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This study aims to analyze numerically the fluid flow and heat transfer in a two-
dimensional (2D) rectangular cavity in the presence of magnetic field. The bottom 
and top cavity walls are kept at Th and Tc respectively, where Th> Tc. Meanwhile, the 
vertical walls are insulated. The top wall is moving at a constant speed in the positive 
horizontal direction. The dimensionless governing equations are solved using the 
finite volume method and the SIMPLE algorithm. The influence of Hartmann number 
(Ha) (ranges from 0 to 60) on the thermal characteristics and fluid flow is analyzed. 
The simulated streamlines and isotherm plots, as well as the variation of local Nusselt 
numbers, are then presented. It is found that the Ha has a significant effect on the 
fluid flow structure and temperature field. As Ha increases, the flow convection is 
attenuated and therefore the heat transfer rate decreases. 

Keywords:  
Cavity; finite volume method; lid-driven; 
magnetic field; mixed convection Copyright © 2020 PENERBIT AKADEMIA BARU - All rights reserved 

 
1. Introduction 
 

Mixed convection is commonly found in engineering systems such as heat exchanger, building, 
solar collectors, insulation materials or heat pump [1]. Numerous simulations have been performed 
to study the mixed convection usingdifferent boundary conditions and shapes [2-4]. Currently, the 
presence of magnetic field inside a thermofluid system has been considered by many researchers 
as magneto-hydrodynamics (MHD) is important in many applications such as astrophysics, 
geophysics, aeronautics, metallurgy, chemical and petroleum industries, crystal growth in liquid, 
cooling of nuclear reactor, microelectronic devices and solar technology [5]. 

The combined effect of magnetic field and heat convection (with internal heat generation) in a 
lid-driven square cavity has been investigated using the finite volume method (FVM) [6]. The 
presence of internal heat generation was found to decrease the average Nusselt number 
significantly in aiding flow and vice-versa. The effects of Reynolds number and Prandtl number on 
the MHD mixed convection in a lid-driven rectangular cavity occupied by a heat conducting circular 
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block have been studied using FVM [7]. It was reported that both streamline and isotherm would 
vary in accordance with Reynolds number and Prandtl number. The laminar mixed convection in a 
top sided lid-driven square cavity heated by a corner heater in the presence of magnetic field has 
been studied as well [8]. By imposing a sinusoidal boundary temperature at the sidewalls of a 
square cavity, the mixed convection in the presence of magnetic field has been studied numerically 
using FVM [9]. It was observed that magnetic field would strongly affect the flow behavior and heat 
transfer rate inside the cavity. The laminar MHD mixed convection in an inclined lid-driven square 
cavity with opposing temperature gradients has been investigated [10]. It was found that by 
increasing either Hartmann number or inclination angle, the rate of heat transfer along the heated 
walls could be enhanced. The effect of magnetic field on the convective heat transfer rate and 
entropy generation in an inclined square cavity with a heat-conducting fin and thermal radiation 
was studied by Alnaqi et al., [11]. The studies of MHD flows past a thin needle [12] and over a 
stretching sheet [13] have been performed as well. Furthermore, the effect of moving lid direction 
on the MHD mixed convection in a square cavity where the bottom wall was linearly heated has 
been reported [14,15]. The effect of lid direction on heat transfer and fluid flow is more 
pronounced for mixed convection. 

Separately, the performance of nanofluid in a lid-driven cavity with the presence of magnetic 
field has been numerically investigated [16-19]. It was reported that heat transfer rate was 
dependent on the strength of magnetic field while the suspended nanoparticles would improve the 
heat transfer significantly. The mixed convection nanofluids flow in a lid-driven and inclined square 
cavity has been investigated as well [20-21]. It was found that the orientation and strength of the 
magnetic field would affect the heat transfer rate. The heat transfer performance of MHD 
nanofluids flow in a lid-driven cavity with partially heated wavy wall has been determined [22]. The 
effect of inclined magnetic field on the mixed convection in a trapezoidal cavity has been 
investigated also [23].  

Based on the literature review, most of the studies revolved around laminar mixed convection 
in a square cavity subjected to heating and magnetic field. The present study is performed to 
investigate numerically the effect of magnetic field on the mixed convection heat transfer in a 
rectangular cavity filled with water. As compared to previous studies, the main objective of the 
current investigation is to examine the effect of mixed convection of Newtonian fluid as the top 
rectangular cavity wall is heated. Meanwhile, the vertical walls are treated as adiabatic and the flow 
is subjected to a horizontal magnetic field. Different magnetic field strengths are considered while 
the Richardson number is fixed to 1. The numerical results obtained using FVM are presented in 
terms of streamlines, temperature contours and local Nusselt number.  
 
2. Methodology  
2.1 Mathematical Modelling 
 

A shallow rectangular cavity with a top lid is shown in Figure 1. The top lid is movable from left 
to right at constant speed 𝑈0. The width and height are denoted as 𝐿 and 𝐻, respectively. The 
cavity is filled with Newtonian fluid that it is heated from the bottom wall at temperature 𝑇ℎ. The 
top lid is kept at cold temperature, 𝑇𝑐 such that 𝑇ℎ > 𝑇𝑐. Both vertical walls are adiabatic. A uniform 
magnetic field strength 𝐵is imposed onto the fluid in the positive 𝑥-direction.  
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Fig. 1. Geometrical configuration 

 
The induced secondary magnetic field due to the motion of the electrically conducting fluid is 

neglected. Additionally, the effects of imposed and induced electrical fields, Joule heating of the 
fluid and viscous dissipation are ignored in the current work. The working fluid is incompressible, 
steady, two-dimensional and laminar. The gravitational force acts vertically downward. It is 
assumed that the thermo-physical properties of the fluid are constant. The variation of density with 
temperature is fluid-dependent. In order to represent the variation of density with temperature, 
the well-known Boussinesq approximation is used. After rearranging the terms, the governing 
equations can be expressed as 
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where 𝑥 and 𝑦 are the Cartesian coordinate directions. The variables 𝑢, 𝑣, 𝑝 and 𝑇 are x-velocity, y-
velocity, fluid pressure and fluid temperature, respectively. The parameters 𝛽, 𝑔, 𝜎, 𝜈, and 𝜌 are 
fluid thermal expansion coefficient, gravity, fluid electrical conductivity, fluid kinematic viscosity, 
and fluid density, respectively. The parameter 𝐵 is the magnetic induction coefficient. The thermal 
diffusivity is defined as 𝛼 = 𝑘 𝜌𝑐⁄ , where 𝑘 is the thermal conductivity and 𝑐 is the heat capacity. 
The early stage boundary conditions of the problem are given as 

 
Top wall:                     𝑢 = 𝑈0, 𝑣 = 0, 𝑇 = 𝑇𝑐  
Bottom wall:              𝑢 = 𝑣 = 0, 𝑇 = 𝑇ℎ          (5) 

Left and right walls: 𝑢 = 𝑣 = 0,
𝜕𝑇

𝜕𝑥
= 0   

 
Eqs. (1) – (5) have been non-dimensionalized using the following variables 
 
𝑋 = 𝑥 𝐻⁄ , 𝑌 = 𝑦 𝐻⁄ , 𝑈 = 𝑢 𝑈0, 𝑉 = 𝑣 𝑈0, 𝜃 = 𝑇 − 𝑇𝑐 𝑇ℎ − 𝑇𝑐,⁄⁄⁄     
𝐺𝑟 = 𝑔𝛽(𝑇ℎ − 𝑇𝑐)𝐻3 𝜈2, 𝑃𝑟 = 𝜈 𝛼⁄ , 𝑃 = 𝑝 𝜌𝑈0

2, 𝑅𝑒 = 𝑈0𝐻 𝜈⁄ ,⁄⁄       (6) 
𝐻𝑎2 = 𝐵2𝐻2𝜎 𝜌𝑣⁄   
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where parameters 𝜃, 𝑃, 𝐺𝑟, 𝑅𝑒, 𝑃𝑟, 𝑅𝑖 and 𝐻𝑎2 are non-dimensional temperature, non-
dimensional pressure, Grashof number, Reynolds number, Prandtl number, Richardson number and 
Hartmann number, respectively. Upon applying Eq. (6), Eqs. (1) – (5) become 
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where 𝐺𝑟 𝑅𝑒2⁄  is the Richardson number (𝑅𝑖). The governing equations are subjected to the 
following dimensionless boundary conditions: 
 
Top wall:                      𝑈 = 1, 𝑉 = 0, 𝜃 = 0  
Bottom wall:               𝑈 = 𝑉 = 0, 𝜃 = 1                    (11) 

Left and right walls: 𝑈 = 𝑉 = 0,
𝜕𝜃

𝜕𝑋
= 0  

 
2.2 Numerical Method 
 

Eqs. (7) – (10) together with the boundary conditions (11) have been solved numerically using 
the finite volume method (FVM). The set of algebraic equations produced were solved using the 
iterative SIMPLE algorithm and the tridiagonal matrix algorithm (TDMA). The numerical solutions 
are obtained on a staggered grid system, such that the velocity components are stored halfway 
between the scalar storage locations. The calculations of 𝑈, 𝑉 and 𝜃 are performed iteratively until 
the following convergence criterion is attained 
 

𝜀 =
∑ ∑ |𝜍𝑖,𝑗

𝑘+1−𝜍𝑖,𝑗
𝑘 |𝑛

𝑖−1
𝑚
𝑗=1

∑ ∑ |𝜍𝑖,𝑗
𝑘+1|𝑛

𝑖−1
𝑚
𝑗=1

≤ 10−7                      (12) 

 
where 𝜀 is the tolerance, 𝑚 and 𝑛 are the number of grid points in 𝑥- and 𝑦-direction, respectively. 
𝑘 is the iteration number and 𝜍 is any computed variables. Nusselt number is obtained to 
investigate the heat transfer rate in the following manner 
 

𝑁𝑢 =
1

𝐿 𝐻⁄
∫ − (

𝜕𝜃

𝜕𝑌
)

𝑌=0,1
𝑑𝑋

𝐿 𝐻⁄

0
                     (13) 

 
The computational procedure was implemented using FOTRAN90. Grid independence test was 

conducted in order to obtain the grid-independent solutions. The test was performed for 𝑅𝑖 = 1.0, 
𝑃𝑟 = 7.0, and 𝐻𝑎 = 10.0. As shown in Figure 2, a total of 100 × 20 grid points with clustering 
towards the walls were generated and the calculation was done for 𝑅𝑖 = 1.0 and different values of 
𝐻𝑎. The average Nusselt number along the horizontal walls was compared with those reported 
previously [24-26] and the agreement is promising (see Figure 3 and Table 1).  
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Fig. 2. Variation of mean Nusselt number with grid 
mesh size for 𝑅𝑖 = 1.0, 𝑃𝑟 = 7.0, and 𝐻𝑎 = 10.0 

 

 
Fig. 3. Comparison of current study and Sharif’s study [24] 

 
Table 1 
Comparisons of the maximum and minimum values of the horizontal and vertical 
velocities at the mid-section of the cavity between the present solution and those 
reported previously [25, 26] 
Re = 400.0 

 Iwatsu et al., [25] Khanafir et al., [26] Present 

Umin -0.3197 -0.3099 -0.3023 
Umax 1.0000 1.0000 1.0000 
Vmin -0.4459 -0.4363 -0.4219 
Vmax 0.2955 0.2866 0.2802 

Re = 100.0 

Umin -0.2122 -0.2037 -0.2049 
Umax 1.0000 1.0000 1.0000 
Vmin -0.2506 -0.2448 -0.2328 
Vmax 0.1765 0.1699 0.1673 

 
3. Results and Discussion 
 

The followings are the controlling parameters used in the simulation: Re = 100.0, Pr = 6.2, Gr = 
104, Ha = 0 – 60 and Ri = 1.0. Figure 4 presents the streamlines for different values of Ha. A primary 
clockwise recirculating vortex is visible inside the cavity. The core of the vortex is situated near the 
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right wall and it seems that the streamlines are separated halfway. This shows that the fluid flow is 
shear-dominated due to the moving top lid. By setting Ha to10, the strength of the rotating vortex 
is reduced. It can be seen that the primary vortex is elliptic in shape at increasing magnetic field. As 
Ha increases to 30, the core vortex is pushed to the top part of the cavity due to the conductive 
heat transfer. As the value of magnetic field increases, the core vortex expands horizontally due to 
the reduction in flow convection 

The effect of Ha on the isotherms can be visualized in Figure 5. In the absence of magnetic field, 
the temperature gradient at the vicinity of the right bottom corner is high due to the top wall 
movement. When the strength of the magnetic field increases, parameters such as temperature 
gradient, flow intensity and velocity decrease. The isotherms become almost parallel to the 
adiabatic wall and evenly distributed near the bottom wall. This phenomenon indicates that 
conductive heat transfer is dominant.  

Figure 6 shows the effect of Hartmann number on the local Nusselt number at the bottom wall. 
The maximum local Nusselt number increases near the right wall, indicating that the movement of 
top lid would strongly affect the heat transfer rate inside the cavity. It can be shown that as the 
Hartmann number increases, the value of local Nusselt number decreases due to the suppression of 
flow convection. 
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Fig. 4. Variation of streamlines for different Ha values for Ri = 1.0 
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Fig. 5. Variation of isotherms for different Ha values for Ri = 1.0 

 

 
Fig. 6. Variation of local Nusselt number for Ri = 1.0 
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4. Conclusions 
 

In the present study, the mixed convection in a rectangular cavity filled with water in the 
presence of horizontal magnetic field has been studied numerically using the finite volume method. 
The bottom and top cavity walls are kept at constant temperatures while the vertical walls are 
insulated. The top wall is moving at a constant speed in the positive horizontal direction. The 
effects of mixed convection (Ri = 1.0) and Ha on the fluid flow and heat transfer mode are 
investigated. From the numerical results, the following are concluded 

 
i. As Ha increases, the flow convection becomes weaker and therefore the heat transfer rate 

decreases.  
ii. The recirculating vortex is pushed towards the top lid as the magnetic field strength 

increases due to the suppression of flow convection. In this case, the conductive heat 
transfer is more dominant. 

iii. As Ha increases, the local Nusselt number decreases. 
iv. The value of local Nusselt number increases with respect to the x-direction (towards the 

right wall).  
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