Performance of Solar Thermal Collector Using Multi-Walled Carbon Nanotubes: Simulation Study
Keywords:
Flat-plate solar collector, Thermal efficiency, Carbon-based nanofluid, MWCNTs nanoparticlesAbstract
A flat-plate solar collector (FPSC) using multi-walled carbon nanotubes (MWCNTs) was numerically studied. Multi-walled carbon nanotubes (MWCNTs) with outside diameters of (< 8 nm) and 0.1wt.% were utilized. A three-dimensional model was built and solved via ANSYS software and the inlet parameters as 1000 W/m2, inlet temperature of 30°C and the volume flow rates in the range of 0.2-0.8 kg/min. Using DW decreased the temperature of absorber by 0.840%, 1.437%, 1.909%, 2.308%, 2.616% and 2.869% for the varied flow rates. Relative to DW, the temperature of absorber decreased by 0.874%, 0.804%, 0.756%, 0.717%, 0.685%, 0.655% and 0.633% at the same flow rate ranges. Meanwhile, the thermal efficiency of MWCNTs nanofluid was increased by 6.080%, 6.322%, 6.311%, 6.337%, 6.450% and 6.857% for volume flow rate of 0.2-0.8 kg/min.