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truncated expansion. The Boussinesq approximation is opted with the existence of
internal heating and the magnetic number. It is found that the transition to chaos in
this present study is identical to the Lorenz attractor and thus validate the method and
analysis of this study. The impact of elevating the internal heat generation is found to
hasten the instability of the system and as for the magnetic number, at M; = 2.5 the
homoclinic bifurcation occurs and thus accelerates the convection process.
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1. Introduction

The chaotic study has a vital role in both laboratory and nature. It gains much attention from the
researcher because of the potential application in an engineering field. This topic started to evolve
after the work of Lorenz [1], who discussed the Rayleigh-Benard model in the process of
understanding the weather.

Much work of the chaotic convection in a different type of fluid was carried out before with
various additional effects. Vincent and Yuen [2] studied high-Prandtl numbers in chaotic convection.
Aside from this, Kiran et al., [3] examined the impact of through flow in chaotic convection. Gupta et
al., [4] had studied the chaotic convection in the existence of a rotating effect. In the literature, there
are a few examples of chaos in double-diffusive convection, such as by Abu-Zaid and Ahmadi [5] in
the presence of noise and Narayana et al.,, [6], who studied the external magnetic field in a
viscoelastic fluid. Chaotic convection of a porous medium model in viscoelastic fluid had been carried
out by Sheu et al., [7]. Besides that, Abu-Ramadan et al., [8] used a four-dimension nonlinear system
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to examine the chaotic convection in a viscoelastic fluid. Other than that, Bhadauria and Kiran [9]
examined binary viscoelastic fluid in g-Jitter.

Walden et al., [10] had done a chaotic convection study in a binary fluid layer system in the
presence of traveling waves. In contrast, Deane [11] had done the studied in the thermosolutal
convection. Chaotic convection in a porous medium had been reviewed by Sheu [12] by using the
autonomous system. The learned of chaotic in a porous medium with an additional effect of the
magnetic field had been presented by Idris and Hashim [13]. Roslan et al., [14] added the effect of
feedback control in a porous medium in the study of chaotic convection. Apart from that, Zhao et al.,
[15] discussed the impact of gravity modulation in chaotic convection of a porous medium while
Bhadauria and Kiran [16] added temperature modulation in the system. Bhadauria and Singh [17]
examined the model of an anisotropic porous medium in the presence of through flow effect and g-
jitter in chaotic convection. Chaotic convection in an electroconductive fluid in the existence of
rotating effect had been demonstrated by Kopp et al., [18]. Recently, the impact of rotation and
gravity modulation in chaotic convection had been examined by Kiran [19]. Chaotic convection in a
ferrofluid layer system had been discussed by Laroze et al., [20], just to present a few examples.

The studied of ferrofluid convection with various effect had been discussed by Senin et al., [21]
with additional effect of gravitational field in an anisotropic porous medium. The internal heating
effect is a well-known effect that had been discussed in a different kind of convection. This effect is
usually studied in Rayleigh-Benard or Marangoni-Benard convection. Recently, Mokhtar and Hamid
[22] studied the Marangoni convection with internal heating effect and deformable surface.
Furthermore, Marangoni convection in the presence of internal heating in a ferrofluid layer system
had been done by Nanjundappa et al., [23]. Chaotic convection in the existence of internal heating
had been discussed by Jawdat and Hashim [24] in the porous medium. Bhadauria [25] also examined
chaotic convection with internal heating in a viscoelastic system's porous medium. Another studied
of chaotic convection with internal heating effect had been discussed by Kiran [26] with a vibrational
effect in a porous medium.

The present work aims to study the route to the chaos of a ferrofluid layer system in internal
heating. In order to control heat transfer, it is vital to understand the effect of internal heating on
chaotic convection as it plays a significant role in the use of ferrofluid technology. This motivated us
to mathematically contribute by creating a mathematical model which can boost the impact of
internal heating in chaotic convection of a ferrofluid layer system. We presume that the system is
heated from below and the upper-lower boundary is known to be a free isothermal boundary.
Galerkin truncated expansion was used to deduce a three-dimensional system to be represented as
a Lorenz like model. Detailed analysis of the effect of magnetic number and internal heating on the
system has been studied in detail

2. Methodology
2.1 Problem Formulation

We considered a Boussinesq ferrofluid, which fills a horizontal layer of thickness, d with an
imposed spatially magnetic field, H, in a vertical direction, as in Figure 1. The upper and lower
boundaries are maintained at a constant temperature where T(z=0)=T,+AT and T(z=d)=T,,.

By referring to Laroze et al., [20], the dimensionless equations can be written as

63



CFD Letters
Volume 12, Issue 10 (2020) 62-74

Hyz &
Freesurface l ” |
z=d
z
Ferrofluid layer y
_ \4“ X
z=0 Free surface I I
heated

Fig. 1. The physical configuration of the ferrofluid layer system
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whereV = (u,v,w) are the velocity vector, T is the temperature, @ is the magnetic potential, Ns is
4
the internal heating, Ra=M is the Rayleigh number, Pr:X is the Prandtl number,
VK K
. . . KB .
Rm=Ra-M, is the magnetic Rayleigh number, M, = 1 is the magnetic number,
+x
3:%3 the non-linearity of fluid magnetization, and F=———F—— 5 C0S he
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nondimensional basic temperature field. Laroze et al., [20] stated that the suitable value for Pr is
10 — 103 with M, from 10~* till 102, and M is only a weak function of the magnetic field.

The derivation of the partial differential equation started by applying the curl operator on Eq. (2)

to eliminate the pressure. For simplification, the stream function is introduced to limit the study in

two-dimensional flow. The stream functions defined by u = _66_1// and W:%—W are substituted into
z X
Egs. (2)-(4) and can be written as follows
1|0 oT o’¢ OT 0°¢ 4
— +J(y,V Ra+Rm-F +Rm-F——-——"—-Viy =0, 5
Pr[at Y "”)} ( ) ot a’ aoxar )
%+J(l//9) %V/F Ns-T -V? =0, (6)
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where V? :F-FF and J stands for the Jacobian. The boundary condition considered in the
X z
study are
o o¢
T:W:?:E:Oat Z:0,1. (8)

In order to solve the nonlinear partial differential Egs. (5)-(7), the stream function, temperature
and magnetic potential are represent in the following form (Laroze et al., [20])

ki (t, 2, X) = —a, (t) sin(zz) sin(kx), (9)

T(t,2,X) = a,(t)sin(zz) cos(kx) +a, (t) sin(272), (10)

¢(t, 2, x) = a,(t) cos(zz) cos(kx) +a (t) cos(27z), (11)
78, (t)

where K is the wavenumber and an,(n =1 2,3) is a constant coefficient with a,(t) = _W
3+ 7T

and a,(t) = —a;—(t). Substituting Egs. (9)-(11) into Egs. (5)-(7), then multiplying the equations by the
T

1 {
orthogonal function and integrating them in space over the wavelength convection _[ I dxdz, ityields
0z
k

a set of the ordinary differential equation for the time evolution of the amplitudes as follows

d 2 2

5 a0 =Prl-0a,0) - "R a2, 1) + "R My:2, ()2, ()] (12)

d F

5O =(-a+Ns)a,(0) - 7a, (), (1) + =2, (1), (13)

S a,(0)=Za 02,0+ (47 +Ns)ay(0) (14)

where Y FM,M k? L Mk’ M. = Fzk’M,M,
2(K°M, (14 M) +7°) K2 (L+M )M, + 77 B2(x + Kk (1 MM,

3 kZM 2
q=r>+k?, Ry:E with Ra, = q( 3+ﬂ)
Ra, k?[K? (1+M,)M, +7° |

introduce new notation and to rescale the amplitude as follows

(Finlayson [27]). It is convenient to
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T=qt, X(T):;[—jg, Y(r)z—ﬂ-RyTa;(t), Z(r) =-nR a,(t). (15)

Substitute Eq. (15) into Eqgs. (12)-(14) and simplified, thus yields

X (z) =—Pr X () + Pra¥ (r) + QY () (2), (16)
V() =R X () 2= X(2)Z() - AY @), (17)
Z'(0) = X (Y (7) ~72(r), (18)
where Q = M —Ns+g _A7T NS e (16)-(18) are equivalent to the Lorenz

y P= , and
Ty B ] Y
equation as stated in Lorenz [1] but with different coefficient and noted that when M; or M,

approaching zero, it will cause the Q3 approaching zero as well.

2.2 Stability Analysis

The fixed points for the Egs. (16)-(18) can be obtained by setting the derivative equal to zero,
which are

—Pr X () +PraY (r)+ Q.Y (r)Z(r) =0, (19)
RyX(T)g—X(Z‘)Z(T)— BY (£) =0, (20)
X()Y(r)-yZ(r) =0. (21)

There is one trivial solution that is origin in the phase space, that are
X, =Y, =2,=0, (22)

which correspond to the motionless solution, and the other two fixed points are
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The Jacobian matrix of the Egs. (16)-(18) can be written as
~Pr  Pra+Q,Z Q.Y
J= Ryg—Z -f -X | (25)
Y X -y

The stability of the fixed points corresponds to the motionless solution (X, =Y, =2, =0) is

controlled by the zeros of the following characteristic polynomial equation for the eigenvalues, o
3 , [F F
o’ —(-p-y-Pr)jo’ - Ea PrR,— By —pBPr—yPr J—RyEPra}/+ﬂ7/Pr=O. (26)

After solving Eq. (26), we will have

O, ==7, (27)

J2FaPrR + 5 —23Pr+Pr?
> .

Oys :%(,B+ Pr)+ (28)

The first eigenvalue is always negative as y >0, and the other two eigenvalues are always real.
Eq. (28) is solved to obtain the critical value of R,, as follows

R L2

= 29
= (29)
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At R_., the motionless solution loses stability, and the convection solution takes over. The
following equation controls the stability of fixed points (Xzyg,Yzyg, 22,3) that is

o’ +Lo’+Lo+L, =0, (30)

where

F F F
L, = _EQ137Ryzz,3 _EQ13RyX2,3Y2,3 _ﬂQlaYz,sz _EOWRy + Q137zz,32 +2Q13X,5Y,5Z, 5+

Py Pr+ ay/szs + 0{X2’3Y2'3 +Pr szsz,

31
F 2 2 F 2 ( )
L= _ERyzz,s_Yz,s +Z,, Q13+a22'3—EaRy+(7/+Pr)ﬂ+yPr+X2’3,
L,=p+y+Pr.

The stability of the stationary solution depends on the o in Eg. (30). In the case of (30), the
eigenvalues are much more complicated; thus, the analytical prediction is not possible, as in Laroze
et al., [20]. By referring to Lorenz [1], it is possible to obtain a critical equation if the eigenvalue is
pure imaginary. Idris and Hashim [13] said that when the complex eigenvalues cross the imaginary
axis, and Hopf bifurcation occurs, the eigenvalue is purely imaginary. This reflects the fixed point
convection loss of stability or the critically modified Rayleigh number, R.,. The Hopf bifurcation point
is obtained with the continuation package of MatLab, MatCont. Eq. (30) has three eigenvalues, where
the first eigenvalue is always real and negative for any value of the parameters. Simultaneously, the
other two are complex eigenvalues, where the real part is negative at slightly higher R,,. As in Figure
2, these two roots are moving towards their origin and become equal at R, = 1.066 for the case of
Ns =5,M; =1, and M3 = 1.1. As we increase R, value, at Ry=17.315129 the imaginary and real
part of the eigenvalue continue to increase and cross the imaginary axis, Hopf bifurcation occurs at
that point and chaotic convection takes over.

15

Im

-1.2 0.6

R, = 17.3151

-15
Re

Fig. 2. The evolution of complex eigenvalue with the increasing of R,,
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3. Results

In the previous section, we already obtained the set of Lorenz like model as in Egs. (16)-(18) with
the effect of internal heating in a ferrofluid layer system. Egs. (16)-(18) are solved using the MATLAB
R2018B built-in ODE45 method. Laroze et al., [20] stated that the suitable value for Pris 10 — 103
with M; from 107 till 102, and Mj is only a weak function of the magnetic field. The value of N is
refered from the previous study of Nanjundappa et al., [23]. The values of Pr and k used in all

computations are 10 and 12, respectively. All solutions are obtained using the same initial conditions,

which were selected to be in the neighborhood of the positive convection fixed points. The initial
conditions are X =Y = Z = 0.9 with the time domain () is taken from 0 to 210, and the step size
At = 0.001. This section demonstrated the effect of internal heating and the magnetic number of
the ferrofluid layer system in the projection of the trajectories onto the dimensional plane.

Table 1 presents the modified Rayleigh number, R,, where the eigenvalue crosses the imaginary
axis, and the convection fixed point loses its stability. The values of a magnetic number, M;, are varied
with constant values of Ns =5 and M3 = 1.1. As shown clearly in Table 1, an increase of M,
decreased the value of the modified Rayleigh number and made the system become unstable. The
decline of Ry values is also reported by Nanjundappa et al., [28]. They stated that the increment of
M, leads to anincrease in the destabilized magnetic force that can cause the system's destabilization.

Table 1

Value of magnetic number and
modified Rayleigh number when
Hopf bifurcation occurs

M, R,

17.315128

14.856765

13.526235

12.694626

12.126367

11.713749

Uk WN B

Figure 3 shows the projection of the solution data point on the increasing Rayleigh number
0.780 < R, <18 on the Y — X plane with the value of M; = 1,Ns = 5, M; = 1.1. For a Rayleigh
number slightly above the loss of stability of the motionless solution, which R, = 0.78004 in Figure
3(a), the trajectory moves to the steady-state convection points on a straight line. At R, = 4.743,
the trajectories approach the fixed point on a spiral as shown in Figure 3(b). Figure 3(c) shows the
homoclinic bifurcation pattern by increasing the value of the modified Rayleigh number. By referring
to Bhadauria [25], he stated that this bifurcation is known as global bifurcation, and the pattern could
not be traced through a local stability analysis. By increasing the value of Rayleigh number, R, =
17.3151 (as obtained in Table 1), the flow becomes complete chaos, as shown in Figure 3(d). The
transition to chaos in this present study is similar to the Lorenz attractor, as in Lorenz [1].
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Fig. 3. The evolution of time in the state space for the various value of modified Rayleigh number
in terms of R,,

The impact of internal heating on the onset of chaotic convection in the ferrofluid layer system
can be seen in Figure 4. Ns values are varied while the other parameters are kept constant at R, =
6, M; =1, and M3 = 1.1. Figure 4(a) shows that the trajectory moves towards the steady-state
convection on a straight line for the value of internal heating recorded at Ns = 3.1. By increasing the
effect of internal heating, the phase spiral trajectory exhibit at the value of Ns = 4.5, as presented
in Figure 4(b). For Ns = 5.708, the homoclinic pattern of flow is seen to be appeared in Figure 4(c).
In the case of strong internal heating Ns = 5.9698, the convection becomes complete chaos, and
the fixed point lose their stability as presented in Figure 4(d) at the value of R,, = 6. This figure shows
that the increase of Ns will enhance the chaos of the ferrofluid layer system. This scenario happened
because of the increment of energy supply towards the system that disturbs and caused the
destabilization of the convection (Khalid et al., [29]).
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Fig. 4. The evolution of trajectories in the state space for the different values of Ns

Figure 5 demonstrates the effect of the magnetic number, M;, on the chaotic convection in the
existence of internal heating. For the lower value of the magnetic number, M; = 1, the trajectories
move in the spiral phase approaching the steady-state for R,,=11. From Figure 5(b), the homoclinic
bifurcation occurs for the M; = 2.5. Further increase of the magnetic value, M;, caused the transition
to chaos as presented in Figure 5(c) at a value of M; = 8.7656. As stated earlier, the increase of M;
will reduce the value of Ry, and making the ferrofluid layer system unstable.
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Fig. 5. The evolution of trajectories in the state space for the different values of M;
4. Conclusions

In this paper, the chaotic convection in a ferrofluid layer system in the existence of internal
heating is analyzed. The partial differential equation is deduced by using the Fourier series to obtain
the Lorenz like model. Without the presence of magnetic, the classical Lorenz model is recovered.
The effect of internal heating and magnetic number are investigated on dynamic convection. An
increment of magnetic number and internal heating are found to enhance the chaotic convection,
thus destabilizing the ferrofluid layer system. Whereas, the non-linearity of fluid magnetization does
not affect the convection of the ferrofluid system.

Acknowledgement
We would like to thank Universiti Putra Malaysia for all the equipment and financial support. The
present research was partially supported by the Putra Grant - Putra Graduate Initiative (IPS)-GP-
IPS/2018/9642900.

References

[1] Lorenz, Edward N. "Deterministic nonperiodic flow." Journal of the atmospheric sciences 20, no. 2 (1963): 130-141.
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

[2] Vincent, Alain P., and David A. Yuen. "Thermal attractor in chaotic convection with high-Prandtl-number fluids."
Physical Review A 38, no. 1 (1988): 328.

72


https://doi.org/10.1175/1520-0469(1963)020%3c0130:DNF%3e2.0.CO;2

CFD Letters
Volume 12, Issue 10 (2020) 62-74

(3]

(4]

(5]

(6]

(7]

(8]

[0l

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

https://doi.org/10.1103/PhysRevA.38.328

Geethanjali, Palle Kiranl K., and Y. Narasimhulu. "Chaotic Convection in the Presence of Throughflow."
International Journal of Pure and Applied Mathematics 117, no. 11 (2017): 357-367.

Gupta, Vinod K., B. S. Bhadauria, |. Hasim, J. Jawdat, and A. K. Singh. "Chaotic convection in a rotating fluid layer."
Alexandria Engineering Journal 54, no. 4 (2015): 981-992.

https://doi.org/10.1016/j.aej.2015.09.002

Abu-Zaid, Sameer A., and Goodarz Ahmadi. "Chaos in a Double-Diffusive Convection Model in the Presence of
Noise." Applied Mathematical Modelling 13 (1989): 291-97.

https://doi.org/10.1016/0307-904X(89)90072-3

Narayana, M, S N Gaikwad, P Sibanda, and R B Malge. "Double Diffusive Magneto-Convection in Viscoelastic Fluids."
International Journal of Heat and Mass Transfer 67 (2013): 194-201.
https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.027

Sheu, Long Jye, Lap Mou Tam, Juhn Horng Chen, Hsien Keng Chen, Kuang Tai Lin, and Yuan Kang. "Chaotic
Convection of Viscoelastic Fluids in Porous Media." Chaos, Solitons and Fractals 37, no. 1 (2008): 113-24.
https://doi.org/10.1016/j.chaos.2006.07.050

Abu-Ramadan, Ehab, Jim M Hay, and Roger E Khayat. "Characterization of Chaotic Thermal Convection of
Viscoelastic Fluids." Journal Non-Newtonian Fluid Mech 115 (2003): 79-113.
https://doi.org/10.1016/j.jnnfm.2003.07.001

Bhadauria, B. S., and Palle Kiran. "Chaotic and Oscillatory Magneto-Convection in a Binary Viscoelastic Fluid Under
g-litter." International Journal of Heat and Mass Transfer 84 (2015): 610-24.
https://doi.org/10.1016/j.ijjheatmasstransfer.2014.12.032

Walden, R.W, Paul Kolodner, A. Passner, and C.M Surko. "Travelling Waves and Chaos in Convection in Binary Fluid
Mixtures." Physical Review Letters 55, no. 5 (1985): 496—99.

https://doi.org/10.1103/PhysRevLett.55.496

Deane, A.E. "Traveling Waves and Chaos in Thermosolutal Convection." Physical Review A 36, no. 6 (1987): 2862—
69.

https://doi.org/10.1103/PhysRevA.36.2862

Sheu, Long-jye. "An Autonomous System for Chaotic Convection in a Porous Medium Using a Thermal Non-
Equilibrium Model." Chaos, Solitons and Fractals 30 (2006): 672—89.

https://doi.org/10.1016/j.chaos.2005.11.080

Idris, R., and I. Hashim. "Effects of a Magnetic Field on Chaos for Low Prandtl Number Convection in Porous Media."
Nonlinear Dynamics 62, no. 4 (2010): 905-17.

https://doi.org/10.1007/s11071-010-9773-8

Roslan, R., M. N. Mahmud, and I. Hashim. "Effects of Feedback Control on Chaotic Convection in Fluid-Saturated
Porous Media." International Journal of Heat and Mass Transfer 54, no. 1-3 (2011): 404-12.
https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.031

Zhao, Moli, Shaowei Wang, S. C. Li, Q. Y. Zhang, and U. S. Mahabaleshwar. "Chaotic Darcy-Brinkman Convection in
a Fluid Saturated Porous Layer Subjected to Gravity Modulation." Results in Physics 9 (2018): 1468-80.
https://doi.org/10.1016/j.rinp.2018.04.047

Bhadauria, B. S., and Palle Kiran. "Chaotic and Oscillatory Magneto-Convection in a Binary Viscoelastic Fluid Under
g-litter." International Journal of Heat and Mass Transfer 84 (2015): 610-24.
https://doi.org/10.1016/j.ijheatmasstransfer.2014.12.032

Bhadauria, B. S., and Ajay Singh. "Throughflow and G-Jitter Effects on Chaotic Convection in an Anisotropic Porous
Medium." Ain Shams Engineering Journal 9, no. 4 (2018): 1999-2013.

https://doi.org/10.1016/j.asej.2016.08.024

Kopp, M. 1., A. V. Tur, and V. V. Yanovsky. "Chaotic magnetoconvection in a non-uniformly rotating
electroconductive fluids." arXiv preprint arXiv:1805.11894 (2018).

Kiran, Palle. "G-lJitter Effects on Chaotic Convection in a Rotating Fluid Layer." In Advances in Condensed-Matter
and Materials Physics-Rudimentary Research to Topical Technology. IntechOpen, 2020.
https://doi.org/10.5772/intechopen.90846

Laroze, David, P. G. Siddheshwar, and Harald Pleiner. "Chaotic convection in a ferrofluid." Communications in
Nonlinear Science and Numerical Simulation 18, no. 9 (2013): 2436-2447.
https://doi.org/10.1016/j.cnsns.2013.01.016

Nor Halawati Senin, Nor Fadzillah Mohd Mokhtar, and Mohamad HasanAbdul Sathar. "Ferroconvection in an
Anisotropic Porous Medium with Variable Gravity." Journal of Advanced Research in Fluid Mechanics and Thermal
Sciences 71, no 2 (2020): 56-68.

73


https://doi.org/10.1103/PhysRevA.38.328
https://doi.org/10.1016/j.aej.2015.09.002
https://doi.org/10.1016/0307-904X(89)90072-3
https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.027
https://doi.org/10.1016/j.chaos.2006.07.050
https://doi.org/10.1016/j.jnnfm.2003.07.001
https://doi.org/10.1016/j.ijheatmasstransfer.2014.12.032
https://doi.org/10.1103/PhysRevLett.55.496
https://doi.org/10.1103/PhysRevA.36.2862
https://doi.org/10.1016/j.chaos.2005.11.080
https://doi.org/10.1007/s11071-010-9773-8
https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.031
https://doi.org/10.1016/j.rinp.2018.04.047
https://doi.org/10.1016/j.ijheatmasstransfer.2014.12.032
https://doi.org/10.1016/j.asej.2016.08.024
https://doi.org/10.5772/intechopen.90846
https://doi.org/10.1016/j.cnsns.2013.01.016

CFD Letters
Volume 12, Issue 10 (2020) 62-74

(22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

https://doi.org/10.37934/arfmts.71.2.5668

Mokhtar, N. F. M. and Nur Zarifah Abdul Hamid. "Influence of Internal Heating on Surface Tension Driven
Convection in Deformable Binary Fluid Layer." In AIP Conference Proceedings, Vol. 1974, 2018.
https://doi.org/10.1063/1.5041623

Nanjundappa, C. E., Shivakumara, I. S. and Arunkumar, R. "Onset of Benard-Marangoni Ferroconvection with
Internal Heat Generation." Microgravity Science and Technology 23, no. 1 (2011): 29-39.
https://doi.org/10.1007/s12217-010-9218-5

Jawdat, J. M., and |. Hashim. "Low Prandtl Number Chaotic Convection in Porous Media with Uniform Internal Heat
Generation." International Communications in Heat and Mass Transfer 37, no. 6 (2010): 629-36.
https://doi.org/10.1016/j.icheatmasstransfer.2010.03.011

Bhadauria, B. S. "Chaotic Convection in a Viscoelastic Fluid Saturated Porous Medium with a Heat Source." Journal
of Applied Mathematics 2016 (2016): 1-18.

https://doi.org/10.1155/2016/1487616

Palle Kiran. "Vibrational Effect on Internal Heated Porous Medium In The Presence Of Chaos." International Journal
of Petrochemical Science & Engineering Research 4, no. 1 (2019): 13-23.

Finlayson, B. A. "Convective Instability of Ferromagnetic Fluids." Journal of Fluid Mechanics 40, no. 4 (1970): 753—
67.

https://doi.org/10.1017/50022112070000423

Nanjundappa, C. E., I. S. Shivakumara, and R. Arunkumar. "Onset of Benard-Marangoni Ferroconvection with
Internal Heat Generation." Microgravity Science and Technology 23, no. 1 (2011): 29-39.
https://doi.org/10.1007/s12217-010-9218-5

Khalid, I. K., N.F.M. Mokhtar, |. Hashim, Z.B. Ibrahim, and S. S.A. Gani. "Effect of Internal Heat Source on the Onset
of Convection in a Nanofluid Layer with Feedback Control Strategy." Advances in Mathematical Physics 116, no. 1
(2017): 1827-32.

https://doi.org/10.1155/2017/2789024

74


https://doi.org/10.37934/arfmts.71.2.5668
https://doi.org/10.1063/1.5041623
https://doi.org/10.1007/s12217-010-9218-5
https://doi.org/10.1016/j.icheatmasstransfer.2010.03.011
https://doi.org/10.1155/2016/1487616
https://doi.org/10.1017/S0022112070000423
https://doi.org/10.1007/s12217-010-9218-5
https://doi.org/10.1155/2017/2789024

