802 0.186 0.189 0.164 0.1136 -0.1272 -0.3332 
-103 -0.0012 0.0127 0.0870 0.1917 0.0912 0.1984 0.0842 0.0338 0.1562 0.2433 
-3x103 -0.136 -0.0143 0.1204 0.3045 0.1245 0.1286 0.1246 -0.0154 0.2838 0.488 
Sc 0.24 0.6 1.3 2.01 1.3 1.3 1.3 1.3 1.3 1.3 

 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.7 0.9 

 
Table 19 
Average Sherwood Number (Sh) at y = -1 
G I II III IV V VI VII 

103 0.0523 0.0272 0.0884 0.0293 0.2569 0.3303 1.5214 
3x103 0.0162 0.0655 0.1239 0.04804 0.1150 -1.0289 2.4302 
-103 0.0870 0.1102 0.0507 0.0432 0.3910 1.0064 -1.1389 
-3x103 0.1204 0.1851 0.0106 0.0095 0.5180 1.6918 -4.1399 
N 1 2 -0.5 -0.8 1 1 1 
K 0.5 0.5 0.5 0.5 1.5 2.5 3.5 

 
Table 20 
Average Sherwood Number (Sh) at y = -1 
G I II III IV V 

103 0.0513 0.1543 0.1642 0.1710 0.1589 
3x103 0.0152 0.0156 0.0165 0.0174 0.0164 
-103 0.0862 0.0874 0.0912 0.1002 0.0954 
-3x103 0.1164 0.1189 0.1212 0.1224 0.1106 
Ec 0.01 0.03 0.05 0.07 0.09 

 
8. Conclusion 
 
 In this paper, we considered the unsteady thermal convection due to the imposed traveling 
thermal wave boundary through a vertical channel bounded by flat walls. The computed results can 
be summarized as follow 
 An increase in the Reynolds number R depreciates with increase in R. 
 An increase in the radiation absorption Q1 results in an enhancement in |u|.\ 
 The variation of C with Ec shows that higher the dissipative heat larger the actual concentration 

in the left half and smaller in the right half of the channel. 

 The actual concentration enhances with increase in x+t and reduces with higher x+t = 2. 

 The rate of heat transfer depreciates with increase in k1.5 and enhances with higher 1.5 at =1 

 we find that the rate of heat transfer enhances at =+1 and reduces at  = -1 with increasing Ec 
in the heating case while in the cooling case it reduces at both the walls. 
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