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The present study aims to investigate numerically the routes to 
unsteadiness behavior inside tall cavities at low Prandtl numbers (Pr=0.01- 
0.1) under imposed horizontal magnetic field. The transition thresholds 
are marked under the variation of the cavity aspect ratio Ar=W/H (1/8, 
1/4, 1/2), the Rayleigh number Ra (104-5×107) and the Hartmann number 
Ha (0-150). The Lattice Boltzmann (LBM) approach is used to solve the 
governing equations. Horizontal temperature gradient is responsible of 
the convective motion and heat transfer. The changes in the convective 
flow patterns and temperature contours due to the effects of varying the 
controlling parameters and associated heat transfer are examined. It has 
been concluded that the flow is strongly unstable and presents multi-
cellular structure at Pr=0.01 typical of liquid metal compared to Pr=0.1 
cases. The same effect is observed by decreasing the cavity aspect ratio Ar. 
The Magnetic field magnitude necessary to control and stabilize the flow is 
the weaker for Pr=0.1. Increasing gradually the Rayleigh number Ra, the 
flow undergoes transition to steady state with fewer cells than at low Ra. 
the transition occurs at a threshold value showing weak growth rate in the 
Hacr compared to Ra variation. Increasing the Prandtl number to 0.1, the 
core flow structure is distorted due to the Lorentz forces which outweigh 
the buoyancy forces and a thermal stratification is clearly established. For 
high Hartman numbers and Rayleigh numbers, the stretching effects 
suppress the unsteady behaviour and results in steady state with extended 
unicellular pattern in the direction of Lorentz force. 
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1. Introduction 
 

Lorentz force due to externally imposed in computational fluid dynamics, denoted as MHD, is 
used for the control in a wide ranges engineering problem and scientific researches [1-9]. The MHD 
control is used, among others purposes, for flow stabilization. At certain values of the flow 
monitoring parameters (critical values known as transition thresholds), the control is Lorentz force 
is used to suppress the arising oscillatory instabilities. 

MHD control idea was first employed in Hurle experiments [10] and has been used after in 
several technological processes such as processing of semiconductor monocrystals. Besides, a 
growing interest in studying the convective behavior of low Prandtl number fluids as characteristic 
of liquid metal flows in melting / solidification enclosures. Such cases are devoted to academic 
purposes and are considered as research useful configurations for codes test and benchmarking 
since exhibiting very strong and complex nonlinear behavior [11-12]. 

Djebali et al., [13] conducted a 2D analysis of MHD Convective Heat Transfer in Saturated 
Porous Square Enclosure using the LB method. The effects of the Rayleigh number, Hartmann 
number, Darcy number (Da) and the medium inclination angle from the horizontal, the magnetic 
field orientation and the medium porosity are investigated in wide ranges encountered in industrial 
and engineering applications. It has been concluded that the flow and thermal patterns depend 
strongly on Ra and Da parameter and the cavity tilting. However, for low Ha it depends marginally 
on the medium porosity. At high Ha values, a suppression of the convective currents and a great 
reduction of heat transfer rate are noticed. 

Djebali et al., [14] performed a study on unsteady 2D MHD natural convection flow of 
electrically conducting fluid in a square cavity for moderate Ra and for 0.01≤Pr≤10, 0≤Ha≤100 and 
and a magnetic field tilting angle ranging from 0° to 90°. It has been observed that for Ra≥105 
without magnetic field and low Pr values, the flow is unsteady multicellular. While, increasing 
progressively Pr, the flow experiences a transition to steady bi-cellular, the transition occurs at 
critical value Pr≤ 0.1. For Pr≥0.1, the viscous forces outweigh the buoyancy forces and the flow 
structure is distorted leading to a thermal stratification. Besides, high magnetic field damps the 
unsteady behaviour and leads to an extended unicellular pattern.  

Sathiyamoorthy and Chamkha [15] used a penalty finite elements method with bi-quadratic 
rectangular elements to study the 2D MHD natural convection and heat transfer within a square 
enclosure for Pr=0.054, Ra=105, 0≤Ha≤100, different field inclinations and different thermal 
boundary conditions. It has been concluded that the local heat transfer at the floor revealed 
oscillatory behavior for both case of thermal boundary conditions. Moreover, it has been shown 
that the heat transfer decreases distinctly by increasing the Ha number. 

Yu et al., [16] studied the MHD natural convection flows with different field inclinations in 
rectangular cavities using a second-order compact finite difference algorithm. Calculations are 
performed in a wide range of Ra number and Ha number at the Prandtl number Pr = 0.025. It has 
been observed that the Nusselt number is determined by the strength of the magnetic field and its 
inclination particularly for cavity low aspect ratios. It has been demonstrated also that the 

maximum non-dimensional component parallel to the magnetic field varies as //

maxu ῀ -1.5Ra×Ha  and 

the component perpendicular to the magnetic field varies as 

maxu ῀ -2Ra×Ha . 

Ganaoui and Djebali [17] used the LBM to evaluate transitional thresholds for low Prandtl 
number flows in enclosures. The horizontal and vertical Bridgmann cavities are considered. The 
emerging results were in good agreement with very accurate literature benchmarks. 
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Han [18] investigated the natural convection of an electrically conducting fluid in a square 
differentially heated cavity using the control volumes method. An inclined external magnetic field is 
considered with Pr=0.733, Ra/Pr=106, 0≤Ha≤100, different field inclinations. Authors concluded that 
at high Ha values velocities are damped and the convective heat transfer rate is reduced. The peak 
values of the total heat transfer appear in the low region of tilting angle rather than in the high 
region, once the magnetic field is applied. Once the magnetic field has been applied, the maximum 
values of the Nusselt number appear in the lower region of the inclination angle. 

Gelfgat and  Bar-Yoseph  [19] studied the onset of oscillatory instability in convective flow in a 
slender cavity of Ar=4 filled by conducting fluid of Pr=0.015 associated with the horizontal Bridgman 
crystal growth process under imposed constant uniform magnetic field and using a spectral method 
(Global Galerkin method). Stability diagrams for steady single-cell and two cells flows showing the 
dependence of the critical Grashof number Grcr on Ha number and the magnetic field tilting angle 
are established. It has been concluded that a vertical magnetic field provides the strongest 
stabilization effect, multiplicity of steady states is suppressed and the single-cell flow remains stable 
to a certain range of Ha. The single-cell flows are destabilized after by increasing the Ha number. 

 
2. Problem Statement  
 

The problem under investigation is a two-dimensional rectangular enclosure of height the unit 
and width Ar=W/H filled with a viscous, incompressible and electrically conducting fluid. A 
temperature gradient ΔT=Th-Tc is applied between vertical walls and is responsible of the 
convective onset and motion. The horizontal cavity walls are supposed to be insulated. The four 
walls are considered rigid and no-slip boundary condition is used for the velocity field. The fluid is 
permeated by a uniform horizontal magnetic field of strength B (Figure 1). The gravity field reigns in 
the vertical descendant direction. Induced magnetic field can be neglected in comparison with the 
imposed magnetic field. 

The fluid properties are assumed to be constant, except the density taken as linear 

temperature-dependent:  0 cρ=ρ 1-β(T-T ) . 

 

 
Fig. 1. Sketch of the problem 
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2.1. Governing Equations in Dimensionless Form 
 

Neglecting viscous heat dissipation and compression work done by the pressure, the unsteady 
state governing equations can be summarized in the incompressible form as follows: 

 
Continuity: 

. 0 U            (1) 
 

Momentum: 

  0( ) .t P       U + U. U U F/           (2) 

 

Energy: 

 ( ) .tT T T    U.             (3) 

          
Where 2

2( ) [( ) ]i i j j i iF T T g B U B B U      and Bj denotes the magnetic fields components 

Bx=B and By=0. We assume the Joule heating can be neglected since Ra>103 and Ha<200. 

The flow is characterized by the Rayleigh number ( 3 610 10Ra  ), the Prandtl number 
(0 01 0 1) . Pr . ), the Hartmann number ( 0 150 Ha ) defined as: 

 

3 andRa g T H / ,Pr Ha H B /


   


              (4) 

 
The following changes of variables are implemented in the following: 

 
 

 
  2

2 2

, ,
, , , , , ,

/ /


    



c

h c

X Y U V T Tt H P
x y u v p

H H H T T
 

  
        (5) 

 
Dimensionless governing equations can be expressed accordingly as follows: 
 
Continuity 

0
u u

x y

 


 
+            (6) 

 

Momentum 
2 2

2 2

2 2
2

2 2

v Pr( )

v Pr( ) Pr Ha Ra Pr

     
  

     

     
    

     

u u u p u u
u

x y x x y

v v v p v v
u v

x y y x y






+ +

+ +

         (7) 

 

Energy 
2 2

2 2
v

    
 

    
u

x y x y

    


+ +           (8) 

 

The boundary conditions used in the present problem are: 
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( ,0) ( ,1) (0, ) (1, ) 0,

v( ,0) v( ,1) v(0, ) v(1, ) 0,

( ,0) ( ,1) (1, ) 0, (0, ) 1.y y

u x u x u y u y

x x y y

x x y y

   

   

        

         (9) 

 
The average Nusselt number along the hot wall is computed as: 

0,j 1,j 2,j

j

(3θ -4θ +θ )/2


 
    


1

0

x 00

Nu dy
x


                     (10) 

  
The convergence criterion for steady state is defined as follows: 

-4( 5000 ) ( )
10

( )

Nu t t Nu t

Nu t

  
                       (11) 

 

2.2. Computational Method 
 

The lattice Boltzmann method is used for simulating the present fluid flow and heat transfer 
problem. The essence of using the double population distribution functions D2Q9-D2Q4 (Figure 2) 
is for its stability compared to the D2Q9-D2Q9 thermal model and it preserves the computational 
efforts, since the collision step takes around 70% of the CPU time. The evolution of the distribution 
functions in the D2Q9-D2Q4 lattice model in the presence of source term 

kS  is written as: 

 

 Δ
1

( Δ ) ( ) ( ) ( ) Δ , =0 8eq

k k k k k k

υ

tf t, t = f ,t - f ,t - f ,t + t F k
τ

  x e x x x                  (12) 

 

And 
 

 Δ
1

( Δ ) ( ) ( ) ( ) , =1 4eq

k k k k kth t, t = h ,t - h ,t - h ,t k
τ

  x e x x x                  (13) 

 

In the present study, an acceleration technique originally proposed by Guo et. (2004) [20] and 
was used in our previous works to solve flows with body force and was found to be very efficient, 
offers more stability, allows accurate results for coarser grid-size and speeds-up the convergence 
for steady flows or the established regime for unsteady flows. The model is quite simple compared 
to others acceleration techniques such as Multi-Grid technique. 

 

The correspondent equilibrium parts eq

kf  and eq

kg are modifed as: 

 
2 2 2

2 4

( )
( ) (1 )

2


  eq s

k k

s s

c
f ,t

c c
 


k ke .u e .u u

x , 
2

( ) (1 ) eq

k k

s

g ,t
c

 


ke .u
x                  (14) 

 

Where 
1 4 1/ 4  k , 2 1/3sc   for the D2Q9 dynamic model and 2 1/2sc  for the D2Q4 thermal model. 

The factors   and   are the accelerating factors ranging in [0,1] and taken here 0.1 and k are 

weighting factors and ke are the lattice velocity vectors. For the D2Q9 LB model we have: 
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4 1 1 1 1 1 1 1 1
9 9 9 9 9 36 36 36 36

0, 1, 0, -1, 0, 1, -1, -1, 1

0, 0, 1, 0, -1, 1, 1, -1, -1

k

k ,x

k ,y

, , , , , , , ,

e

e

   
   

   
  
  



                    (15) 

 
The forcing term kS allowing absorption of the artefact due to the lattice effect according to Guo et 

al., [21] and accounting for the accelerating modification is chosen here: 
 

2
. eq k

k k k

s

F f
c




e
F                      (16) 

 

The modified SRTs   and  appearing in Eq. (12-13) are linked to the kinematic viscosity and 

thermal diffusivity as: 
 

1

6

22τ - x
=

t








, 

1

4

22τ - x
=

t








                    (17) 

 

 

Fig. 2. The nine-particle speeds model 
used in the hydrodynamic of lattice 
Boltzmann equation. Only the four red 
velocities are necessary for the 
temperature field 

  
In LB heat and flow modeling philosophy, the macroscopic variables: density, velocity and 

temperature are computed as: 
 

     eq eq eq
k=0-8 k k=0-8 k=1-4ρ(x,t), ρ (x,t), θ(x,t) = f , f , hu e                    (18) 

 
Since it affects the accuracy of the computations, implementation of boundaries conditions is a 

very important issue in LBM. The second-order bounce back boundary rule for the non-equilibrium 
distribution function proposed by Zou and He (1997) [22] is used to account for the no-slip 
boundary condition along the four walls as: 

 

     
in out

eq eqf f f f                       (19) 
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Where the asterisk "in" and "out" denote for inner (unknown) and outer (known) particles 
respectively at the wall node: 
 

   eq eqf f f f   
                       (20) 

 
Where 2,5,7 :at 0, y 4,7,8:at 1, y 1,5,8:at 0 x  and 3,6,7 :at 1. x  For the temperature field, 

the temperature distribution functions at the isothermal walls obey to the condition: 

( )   in out

wallh h      . However, the adiabatic boundary condition is transferred to Dirichlet-

type condition using the conventional second-order finite difference approximation as: 

2(4 ) /3wall wall y wall yg g g    , which can be summarized as follows: 

 

 

 

1 3 1 3 c

3 1 1 3 h

2 2 2

4 4 4

h (0, y) = -h (0, y)+ (v + v ) .θ : at x = 0,

h (1, y) = -h (1, y)+ (v + v ) .θ : at x = 1,

h (x,0) = 4h (x,Δy) - h (x,2Δy) /3 : at y = 0,

h (x,1) = 4h (x,1- Δy) - h (x,1- 2Δy) /3: at y = 1.

                    (21) 

 
2.3. Benchmarking the LB Thermal Model 

 
To ensure the current code correctness and accuracy, two test cases are used for problems 

evolving MHD effects, different Prandtl numbers and solution methods. The average Nusselt 
numbers along with the hot wall are used for comparison and are presented in Table 1 as well as 
reference results using different numerical approaches. 

In the present validation, are used for comparison the FEM results emerging from the FEM 
Comsol Multiphysics [23] using 10170 triangular elements with refinement near walls.  As one can 
remark, an excellent agreement between the present calculations based on LBM and FEM is 
obtained. The corresponding average deviation is close to 1.072%. The present results are in good 
agreement with the results of references [13, 15, 16] using the LBM, FEM, FDM and the spectral 
GDQ approaches respectively. 

The computations of Rudraiah [24] are found to be non-accurate at high Ha numbers, as well as 
the results of reference [13, 24, 25] which show clear deviations compared to the benchmark 
general tendency. Notice that Lo [26] results are obtained using a high-resolutions scheme. The 
maximum deviations of the computed Nusselt numbers between current results and Lo [26] are 
found to be within 0.14% and 0.97% for the FEM and LBM approaches respectively,  
 

Table 1 
Comparison of the present LBM and FEM results with referenced results using 
different approaches for different Grashof numbers (Gr = Ra/Pr) and Hartmann 
numbers at Pr = 0.733 
References [13] [14] [15] [16] [24] [25] [26] Present 

  
  Numerical appoach   

Ra/Pr Ha LBM FVM FEM FDM FDM FVM GDQ FEM LBM 

2×104 0 - - 2.5439 2.5308 2.5188 2.6237 2.5303 2.5308 2.5250 

 
10 2.2780 2.2976 2.2385 2.2383 2.2234 2.3234 2.2381 2.2382 2.2343 

 
50 1.0900 1.1154 - 1.0761 1.0856 1.0987 1.0756 1.0761 1.0780 

 
100 1.0177 1.0113 1.0066 1.0062 1.0110 1.0245 1.0048 1.0062 1.0091 

2×105 0 - - 5.0245 5.0795 4.9198 5.1876 5.0814 5.0814 5.0577 

 
10 5.0518 4.9865 4.9136 4.9712 4.8053 4.9825 4.9752 4.9730 4.9420 
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50 3.0784 3.2901 - 2.9942 2.8442 2.9784 2.9966 2.9948 2.9929 

 
100 1.4866 1.6430 1.4292 1.4629 1.4317 1.6318 1.4644 1.4628 1.4786 

2×106 0 - - - - 8.7030 - - 9.8484 9.7044 

 
10 9.8852 9,7904 - - 8.6463 - - 9.8051 9.7229 

 
50 8.9326 9.0563 - - 7.5825 - - 8.829 8.7666 

 
100 6.7142 7.2416 - - 5.5415 - - 6.5869 6.5965 

 
It shall be noted here, that the most doubtful results are obtained for Ra/Pr=2×106. For this 

reason, we use the theory of Richardson extrapolation (TRE) to obtain grid independent solution for 
this Ra value. Three non-uniform structural quadrangular grids are used 20×20, 40×40 and 80×80 
with geometrical symmetric distribution and elements aspect ratio of four (04) as shown in Figure 
3. We denote Num, Nu2m and Nu4m the Nusselt number values for edge elements number 20, 40 and 
80. In the TRE, the order of the scheme and the discretization error are computed as: 

 

 

2

4 2 4 2
4

2 2 1

m-m

dm- m m- m
m δ

ΔNu
log

ΔNu ΔNu
δ , ε

log( ) -
                       (22) 

 
Where 2m-m 2m mΔNu = Nu - Nu  and the 2 refers to the increase in mesh refinement. 

 
In the TRE, the grid independent solution is obtain as: 

4

d

m4mNu= Nu + . For the case Ha=100 the 

obtained values are  =  2.26065 and 
4

d

m =-0.00533 and thus Nu (Ha=100)= 6.57387. Are found also 

Nu (Ha=0)= 9.83178, Nu(Ha=10)=  9.78841 and Nu(Ha=50)=  8.81225. More refinement using 
elements numer of 120 gives Nu values 9.8347, 9.7914, 8.8154 6.5768 which are within less than 
0.044% close to the estimate grid independent solution. These values are within less than 0.2% 
deviation compared to our FEM results presented in Table 1 and within less than 1.3% compared to 
our LBM results, which reinforces the high accuracy of the present LBM model. 

 
 

      
 Fig. 3. Mesh structures for edge elements number 20, 40 and 80 

 
The second test case concerns the simulations of natural convection in square cavity filled with 

a low Prandtl number fluid (Pr=0.025) for Ra ranging from 104 to 106. The plots of umax/Ra and 
vmax/Ra vs Ha in Log-Log scales are shown in Figure 4. The fitting curves are the correlations 
established by Yu et al., [16]. Not that in Yu et al., plots, only the envelope curves as asymptotic 
behavior are fitted and plotted without accounting for low Ha effects at each Ra number as 
depicted in the Figure 4. 
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Fig. 4. Plots of umax/Ra and vmax/Ra vs Ha in Log-Log 

scales with fitted curves provided by Yu et al., [16] for 

Pr=0.025 and Ra ranging from 104 to 106 

 
3. Results  
 

In the following parts, the stability behaviour inside the tall cavities will be presented and 
discussed as a consequence of the Prandtl (Pr=0.01, 0.1) number variation as well as the aspect 
ratio Ar=W/H (Ar=1/8, 1/4, 1/2). In each figure, for a given Rayleigh number value of the considered 
flow conditions (Pr, Ar), a Hartmann number value is sought beyond which flow unsteadiness is 
absent, and such value is called critical and noted Hacr. 
 
3.1. Behaviour of Marginal Stability Curves: Hacr= f(Ra, Ar, Pr=0.01) 
3.1.1. Case with Ar=1/2 

 
Figure 5 depicts the variation of the critical Hartman number as a function of the Rayleigh 

number for Ar=0.5 and Pr=0.01. The dynamic and thermal structures for some simulated points are 
gathered to the transition thresholds curve. For low Rayleigh numbers the dynamic structure is a 
large elliptic cell with two attached small cells to the first bisector and two others detached cells at 
the second bisector. The critical Hartmann number is nearly a linear function of the Rayleigh 
number for Ra≤105, however the tendency becomes like parabolic to Ra=106. The isotherms are 
vertical lines near the cavity floor and ceiling and are clockwise distorted near the cavity centre. 

Increasing the Rayleigh number, the big cell becomes more and more enlarged. At Ra=106, the 
cavity is occupied by one y-elongated big cell with six small cells centro-symmetric along the second 
bisector. The thermal layers along more weakened to the active walls. 

For benchmarking purpose of the values of plotted points are summarized in Table 2. Calculated 
values of the Nusselt number and the maximum and minimum stream-function values are also 
given for some Ra where the dynamic and thermal structures distributions are plotted in Figure 5.  
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              (a1)                              (a2)                            (a3)                            (a4)  

 
Fig. 5. Transition thresholds to convective unsteadiness under horizontal magnetic 
for Pr=0.01 and Ar=0.5 

 
Table 2 
Critical Hartmann number Hacr as a function of the 
Rayleigh number Ra: Case with Pr=0.01, Ar=0.5. 
Ra/105 0.2 0.4 0.6 0.8 1.0 5.0 10 

Hacr 15 21.5 25 27 30 58 67 

Nu 2.320 - 2.615 - 2.845 - 5.025 

Ψmax 0.011 - 0.0244 - 0.0342 - 0.009 

Ψmin -2.376 - -3.173 - -3.727 - -6.713 

 
3.1.2. Case with Ar=1/4 

 
The stability curve Hacr=f(Ra) for Pr=0.01 and Ar=0.25 is shown in Figure 6 gathered with the 

dynamic and thermal structures of four selected threshold points. At low Rayleigh number 
Ra=8×104, the critical Hartmann number is close to 17. The flow at low Prandtl numbers is know to 
be very instable at least for the very interesting cases of horizontal and vertical Bridgman cavities 
filled with liquid Gallium at Pr=0.015 [11,14,17]. In this case of study, the dynamic and thermal 
structures are exactly doubled in the y-direction as the cavity hight is doubled too. 

By increasing the Rayleigh number, the thermal convection currents are enhanced and 
consequently the fluid distribution inside the rectangular domain seeks for more stably structures 
with reduced stresses and frictions. The flow becomes three clockwise rotating cells with a big and 
like elliptic one at the cavity centre slightly tilted to the right. The volume of both small cells 
decreases in favour of the central cell one. At high Rayleigh number (Ra=2×106) the central cell is 
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more elongated vertically. This is mainly due to the competition between the buoyancy force and 
the magnetic force in the y-direction: 

 
2Pr Prb mF Ra and F Ha V                           (23) 

 
Consequently, as the buoyancy force rises by increasing the Rayleigh number, as the magnetic 

force is enhanced in the opposite sense which leads to a stretching phenomenon of the large cell. 
The values of plotted points are summarized in Table 3. 

 

          
(a1)                         (a2)                          (a3)                           (a4) 

 
Fig. 6. Transition thresholds to convective unsteadiness under horizontal 
magnetic for Pr=0.01 and Ar=0.25 

 
Table 3 
Critical Hartmann number Hacr as a function of the Rayleigh number Ra: Case 
with Pr=0.01, Ar=0.25 

Ra/105 0.8 1 3 5 7 10 20 

Hacr 17 28 55 63 70 78 96 

Nu 4.347 - 4.329 - 4.716 - 5.515 

Ψmax 0.089 - 0 - 0.006 - 0.550 

Ψmin -1.729 - -2.465 - -3.584 - -5.355 
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3.1.3. Case with Ar=1/8 
 

Figure 7 presents the dynamic and thermal structures as well as the stability curve of the 
Hartmann number as a function of the Rayleigh number. Because of the elongation of the cavity 
vertically, the flow becomes more and more unstable. 

In this condition Ar = 0.125, the dynamic structure is a four equal big rotating cells. The 
behaviour for Ar=0.25 is exactly doubled in the case Ar=0.125. Increasing more the Ra number, the 
streamlines form a three cells structure and the isotherms become more and more distorted to 
form sinusoids. At high Rayleigh numbers, the three cells are completely detached. The values of 
plotted points are summarized in Table 4 as well as the corresponding Nusselt number and 
minimum and maximum stream-function predicted values. It is worth to mention here that even 
the flow is stabilized and the currents are dumped, the heat transfer is augmented. 
 

              
(a1)                (a2)             (a3)             (a4) 

 
Fig. 7. Transition thresholds to convective unsteadiness under horizontal magnetic for 
Pr=0.01 and Ar=0.125 

 
Table 4 
Critical Hartmann number Hacr as a function of the 
Rayleigh number Ra: Case with Pr=0.01, Ar=0.125 
Ra/105 8 10 30 70 100  

Hacr 35 67 118 133 143  

Nu 8.814 8.545 9.072 - 11.663  

Ψmax 0.0255 0.0124 0.0045 - 0.0901  

Ψmin -1.959 -1.950 -2.605 - -4.641  
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3.2. Behaviour of the Marginal Stability Curves: Hacr= f(Ra, Ar, Pr=0.1) 
3.2.1. Case with Ar=1/2 

 
By increasing the Prandtl number from 0.01 to 0.1 with Ar=0.5, the flow dynamic structure is a 

large cell occupying the whole domain with two small detached clockwise rotating cells in its 
centre. To stabilize the flow, the rise in the Ha number is more acute as the rise in the Ra number 
until Ra≈106. In fact, the buoyancy force acts near the hot and cold walls where thin boundary 
layers are phenomenon holds. The centre remains, however, as a low activity recirculation zone 
which is transformed into an activity zone of the magnetic field in its vertical circumferential side.  

This is well marked in Figure 8 (a2) where the cell from above has a tail down in the direction of 
action of the magnetic force; and that from below has a tail stretched upwards in the direction of 
action of the magnetic force opposed to the y-velocity. The values of plotted points are summarized 
in Table 5 as well as the corresponding Nusselt number and minimum and maximum stream-
function predicted values 

The counter-acting (stretching) effect between the magnetic and buoyancy forces at the cavity 
core becomes pronounced beyond Ra=20×105 to Ra=107 where several cells appear and a clear 
vertical thermal stratification holds. 

The heat transfer as a function of the Rayleigh number obey approximately the law 
Nu=0.3766×Ra0.2229. 

 

              
(a1)                           (a2)                             (a3)                           (a4) 

 
Fig. 8. Transition thresholds to convective unsteadiness under horizontal 
magnetic for Pr=0.1 and Ar=0.5 
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Table 5 
Critical Hartmann number Hacr as a function of the Rayleigh 
number Ra: Case with Pr=0.1, Ar=0.5 
Ra/105 4 6 8 10 20 50 100 

Hacr 4 6.8 14 17 19 31 45.5 

Nu 6.693 - 7.728 - 9.632 - 13.650 

Ψmax 0.0083 - 0.0129 - 0.0173 - 0.0545 

Ψmin -12.767 - -12.657 - -14.953 - -19.130 

 
3.2.2. Case with Ar=1/4 

 
In this case the flow is three rotating cells at low Ra number with elliptic big cell tilted to the 

first bisector (Figure 9). Increasing the Ra number to 5×106, a main like rectangular cell occupies the 
whole domain with two very small attached cells along the second bisector. As explained here-
above, as the Rayleigh number is increased, the critical Hartmann number is increased accordingly. 
However, for high values of the last, the effects on the dynamic and thermal structures are 
significant leading to the S-structure at the cavity core and to a thermal vertical stratification. For 
Ra=107, the flow is a single cell and the thermal boundary layers are more stretched to the active 
hot and cold walls due to the enhanced buoyancy. The values of plotted points are summarized in 
Table 6 as well as the corresponding Nusselt number and minimum and maximum stream-function 
predicted values 

The critical Ha number interpolation as a function of the Ra number leads to best fitted curve of 
polynomial model: Hacr=12.9249+0.6751×Ra’-1.8924×10-3*Ra’2 with Ra’=Ra/105, a standard error 
close to 0.3353 and a correlation coefficient close to 0.9999. 

 

          
(a1)                              (a2)                               (a3)                               (a4) 

 
Fig. 9. Transition thresholds to convective unsteadiness under horizontal 
magnetic for Pr=0.1 and Ar=0.25 
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Table 6 
Critical Hartmann number Hacr as a function of the 
Rayleigh number Ra: Case with Pr=0.1, Ar=0.25 
Ra/105 5.12 7 10 20 50 100 

Hacr 16 18 19.5 25.5 42 61.5 

Nu 6.252 - 7.335 - 11.552 13.565 

Ψmax 0.0046 - 0.0163 - 0.0171 0.0192 

Ψmin -9.701 - -12.595 - -17.383 -18.952 

 
3.2.3. Case with Ar=1/8 

 
The case with Ar=0.125, shows three elliptic attached cells with eight small eddies near Ra=107 

(Figure 10). The thermal structure is clearly deformed. The small cells disappear gradually with Ra 
rise. Beyond Ra = 3×107 to 5×107, the middle cell becomes elongated and the flow remains three 
cells. The instability seems to be more pronounced with Pr=0.01 compared to that with Pr=0.1. In 
fact, for Ra=5×107 a Ha=103 value is sufficient to suppress the unsteadiness behaviour. However for 
Pr=0.01, Ha=143 is necessary to stabilize the flow under Ra=107. This is attributed to the large 
density (inducing inertia currents) and heat capacity such as mercury and Gallium. The values of 
plotted points are summarized in Table 7 as well as the corresponding Nusselt number and 
minimum and maximum stream-function predicted values. 

 

            
(a1)                             (a2)                                (a3)                              (a4) 

 
Fig. 10. Transition thresholds to convective unsteadiness under horizontal 

magnetic for Pr=0.1 and Ar=0.125 
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Table 7 
Critical Hartmann number Hacr as a function of the Rayleigh 
number Ra: Case with Pr=0.1, Ar=0.125 
Ra/105 50 60 80 100 300 500 

Hacr 5 14 35 39 79 103 

Nu 13.541 - 15.230 - 17.807 19.273 

Ψmax 0.0274 - 0.0094 - 0.0209 0.0375 

Ψmin -10.665 - -11.653 - -24.475 -26.482 

 
4. Conclusions 
 

Routes to oscillations instability behavior inside tall cavities is investigated numerically at low 
Prandtl numbers (Pr=0.01- 0.1) under externally imposed horizontal uniform magnetic field for a 
wide ranges of Ra, Ha numbers and aspect ratio. The LBM approach is used to solve the PD 
governing equations. The onset of convective motion and heat transfer arise from a horizontal 
temperature gradient. Analysis of flow and thermal behaviours and the heat transfer rate along 
with the active walls are carried out. It has been concluded throughout this study the following 
conclusions: 

 
I. The flow at Pr=0.01 typical of liquid metal is strongly unstable and presents multi-cellular 

structure compared to Pr=0.1 cases. 
II. The flow oscillatory instability is enhanced by decreasing the cavity aspect ratio Ar. 

III. The Magnetic field magnitude necessary to stabilize the flow is the weaker for Pr=0.1. 
IV. The flow undergoes transition to steady state with fewer cells at high Ra and the transition 

occurs at a threshold value showing weak growth rate in the Hacr compared to Ra variation. 
V. Increasing the Prandtl number to 0.1, the core flow structure is distorted due to the Lorentz 

forces which outweigh the buoyancy forces and a thermal stratification is clearly 
established. 

VI. At high Ha numbers and Rayleigh numbers, the stretching effects suppress the unsteady 
behaviour and results in steady state with extended unicellular pattern in the direction of 
Lorentz force. 
 

The LBM approach is found to be a powerful tool to deal with problems focusing on the 
accuracy to identify transitional thresholds at low Prandtl number fluids where major endeavours 
are mainly focusing of steady or fully unsteady solution flows. 
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