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Solid fuel oxide cells (SOFCs) are made up of three main parts: anode, electrolyte, and 
cathode. The main challenge in SOFCs is their high operating temperature, which can 
reach 1000 °C and lead to cell degradation issues. To address this, the utilization of 
lithium-based materials is suggested for the cathode component, facilitating 
intermediate-temperature SOFC operation within the temperature range of 500 to 
800 °C. Previous studies have demonstrated the potential of producing high-quality 
lithium-based cathode ink using a triple-roll mill (TRM). By employing the fabrication 
parameters recommended in these studies, the lithium-based cathode, LiCo0.6Sr0.4O2 
(LCSO) was tested in different working environments, specifically the oxide-conducting 
SOFC (O2- – SOFC) and proton-conducting SOFC (H+ – SOFC). The LCSO inks were 
screen-printed on Sm0.2Ce0.8O1.9 (for O2- – SOFC) and BaCe0.54Zr0.36Y0.1O2.95 (for H+ – 
SOFC) electrolyte before the analysis. Electrochemical impedance spectroscopy (EIS) 
and scanning electron microscopy (SEM) are used to characterize the electrochemical 
performance and morphology of the LCSO cathode. Based on the results, the LCSO 
cathode is found to respond well in O2- – SOFC environment with an area-specific 
resistance (ASR) value of 0.75 Ωcm2 compared to H+ – SOFC which shows an ASR value 
higher by 11.45 Ωcm2. 
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1. Introduction 
 

For the past decade, lithium-based materials have been introduced by researchers due to their 
effectiveness in maintaining electrochemical performance of SOFCs at moderate-low operating 
temperatures [1]. Earlier researchers reported that with the presence of these lithium-based 
materials, oxygen concentration can be improved to a greater level, especially at grain boundaries. 
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Consequently, ionic conductivity can also be enhanced [2]. After selecting a highly promising cathode 
material that exhibits good electrochemical performance, the quality of the cathode layer or 
component also needs to be considered.  

To achieve good electrochemical performance, the quality of the cathode layer needs 
improvement and refinement in order to produce a smooth and high-quality coating. This is because 
having high-quality coating facilitates the production of uniform cathode layers more easily. Various 
methods are employed by researchers to produce high-quality cathode coatings, including manual 
mixing, ball milling, and triple-roller milling (TRM) methods [3-5]. The cathode ink produced using the 
TRM method is known to be capable of providing a cathode film with a more homogeneous particle 
distribution [6,7].  

Furthermore, our previous study has also identified the optimal parameters for utilizing a triple-
roll mill in producing lithium-based cathode ink, specifically regarding roller speed and roller gap size 
[8,9]. Both studies conclude that certain parameters significantly impact the electrochemical 
performance in SOFC applications. The first study highlights that a gap size of 40 μm leads to the best 
results with the lowest area-specific resistance (ASR) of 4.16 Ωcm², showcasing the importance of 
high-quality lithium-based cathode [9]. The second study focuses on roller speed, revealing that the 
lowest ASR value of 16.17 Ωcm² is achieved at 300 rpm for LCSO ink [8]. This emphasizes the crucial 
role of processing technique in optimizing electrochemical performance. 

Lithium-based cathode materials are recognized for their usability as electrodes in both oxide-
conducting (O2- – SOFC) and proton-conducting SOFC (H+ – SOFC) modes [10]. Given that our previous 
research predominantly concentr  ated on enhancing the quality of cathode ink, the evaluation of 
the LSCO cathode's performance in these two environments remains unexplored. Therefore, the 
main objective of this study is to compare the electrochemical performance of the LCSO cathode in 
the settings of oxide-conducting and proton-conducting SOFCs. 
 
2. Methodology  
2.1 LCSO Cathode Powder Preparation 
 

The cathode material LCSO, which is a modified new material, has been successfully produced in 
the SOFC laboratory, SELFUEL UKM, using a wet chemical process known as the glycine-nitrate 
combustion (GNC) method. To produce the cathode material, solutions and mixtures were prepared 
based on stoichiometric calculations following the ABO3 perovskite structure. In this study, the 
perovskite structure is represented by A = Li, B = Co, Sr, and O = O. To generate the LCSO cathode 
powder, the necessary precursor chemicals or raw materials are strontium nitrate (SrNO3), cobalt 
nitrate (CoNO3), lithium nitrate (LiNO3), and glycine (NH2CH2COOH) (Merck - Sigma-Aldrich). The 
composition of the raw materials is determined through stoichiometric calculations as shown in the 
Eq. (1) below 

 
LiNO3 + 0.6Co(NO3)2 + 0.4Sr(NO3)2 + yNH2CH2COOH ⟶ LiCo0.6Sr0.4O2- δ + AN2 + BCO2 + CH2O           (1) 

 
The total oxidation valence for the nitrate in this material is -15, while the total reduction valence 

for glycine Σglisina is +9. Subsequently, the stoichiometric coefficient of the element (øe) will be 
calculated using Eq. (2) as shown below 
 
(øe) = total oxidation valence for the nitrate / -1 × total reduction valence for glycine                   (2) 
(øe) = y = 1.7 
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Therefore, the nitrate molecules are calculated as follows 
 

Σ(NO3) = 1(NO3) +［0.6×2(NO3)］+ ［0.4×2(NO3)                     (3) 

Σ(NO3) = 3 
 

The stoichiometric ration for glycine to nitrate (G/N) can be calculated using Eq. (4) 
 
(G/N)s = (øe) / Σ(NO3)                        (4) 
(G/N)s = 0.56 
 

The value of (G/N) is utilized to calculate coefficients such as A, B, and C based on the chemical 
equilibrium principle 
 
y = (øe) = 1.7                           (5) 
 

A = Σ(NO3) + y］/ 2 = ( 3+1.7)/2 = 2.35                    (6) 
 
B = 2y = 2(1.7) = 3.4                        (7) 
 
C = 5y/2 = 5/2(1.7) = 4.25                       (8) 
 

All the coefficient values (A, B, and C) obtained will then be reintroduced into Eq. (1), resulting in 
the derivation of Eq. (9) 
 
LiNO3+0.6Co(NO3)2+0.4Sr(NO3)2+1.7NH2CH2COOH→LiCo0.6Sr0.4O2- δ+2.35N2+3.4CO2+4.25H2O    (9) 

 
The weighed amounts of Co(No3)2, Sr(NO3)2 and Li(NO3)2, based on their respective stoichiometry, 

were dissolved in 100 mL of deionized water. The Co(NO3)2 solution was poured into a 1000 mL-sized 
beaker first (this beaker would be used in the combustion process), followed by the addition of 
Sr(NO3)2. The solution was then stirred using a magnetic stirrer for 10 minutes. Afterward, Li(NO3)2 
was added to the solution and stirred for 30 minutes at room temperature. Once the materials were 
fully dissolved, glycine (NH2CH2COOH) was added to the solution and stirred for 18 hours [9-11].  

Following this, the solution was stirred continuously while gradually raising the hotplate's 
temperature to reach a range of 250 °C to 300 °C, enabling the combustion of the materials and 
nitrates. Afterward, the resulting black ash precursor powder was additionally dried at 120 °C for 12 
hours in a drying oven. The initial raw powder was then finely ground using an agate mortar to 
achieve a fine and smooth texture. Lastly, the dried, finely prepared precursor powder underwent 
calcination at 800 °C in a high-temperature furnace (Berkeley Scientific, USA) for a duration of 5 
hours. 
 
2.2 LCSO Ink Preparation 
 

Calcined LCSO powders were then put through a ball milling process to disintegrate any 
agglomeration that may have grown while the calcination process was taking place. To ensure that 
the particle was properly disseminated, a dispersant of KD15 was used. After being milled for around 
12 h in a container containing 200 ml of acetone, the mixture was then allowed to dry in an oven for 
a period of 5 h. After that, the remaining sediments from the powder were sieved for the next step 
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of the process. Following that, the powder was physically combined with a vehicle; a mixture of 
terpineol and ethyl cellulose. The preliminary mixed ink/slurry was then transferred to be processed 
by utilizing the TRM, and the roller speed and gap were adjusted accordingly. This ink or slurry was 
processed using TRM at a speed of 300 rpm and a gap size of 40 μm. Figure 1 shows the production 
of LCSO inks via TRM. 
 

 
Fig. 1. Cathode inks production via triple-roll milling (TRM) 

 
2.3 Symmetrical Cells Fabrication 
 

The high-quality LCSO inks were then printed five times on both sides of the electrolyte. For O2- – 
SOFC, cathode ink was printed on the cerium-doped samarium (SDC) electrolyte to construct an 
LCSO|SDC|LCSO symmetrical cell, while BaCe0.54Zr0.36Y0.1O2.95 (BCZY) is utilized as the electrolyte for 
H+ – SOFC to form a symmetrical cell with configuration of LCSO|BCZY|LCSO. The active area for both 
samples is maintained at 1 cm². The printed symmetrical cells were subsequently subjected to 
sintering at 800°C for 2 hours. Figure 2 shows the symmetrical cell for both configurations.  
 

 
Fig. 2. Symmetrical cells for the electrochemical impedance 
spectroscopy analysis 
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2.4 Electrochemical Impedance Spectroscopy 
 

Electrochemical impedance spectroscopy was conducted under a dry air atmosphere to assess 
the electrochemical performance of sintered symmetrical cells. The Autolab PGSTAT302N (Autolab 
302, Eco Chemie, Netherlands), together with a frequency response analyzer in potentiostatic mode, 
was employed to determine the electrochemical impedance. This was carried out over a frequency 
range of 0.01 Hz to 1 MHz at an amplitude voltage of 20 mV and a temperature of 800 °C. To calculate 
the cathode's ASR, the obtained impedance spectra were transformed into Nyquist plots and 
analyzed using the NOVA 1.11 software. 
 
3. Results  
3.1 Electrochemical Impedance Spectroscopy Analysis 
 

The ASR value is measured using the technique of electrochemical impedance spectroscopy (EIS) 
on symmetrical cells (cathode|electrolyte|cathode). EIS is also known as alternating current 
impedance spectroscopy using several parameters such as sinusoidal voltage values in the range of 
5 – 20 mV and specific frequencies in the range of 100 mHz – 1 MHz [12]. The results from EIS can be 
used to determine the performance of chemical reactions occurring within a material system for 
specific components. The values of real impedance (Zreal) and imaginary impedance (Zimag) can be 
obtained from EIS measurements. Data for both of these values at different frequencies are typically 
plotted as an impedance spectrum known as a Nyquist plot, as shown in Figure 3. 

 

 
Fig. 3. Impedance spectrum (Nyquist plot) for symmetrical cell [13] 

 

The ASR value is equivalent to the total polarization resistance, Rp, for the cathode component 
over a specific active surface area (A) [14]. All Rp values for the investigated cathodes are derived 
from the analysis of EIS. Eq. (10) represents the calculation formula for the cathode ASR value from 
the Rp values obtained through EIS analysis 
 
ASR = (Rp(total) * A) / 2                                              (10) 
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Figure 4 shows the Nyquist plot of EIS impedance spectra for the LCSO cathode ink in different 
SOFC environments, along with the employed equivalent circuit model used to analyze the 
impedance. As observed, there are two arcs, each representing the protonic environment, namely 
BCZY and SDC, which respectively symbolize the oxide-based SOFC environment. The cell was tested 
at 800 ℃ for both environments. In the O2- – SOFC environment (SDC electrolyte), the ASR value 
measured 0.75 Ωcm², while in the H+ – SOFC environment (BCZY electrolyte), the recorded ASR value 
was 11.45 Ωcm². Referring to literature work [15], symmetrical cell of SOFCs are usually expected to 
have an ASR value between 0.1 and 1 Ωcm². In this work, ASR results for both types of SOFCs show 
that only the oxide-conducting SOFC meets this requirement with an ASR value of 0.75 Ωcm², which 
is within the acceptable range  [16]. On the other hand, the proton-conducting SOFC doesn't meet 
this requirement, as its ASR value of 11.45 Ωcm² exceeds the acceptable range for symmetrical SOFCs 
(refer Table 1). 

 

 
Fig. 4.  Nyquist plot for the LCSO cathode tested under different environments (O2- 

– SOFC with SDC electrolyte and H+ – SOFC with BCZY electrolyte) at 800 °C 

 
Table 1 
ASR-value comparison for LCSO cathode in different environments 
ASR O2- – SOFC ASR H+ – SOFC 

0.75 Ωcm2 11.45 Ωcm2 

 
Additionally, the LCSO material shows a high thermal compatibility with the SDC electrolyte, as 

seen in the micrograph image in Figure 5, where the electrode and electrolyte layers adhere 
effectively [17-20]. 
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Fig. 5. FESEM cross-sectioned micrograph for 
LCSO|SDC after EIS test 

 
4. Conclusions 
 

As a conclusion, LCSO cathode in the conventional SOFC environment (O2- – SOFC), exhibited the 
most favorable outcome with lower ASR values compared to the proton-conducting SOFC. 
Specifically, the ASR values were 0.75 Ωcm² and 11.45 Ωcm² respectively.  
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