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ABSTRACT 

The MHD stagnation point flow and heat transfer in a micropolar fluid over an exponentially vertical stretching/shrinking sheet are 
investigated in the presence of convective boundary conditions in the current work. The buoyancy effect, also known as mixed 

convection, is also taken into account. Several researchers are conducting research on the fluid in the current state of mixed 

convection. To convert the governing equations from a system of partial differential equations to ordinary differential equat ions, 
similarity variables were used. The modified equations are then numerically solved in MATLAB using BVP4c. There is a lot of 

agreement when compared to previous findings. Contradictory phenomena are observed between Micropolar and mixed convection 

for fluid velocity, angular velocity and temperature distribution profiles. The significant variables' characteristics are graphically 

presented, and the numerical results are tabulated.   
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1. Introduction 
 

Stagnation point flow with heat transfer across a stretching/shrinking sheet has several industrial 

uses. Some applications include boundary layer along material handling convey ors, blood flow 
difficulties, aerodynamics, plastic sheet extrusion, cooling of metallic plates in a bath, textile and 
paper industries, and so forth [1]. According to Crane [2], Hiemenz was the first to investigate it, 
demonstrating that using similarity transformation, the Navier-Stokes equations regulating the flow 

can be reduced to an ordinary differential equation of third order. Because of the nonlinearities in 
the reduced differential equation, no analytical solution is accessible, and the nonlinear equation is 
normally solved numerically with two-point boundary conditions, one of which is set to infinity.  

Extrusion of polymer fluids, solidification of liquid crystals, cooling of a metallic plate in a bath, animal 
blood, exotic lubricants, and colloidal and suspension solutions are a few of the uses for micropolar 
fluids. These fluids resemble rigid molecules, magnetic fluids, dusty clouds, muddy fluids, and some 

biological fluids [3]. The problem of stagnation point flow in a micropolar fluid has been extended in 
numerous ways to include various physical effects such as Nazar et al., [4] Ishak et al., [5], Borrelli et 
al., [6], Dash et al., [1], Soid et al., [7], Attia [8], and Mishra et al., [9]. Many academics have examined 
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the non-uniqueness of solutions to fluid flow issues on moving, shrinking, and stretching sheets in 
the presence and absence of a buoyancy effect in the last few years [10] such as Lakshmi Devi et al., 

[11] and Song et al., [12]. 
The purpose of this study is to investigate the MHD stagnation point flow and heat transfer over 

an exponentially stretching/shrinking vertical sheet submerged in a micropolar fluid with a buoyancy 

effect. Similarity variables were employed to turn the governing partial differential equations (PDEs) 
into ordinary differential equations (ODEs). The amended equations were then numerically solved in 
MATLAB using BVP4c. We expect that the results gained will be beneficial for applications and as a 
supplement to prior research. 

 
2. Methodology  

 

Consider a micropolar fluid flow towards a stagnation point on a vertical sheet as illustrated in 
Figure 1. The designed was exactly based on the original profile of  Waini et al., [13]. The x  and y  

axes are Cartesian coordinates where x  is assigned vertically along the surface and y is orthogonal 

to it with the origin o . The symbol   /x L

e
u x ae  is free stream velocity where 0a   (constant) and 

L  is reference length. Next,   /x L

w
u x be  is an exponential velocity when the surface is stretched 

 0b  , shrunk  0b   or 0b   is for the static surface. The surface temperature is given as 

  2 /

0

x L

w
T x T T e


   where 

0
T  is a constant and T


 is the ambient temperature. Hence, g  is a 

symbol of acceleration due to gravity. 
 

 
                                                             (a) Stretching                                   (b) Shrinking 

Fig. 1. The geometry of the flow problem of (a) Stretching and (b) Shrinking sheet 

 

The governing boundary layer parabolic partial differential equations (PDEs) are written as 
continuity, linear momentum, angular momentum and energy equations [14, 10, 13]: 

/ / 0u x v y                   (1) 

   
          2 2 2

/ /

/ / / / / /
e e T e

u u x v u y

u u x u y N y g T T B u u       


     

            
   (2) 

       2 2/ / / / / 2 /u N x v N y j N y j N u y                     (3) 

       2 2/ / / / 1/ /
p p r

u T x v T y k c T y c q y                  (4) 
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Subject to the boundary conditions: 

w
u u , 0v  , 

w
T T ,  /N m u y     at 0y   

e
u u , T T


 , 0N   as y             (5) 

where u  and v  are component of velocity along x and y  direction respectively. The symbol 

/    is the kinematic viscosity,   is the fluid density,   is the coefficient of fluid viscosity, N  

is microrotation or angular velocity, /2 /x Lj L e a   is micro-inertia per unit mass, 

 1 /2K j    is spin gradient,   is the vortex viscosity. The electrical conductivity of the fluid 

assigned as  ,   /2

0

x LB x B e  is the variable magnetic field where 
0

B  is a constant and 
pc  is the 

specific heat. The symbol 
T
  is the thermal expansion coefficient. Eq. (1) to Eq. (4) along with the 

boundary condition Eq. (5) can be expressed in a simpler form by introducing the following similarity 
transformation [13]: 

2

2

x

L
a
e y
L




 ,  
x

Lu ae f  ,     2

2

x

L
a

v e f f
L


     ,  

w

T T

T T
  







, 

 
3

2

2

x

L
a

N a e h
L




              (6) 

 
where   is similarity variable, while u  and v  denotes the stream function that the continuity Eq. (1) 

is identically fulfilled. Thus, the transformed linear momentum Eq.  (2), angular momentum Eq. (3) 
and energy Eq. (4) become: 

     

   

   

2

1 2 1 2 2 0

1 /2 2 3 0

Pr 4 1 4 /3 0

f K f f f M f K h

K h K h f f h f h

f f R



  

            

        

     

       (7) 

The corresponding boundary conditions: 

  0f   ,  f    ,   1   ,    h mf    at 0   

  1f   ,   0   ,   0h    as             (8) 

where the prime indicates differentiation with respect to   and 2

0
2 /M B L a   is Hartmann 

number or magnetic parameter. 2

0
/

T
g T L a   is buoyancy parameter, ε = b / a  is the 

stretching/shrinking parameter where 0a   (constant) and the surface is stretched ( 0b  ) or shrunk 

( 0b  ). Therefore, the value of   is directly proportional to b . Next, /K   , Pr /
p
c k  and 

* 3 *4 /R T k


  are the micropolar parameter, Prandtl number and the radiation parameter 

respectively. The involved physical quantities are the skin friction coefficient 
f

C , the local Nusselt 

number 
x

Nu  and the local couple stress 
x

M  [8]: 

2

w
f

e

C
u




 , 

 
0

2

/
y

x

e

N y
M

xu






 

 , 
 

 
0

/
x y

w

x
Nu T y

T T 



   


      (9) 

where the surface shear stress  
0

/
w y

u y N   


     
 

. Then, the reduced skin friction 

coefficient, the local couple stress, and the reduced local Nusselt number: 
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     
1/2

Re 2 / 1 1 0
f x
C L x m K f    

 
,    Re 1 /2 0

x x
M K h   

   
1/2

Re 2 / 0
x x

Nu L x                         (10) 

Re /
x e

xu   is the local Reynolds number. 

 
3. Results and Discussion 

 
An analysis of the behaviors of the velocity, angular, and temperature profiles is carried out. The 

numerical solutions are obtained using BVP4c in MATLAB. The numerical values of 

 
1/2

Re 2 /
f x

C L x  and  
1/2

Re 2 /
x x

Nu L x  are obtained for various values of 

stretching/shrinking parameter  , when Pr 6.2and non-buoyant case 0   with other parameter 
was set to be constant at    0K M m R . Tables 1 and 2 show the comparison of the skin friction 

coefficient and the local Nusselt number between the results found by Ur Rehman et al., [15] and 
Waini et al., [13] with the present study, respectively. 

The current results were in great agreement with the earlier study when the numbers in Tables 1 

and 2 were compared. As a result, the approach employed for this study was valid and accurate to 
verified. The values of the skin friction coefficient decrease while the values of the local Nusselt 
number increase when the parameter stretches/shrinking increases. 
 

Table 1 

Comparison for Numerical Values  
1/2

Re 2 /
f x
C L x  for   0.5,0,0.5  

  Ur Rehman et al., [15] Waini et al., [13] Present Study 
-0.5  2.1182 2.11816867 
0 1.68720 1.6872 1.68721817 
0.5 0.96040 0.9604 0.96041608 

 
Table 2 

Comparison for Numerical Values  
1/2

Re 2 /
x x

Nu L x  for   0.5,0,0.5  

  Waini et al., [13] Present Study 
-0.5 0.0588 0.05878644 
0 2.5066 2.50662545 
0.5 4.8016 4.08157327 

 
Micropolar parameter K and buoyancy or mixed convection parameter   will be examine. The 

other parameters such as material parameters m , Prandtl number Pr , magnetic M  and radiation 
R  are fixed to 0.5m  , Pr 6.2 , 1    and 2M R   are considered. This result is focusing for 

shrinking plate where the ratio is 1. The Figures 2, 3 and 4 illustrate the effects of the velocity  f 

, the angular velocity  h  , and the temperature     profiles on the values of micropolar 

parameter K  respectively. The value for micropolar parameter is 0,1,2,5K  and buoyancy 

parameter is 2  . These profiles asymptotically satisfy the boundary condition in Eq. 8, giving us 

confidence in the solutions’ accuracy. The decreasing behavior of  f   is observed with the increase 

of K  as shown in Figure 2. The behavior of  h  is given in Figure 3. It is illustrated that  h   
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increases to   0.5h     and decreases to the boundary condition with increasing of K . Meanwhile, 

Figure 4 shows     increases due to increasing of K .  

The Figures 5, 6 and 7 show the effects of  f  ,  h  , and     on the buoyancy parameter 

  values, respectively. There is an opposite phenomenon with micropolar effect.  The value of the 
buoyancy parameters is 0,1,2,3   and micropolar parameter 2K  . the fluid velocity increases 

while the angular velocity decreases to   0.4h     and then increases to zero when   increases as 

depicted in Figures 5 and 6 respectively. Meanwhile, the temperature behavior decreases due to the 

presence of  . 
 

  

Fig. 2. Velocity profile  f   for varies of K  Fig. 3. Angular velocity profile  h   for varies of K  

  
Fig. 4. Temperature profile     for varies of K  Fig. 5. Velocity profile  f   for varies of   

  
Fig. 6. Angular velocity profile  h   for varies of   Fig. 7. Temperature profile     for varies of   

 
4. Conclusions 
 

From this present paper, we detect the following: 
i. The velocity profile at the vertical plate increases on increasing the buoyancy force but 

reduce with micropolar. 

ii. The angular profile for the particle rotation occurs in two phenomena which are decrease 
and increase for buoyancy force reversible for micropolar.  
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iii. The temperature of the fluid is drop with buoyancy force and rises for micropolar.  
 

Acknowledgment 
This research was funded by a grant from the Ministry of Higher Education of Malaysia (600-
RMC/FRGS 5/3 (174/2021)) and Universiti Teknologi MARA Shah Alam is gratefully acknowledged. 

 
References 
[1] Dash, G.C., R.S. Tripathy, M.M. Rashidi, and S.R. Mishra. “Numerical Approach to Boundary Layer Stagnation-

Point Flow Past a Stretching/Shrinking Sheet.” Journal of Molecular Liquids 221 (2016): 860–66. 
https://doi.org/10.1016/j.molliq.2016.06.072 

[2] Crane, Lawrence J. “Flow Past a Stretching Plate.” Zeitschrift für angewandte Mathematik und Physik ZAMP 21, 
no. 4 (1970): 645–47. 
https://doi.org/10.1007/bf01587695 

[3] Shu, Jian-Jun, and Jenn Shiun Lee. “Fundamental Solutions for Micropolar Fluids.” Journal of Engineering 
Mathematics 61, no. 1 (2007): 69–79. 
https://doi.org/10.1007/s10665-007-9160-8 

[4] Nazar, Roslinda, Norsarahaida Amin, Diana Filip, and Ioan Pop. “Stagnation Point Flow of a Micropolar Fluid 
towards a Stretching Sheet.” International Journal of Non-Linear Mechanics 39, no. 7 (2004): 1227–35. 
https://doi.org/10.1016/j.ijnonlinmec.2003.08.007 

[5] Ishak, Anuar, Yian Yian Lok, and Ioan Pop. “Stagnation-Point Flow over a Shrinking Sheet in a Micropolar Fluid.” 
Chemical Engineering Communications 197, no. 11 (2010): 1417–27. 
https://doi.org/10.1080/00986441003626169 

[6] Borrelli, Alessandra, Giulia Giantesio, and Maria Cristina Patria. “Numerical Simulations of Three-Dimensional 
MHD Stagnation-Point Flow of a Micropolar Fluid.” Computers & Mathematics with Applications 66, no. 4 (May 
27, 2013): 472–89. 
https://doi.org/10.1016/j.camwa.2013.05.023 

[7] Soid, Siti Khuzaimah, Anuar Ishak, and Ioan Pop. “MHD Stagnation-Point Flow over a Stretching/Shrinking Sheet 
in a Micropolar Fluid with a Slip Boundary.” Sains Malaysiana 47, no. 11 (2018): 2907–16. 
https://doi.org/10.17576/jsm-2018-4711-34 

[8] Attia, Hazem Ali. “Stagnation Point Flow and Heat Transfer of a Micropolar Fluid with Uniform Suction or 
Blowing.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 30, no. 1 (2008). 
https://doi.org/10.1590/s1678-58782008000100008 

[9] Mishra, S.R., I. Khan, Q.M. Al -mdallal, and T. Asifa. “Free Convective Micropolar Fluid Flow and Heat Transfer 
over a Shrinking Sheet with Heat Source.” Case Studies in Thermal Engineering 11 (2018): 113–19. 
https://doi.org/10.1016/j.csite.2018.01.005 

[10] Lund, Liaquat Ali, Zurni Omar, Ilyas Khan, Dumitru Baleanu, and Kottakkaran Sooppy Nisar. “Convective Effect 
on Magnetohydrodynamic (MHD) Stagnation Point Flow of Casson Fluid over a Vertical Exponentially 
Stretching/Shrinking Surface: Triple Solutions.” Symmetry 12, no. 8 (2020): 1238. 
https://doi.org/10.3390/sym12081238 

[11] Lakshmi Devi, G., H. Niranjan, and S. Sivasankaran. “Chemical Reaction, Radiation and Activation Energy Effects 
on MHD Buoyancy Induced Nanofluid Flow Past a Vertical Surface.” Scientia Iranica, 2021. 
https://doi.org/10.24200/sci.2021.56835.4934 

[12] Song, Ying-Qing, Hassan Waqas, Shan Ali Khan, Sami Ullah Khan, M. Ijaz Khan, Yu-Ming Chu, and Sumaira 
Qayyum. “Nonlinear Thermally Radiative Heat Transport for Brinkman Type Micropolar Nano-Material over an 
Inclined Surface with Motile Microorganisms and Exponential Heat Source.” International Communications in 
Heat and Mass Transfer 126 (2021): 105351. 
https://doi.org/10.1016/j.icheatmasstransfer.2021.105351 

[13] Waini, Iskandar, Anuar Ishak, and Ioan Pop. “Hybrid Nanofluid Flow towards a Stagnation Point on an 
Exponentially Stretching/Shrinking Vertical Sheet with Buoyancy Effects.” International Journal of Numerical 
Methods for Heat & Fluid Flow 31, no. 1 (2020): 216–35. 
https://doi.org/10.1108/hff-02-2020-0086  

[14] Abd El-Aziz, Mohamed. “Viscous Dissipation Effect on Mixed Convection Flow of a Micropolar Fluid over an 
Exponentially Stretching Sheet.” Canadian Journal of Physics 87, no. 4 (2009): 359–68. 
https://doi.org/10.1139/p09-047 

https://doi.org/10.1016/j.molliq.2016.06.072
https://doi.org/10.1007/bf01587695
https://doi.org/10.1007/s10665-007-9160-8
https://doi.org/10.1016/j.ijnonlinmec.2003.08.007
https://doi.org/10.1080/00986441003626169
https://doi.org/10.1016/j.camwa.2013.05.023
https://doi.org/10.17576/jsm-2018-4711-34
https://doi.org/10.1590/s1678-58782008000100008
https://doi.org/10.1016/j.csite.2018.01.005
https://doi.org/10.3390/sym12081238
https://doi.org/10.24200/sci.2021.56835.4934
https://doi.org/10.1016/j.icheatmasstransfer.2021.105351
https://doi.org/10.1108/hff-02-2020-0086
https://doi.org/10.1139/p09-047


Journal of Advanced Research in Micro and Nano Engineering 

Volume 7, Issue 1 (2022) 1-7 

7 
 

[15] Ur Rehman, Fiaz, Sohail Nadeem, Hafeez Ur Rehman, and Rizwan Ul Haq. “Thermophysical Analysis for Three-
Dimensional MHD Stagnation-Point Flow of Nano-Material Influenced by an Exponential Stretching Surface.” 
Results in Physics 8 (2018): 316–23. 
https://doi.org/10.1016/j.rinp.2017.12.026 

 
 

https://doi.org/10.1016/j.rinp.2017.12.026

