Artificial Neural Network-driven Optimization of Fe3O4 Nanoparticles/PVDF Macrospheres in Fenton-like System for Methylene Blue Degradation

Authors

  • Mohamed Syazwan Osman EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia
  • Khairunnisa Khairudin EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia
  • Huzairy Hassan Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Sung-Ting Sam Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Nadzirah Balqis Mohd Nazeri EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia
  • Nur Lina Syahirah Mustapa EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia
  • Maya Fitriyanti School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia

DOI:

https://doi.org/10.37934/armne.22.1.6884

Keywords:

Artificial neural network, optimization, fenton-like, methylene blue dye, iron oxide nanoparticles

Abstract

Efficient degradation of industrial dyes remains a critical challenge in environmental engineering. This study introduces a novel Fe3O4 nanoparticles/PVDF macrospheres in a Fenton-like system, optimized using an Artificial Neural Network (ANN) for the degradation of Methylene Blue (MB). A feedforward backpropagation neural network model to optimize and predict the performance of this advanced oxidation process under various operational conditions. The model was trained, validated, and tested with robust datasets, demonstrating high predictive accuracy and generalization capability. The Mean Square Error (MSE) and Root Mean Square Error (RMSE) during testing were 0.0200 and 0.1414, respectively, indicating precise predictions. The coefficient of determination (R²) and correlation coefficient (R) were exceptionally high at 0.9744 and 0.9871, affirming the model's ability to capture the underlying dynamics of the degradation process effectively. The ANN-driven approach not only enhanced the efficiency of the MB degradation process but also provided significant insights into the scalability and applicability of the Fe3O4/PVDF system for practical water treatment solutions.  This study underscores the potential of integrating advanced machine learning techniques with chemical engineering processes to achieve sustainable and efficient environmental management solutions, particularly for the treatment of recalcitrant wastewater contaminants.

Author Biographies

Mohamed Syazwan Osman, EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia

syazwan.osman@uitm.edu.my

Khairunnisa Khairudin, EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia

khairunnisakhairudin96@gmail.com

Huzairy Hassan, Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia

huzairyhassan@unimap.edu.my

Sung-Ting Sam, Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia

stsam@unimap.edu.my

Nadzirah Balqis Mohd Nazeri, EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia

nadzirahbalqisnazeri@gmail.com

Nur Lina Syahirah Mustapa, EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia

nurlinasyahirahmustapa@gmail.com

Maya Fitriyanti, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia

mayaf@itb.ac.id

Downloads

Published

2024-08-27

How to Cite

Osman, Mohamed Syazwan, Khairunnisa Khairudin, Huzairy Hassan, Sung-Ting Sam, Nadzirah Balqis Mohd Nazeri, Nur Lina Syahirah Mustapa, and Maya Fitriyanti. 2024. “Artificial Neural Network-Driven Optimization of Fe3O4 Nanoparticles/PVDF Macrospheres in Fenton-Like System for Methylene Blue Degradation”. Journal of Advanced Research in Micro and Nano Engineering 22 (1):68-84. https://doi.org/10.37934/armne.22.1.6884.
سرور مجازی ایران Decentralized Exchange

Issue

Section

Articles

Most read articles by the same author(s)

فروشگاه اینترنتی