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ABSTRACT 

Rayleigh-Benard convection in a saturated anisotropic porous media is investigated numerically. The temperature-dependent 
viscosity effect was applied to the double-diffusive binary fluid, and the Galerkin method was used to determine the critical Rayleigh 
numbers for the free-free, rigid-free, and rigid-rigid representing the lower-upper boundaries. The lower and upper boundary was 
set to be either conducting or insulating to temperature. The purpose of this study is to study the stability of Rayleigh-Benard 
convection with different temperature conditions in a binary fluid saturated by an anisotropic porous layer. The obtained eigenvalue 
is numerically solved with respect to various temperatures and velocities using the single-term Galerkin technique. The results, 
presented graphically, indicate that the rigid-rigid boundaries are more stabilize compared to rigid-free and free-free boundaries. It 
is also shown that an increase of temperature-dependent viscosity tends to destabilize the onset of double-diffusive convection. 
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1. Introduction 
 

Rayleigh - Benard convection is the simplest system for turbulent convection where the layer of 
fluid is heated from below and cooled from above. In a double diffusive binary mixture, there are two 
effects which are Soret and Dufour [1-3]. It is first reported by Nield and Kuznetsov [4] where both 
stationary and oscillatory mode for thermosolutal convection binary fluid layer induced by thermal 
and solutal gradients is investigated. Abidin [5] investigated the linear stability characteristics of a 
porous layer with simultaneous temperature and solute concentration gradients for both strong and 
weak constant vertical flow and with also different temperature condition at the upper boundary. 

A porous medium can be described as a solid or a series of solid materials (consists of pores or 
voids) with sufficient open space to allow fluid to move through or around the solids in or around 
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them as described by Ramakrishna et al., [6]. The physical characteristics of the fluid in the porous 
medium have countless applications with different surface geometries and boundary conditions such 
as nuclear waste management, the spread of pollutants, packed-bed reactors, petroleum reservoirs 
etc., which has attracted significant interest in recent decades. 

The impact of temperature conditions on the onset of Rayleigh-Bénard convection in a binary 
fluid-saturated anisotropic porous layer is profoundly influenced by factors such as temperature-
dependent viscosity and the Soret and Dufour effects. Griffiths [7] discusses the dynamics of thermals 
in extremely viscous fluids and highlights the significant role of temperature-dependent viscosity in 
altering convection patterns. Moorthy and Senthilvadivu [8] further explore how the Soret and 
Dufour effects influence natural convection flows in porous media, emphasizing the interplay 
between thermal and solutal gradients in such systems. Nanjundappa et al., [9] examine Marangoni-
Bénard ferroconvection, showing how temperature-dependent viscosity can impact the stability and 
onset of convection in fluid layers. Additionally, Pal and Mondal [10] investigate the effects of Soret 
and Dufour on magnetohydrodynamic (MHD) buoyancy-driven convection, which is relevant for 
understanding how temperature gradients influence convective stability in binary fluid systems. 

The onset of Rayleigh-Bénard convection in a binary fluid-saturated anisotropic porous layer is 
significantly affected by temperature conditions, particularly due to variable viscosity and elastic 
effects. Ramirez and Saez [11] demonstrated that variable viscosity can alter boundary-layer heat 
transfer in porous media, highlighting the complexity of convective heat transfer under different 
temperature gradients. Sekhar and Jayalatha [12] further explored how elastic effects in liquids with 
temperature-dependent viscosity influence Rayleigh-Bénard convection, revealing that such 
variations can either stabilize or destabilize the convective patterns depending on the specific 
conditions. Trompert and Hansen [13] examined the Rayleigh number's dependence on convection 
with strongly temperature-dependent viscosity, showing that higher Rayleigh numbers can enhance 
convective activity, which is crucial for understanding the onset of convection in porous layers. These 
studies collectively emphasize that the temperature condition, particularly through its impact on 
viscosity, plays a pivotal role in initiating and modulating Rayleigh-Bénard convection in binary fluid 
systems. 

According to Srinivasacharya et al., [14] the Soret and Dufour effects are encountered in many 
practical applications such as in the areas of geosciences and chemical engineering. Shivakumara and 
Khalili [15] were studying convective instabilities in the presence of two opposing buoyancy driven 
components with different molecular diffusivities called double diffusive convection. The control of 
double-diffusive convection in porous media plays an important role. This can be achieved by 
different physical mechanisms such as rotation and or magnetic field or by non-uniform basic 
temperature gradients. The effect of vertical through flow on double diffusive convection in a porous 
medium is important due to its applications in engineering, geophysics, and seabed hydrodynamics. 

Alam and Rahman [16] investigate the Dufour and Soret effects on mixed convection flow past a 
vertical porous flat plate embedded in a porous medium have been studied numerically. A similarity 
transformation was used to convert the governing nonlinear partial differential equations into a 
system of ordinary differential equations, which were then numerically solved using the Nachtsheim-
Swigert shooting iteration technique and sixth order Runge-Kutta integration scheme. The local skin-
friction coefficient, the local Nusselt number, and the local Sherwood number are a few examples of 
numerical values of physical quantities that are provided in tabular form. 

Abidin et al., [17] focused the effect of temperature dependent viscosity in a double diffusive 
binary fluid layer together with the coupled effects of Coriolis force and internal heat generation. The 
Soret and Dufour effects are taken into account as these effects were often being ignored in previous 
research problems due their small magnitude and the model aims to be beneficial for the problems 
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in oceanography or in other geophysics areas. They set the upper boundary be free and insulating 
and the lower boundary is set as rigid. However, the temperature conditions were set to be insulating 
or conducting. They also assumed that the upper surface to be nondeformable and employed the 
stability analysis theory and the result were solved by using Galerkin method. They conclude that 
temperature dependent viscosity destabilize the system where the marginal shift downwards as they 
increase the effect. 

Nagarathnamma et al., [18] investigated the stability due to variable heat source and variable 
gravity field by applying the linear stability principle using the Galerkin method. In their research, 
they analyze the effect of variable internal heat source on instability in an anisotropic porous matrix 
that was analytically studied through a regular perturbation procedure. The boundaries are regarded 
as rigid-free and insulating with a linear stability assessment. Rusdi et. al., [19] findings from 2024 
are examined, showing how these forces affect heat transport and fluid dynamics in porous 
materials. This study offers thorough analysis and conclusions that greatly advance our knowledge of 
complex fluid dynamics under many physical circumstances. In addition, Senin et. al.,[20] delves 
deeper into the effects of fluctuating gravitational forces on ferrofluids in porous media, providing 
insights into the fluids' stability and convection patterns. This research contributes significantly to 
the field of fluid mechanics, especially with regard to ferrofluid behavior and applications under 
various gravitational conditions. 
 The research conducted by Lingenthiran et al., [21] underscores the significant progress made 
in the application of nanofluids to augment wear resistance and lubrication efficiency in mechanical 
systems, stressing the crucial function of nanoscale particles in enhancing tribological characteristics. 
Furthermore, their research on green engineering investigates the ways in which nanofluids might 
improve sustainability and energy efficiency, offering an eco-friendly method of maximizing 
mechanical and thermal performance [22]. These developments are especially important when 
thinking about binary fluid systems, where the addition of nanofluids might further improve the 
special interactions between various fluid components. The activity of viscoelastic nanofluid films 
sprayed on a stretching cylinder was studied by Auwalu et al., [23] showing the potential of such 
fluids in complicated dynamic systems and emphasizing the significance of stability and entropy 
generation in their performance. 

Numerous advantages can be gained from this research. Convection is useful for a number of 
tasks, such as measuring mass flow rates through pipelines, forecasting weather patterns, and 
computing forces and moments in airplanes. More companies in the sector are processing their 
products through the use of Rayleigh-Bernard convection, which involves heat transfer. Additionally, 
this topic has not yet been examined or studied while considering various temperature conditions. 
In this work, we investigated analytically the impact of different temperature dependent viscosity on 
the threshold of stable thermal convection in a binary fluid saturated anisotropic porous media using 
linear stability analysis. 
 
2. Methodology  
 

A Boussinesq binary fluid saturated in a horizontal porous layer at a depth 𝑑 is considered. The 
gravity force 𝑔 acts in the plane, which has an infinite horizontal extension in both the 𝑥 and 𝑦- 
direction. The binary fluid's density 𝜌 and velocity, 𝑣 = (𝑢, 𝑣, 𝑤) are assumed to be linearly dependent 
on the solute concentration, 𝑆, and the temperature gradient, 𝑇. 
For the Boussinesq approximation, we assumed that all of the fluid's physical properties were 
constant, with the exception of the kinematic viscosity and density. These two parameters depend 
on the temperature, 𝑇, and the solute concentration, 𝑆. The equations are given by 
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( ) ( )0 0 0exp t sT T S S   = − − + −              (1) 

 

( ) ( )0 0 01 t sT T S S   = − − + −                (2) 

 
Here, 𝜇0 and 𝜌0 are the reference values at the reference temperature, 𝑇0 and the reference 

concentration, 𝑆0. 𝜇𝑡 and 𝛼𝑡𝑡 are the rate of change of kinematic viscosity and density with 
temperature. 𝜇𝑆 and 𝛼𝑆 are the rate of change of kinematic viscosity and rate of change of density 
with concentration. Following the analysis, the derivation will begin with the Rayleigh-Benard 
convection's four governing equations Eq. (3-6).  

The governing equations used is the mass Eq. (3), momentum Eq. (4), energy equation Eq. (5) and 
solute Eq. (6).  
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where 𝜉 is the porosity, 𝑡 is the dimensionless time, p is the pressure, 𝜇 is the kinematic viscosity, 

( ) ( )1 1− −= + +x xK K ii jj K kk  is the inverse of the anisotropic permeability tensor, g is the gravity, 𝑐 is 

the specific heat, 𝜂 is the specific heat ratio, 𝐷𝑇𝐶 is the Dufour diffusivity, ( ) ( )x zD D ii jj D kk= + +    is 

the anisotropic heat diffusion tensor, 𝐷𝑆 is the solutal diffusivity and 𝐷𝐶𝑇 is the Soret diffusivity. 
The setting brings about infinitesimal disturbances, 
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where 𝛼𝑓 represents the fluid's thermal diffusivity. The governing Eq. (3)-(6) and hence take the 
following form 
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The basic state of quiescence is described as follows 
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Eq. (7)-(10) are reduced by using Eq. (11), 
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Here, superimpose perturbations on the fundamental solution in the following manner 
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is replaced in Eq. (7)-(10) and linearized by ignoring the prime quantity's products. The resulting 
equations are as follows 
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Operating Eq. (17) by eliminating the pressure term by using curl identity together with Eq. (16) 

and Eq. (17) can be written as 
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The following is a normal mode representation 
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By following a normal mode model in Eq. (21) and substitute into differential Eq. (18)-(20) to get 
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 = . α represented here is the dimensionless 

horizontal wavenumber and since in this research paper, only stationary mode been considered, we 
now set the growth parameter, s = 0. B is the dimensionless viscosity parameter.  It is decided to be 
isosolutal and use the average viscosity and temperature between the upper and lower boundary as 
reference parameters 
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Meanwhile for the temperature conditions, it is set to be either conducting, 0 =  or insulating, 

0D = .  
The three variables are written as a series of basis functions, and the system is approximated 

using the weighted residuals method of the Galerkin type 
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where 𝐴𝑛, 𝑀𝑛, 𝐸𝑛 are unknown coefficients. 

A system of three linear algebraic equations with three unknowns, 𝐴𝑛, 𝑀𝑛, 𝐸𝑛, 𝑛 = 1, 2, 3, … , 𝑁, 
where 𝑁 is the natural number, is obtained by using expressions for 𝑊, Θ 𝑎𝑛𝑑 Φ in the linearized Eq. 
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(22)–(24), multiplying all equations with the base functions, respectively, and integrating the 
functions. When the determinant of the coefficient matrix disappears, the Rayleigh number, 𝑅𝑎, acts 
as the eigenvalue to produce a system with a non-trivial solution. 

We obtain the system of linear homogeneous algebraic equations using the boundary condition 
 

0, + + =ji i ji i ji iA W M E   

 

0, + + =ji i ji i ji iF W G H   

 

0. + + =ji i ji i ji iI W J K                        (26) 

 
The matrix's determinant must be zero for the set above of homogeneous algebraic equations to 

have a nontrivial solution. The lower-upper boundary conditions, namely free-free, rigid-free, and 

rigid-rigid, are used to approximate the solutions to select 𝑊𝑛, 𝑛, 𝑛, in general. 
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For the velocity conditions, the lower boundary was set to be conducted to the temperature, 

meanwhile the upper boundary was set to be conducting or insulating. 
 
For conducting, 

( )1z z = −                                      (30) 

 
For insulating, 

( )2 1z z = −                                      (31) 

 
The eigenvalue for the lower upper free-free boundary conditions, which corresponds to the 

Rayleigh number 𝑅𝑎, is obtained as 
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3. Results  
 

Using the Galerkin method, we present the marginal stability parameters, Ra and the 
corresponding critical wave number, a numerically. For a given set of parameters, the critical Rayleigh 
number for the onset of convection defined as the minimum of the global minima of marginal curve. 
According to Abidin et al., [24], the effect of the solutal Rayleigh number stabilized the system under 
various boundary conditions. For free-free, rigid-free, and rigid-rigid boundary conditions, they 
achieve the same result as Malashetty and Swamy [10]. The critical Rayleigh number comparison 
values for various boundary conditions with 𝐿𝑒 = 5, 𝑅𝑠 =10, 0.5, 0.3, 𝑆𝑟 = 0, and 𝐷𝑓 = 0 are presented 
in Table 1. As the solutal Rayleigh number, 𝑅𝑠, rises, the marginal stability curves shift upward, and 
the critical Rayleigh number, 𝑅𝑎𝑐, rises as well. It also demonstrated that, regardless of the solute 
Rayleigh number, 𝑅𝑠, a rigid-free boundary has the highest critical Rayleigh number, followed by free-
free and rigid-free boundaries.  

 
Table 1 
The comparison of critical values of Rayleigh number, 𝑅𝑎c with various 
boundaries in the absence of temperature viscosity (𝐵 = 0) 

Rs 

Malashetty and 
Swamy [25] 

Abidin et al., [24] 

Free- free Free-free Rigid-free Rigid-rigid 

10 54.53 54.54 58.18 324.14 
25 86.60 86.60 90.24 394.73 
50 136.20 136.20 140.00 477.92 
100 229.18 229.18 233.33 629.81 

 

In addition, Abidin et al., [24], in a comparison with Nield and Kuznetsov [4] found that the 
temperature-dependent viscosity destabilized for every wavenumber as 𝐵 increased. The 
comparisons of the critical Rayleigh number, 𝑅𝑎, with that of Neild and Kuznetsov [4] for various 
values of temperature-dependent viscosity, 𝐵, can be seen in Table 2 where it is also similar to Table 
1, where the most stable system was the rigid-rigid boundary, followed by the rigid-free and free-
free boundaries.   
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Table 2 
The comparisons of critical values of Rayleigh number, 𝑅𝑎 between 
Neild and Kuznetsov [1] and Abidin et al., [24] for different values of 
temperature dependent viscosity, 𝐵  

Lower-upper  
boundaries 

Neild and  
Kuznetsov [4] 

Abidin et al.,  
[24] 

𝐵 = 0  𝐵 = 0  𝐵 = 1  𝐵 = 2  𝐵 = 3  

Free-free  657.5 657.53  612.90  474.54  201.92  
Rigid-free  1140 1138.71  1006.14  769.47  393.70  
Rigid-rigid  1750 1749.98  1704.40  1567.16  1338.41  

 
In this study, using the same validity comparison results, we extend the finding by setting the 

upper boundary to be either conducting or insulating to temperature. Figure 1 shows the comparison 
for different velocity conditions where the lower-upper boundaries were set to be free-free, rigid-
free and rigid-rigid. It shows that rigid-rigid boundaries are more stable compared to the rigid-free 
and free-free boundaries for both conducting and insulating case.  

 

 
Fig. 1. Marginal stability curves for 
different upper boundary conditions 

 
The stability of the Rayleigh-Benard convection in double-diffusive binary fluid with temperature-

dependent viscosity, 𝐵 is considered to analyze this effect in a double-diffusive binary fluid layer 
saturated in a porous layer.  Figure 2 shows the result of marginal stability with different values of 𝐵 
on conducting case. It can be seen that the line stability curve shift to downward as the value of 
temperature dependent viscosity, B increase for free-free, rigid-free and rigid-rigid boundaries.   
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Fig. 2. Marginal stability curves for 
Conducting case with different 𝐵 

 
The insulating case shown in Figure 3, shows a similar result where the marginal stability curves 

shifts downward as 𝐵 is increases and the rigid-rigid boundary is the most stable system compared 
to the free-free boundary, as shown by the increasing critical Rayleigh number. The critical Rayleigh 

number, Rac obtained is shown clearly in Table 3. Here, the values are set  = 0.5,  = 0.3, 𝐿𝑒 = 5,  
𝑅𝑠 =10, 𝑆𝑟 = 0.005, and 𝐷𝑓 = 0.005. The table also convey that conducting cases are more stable 
compared to insulating cases as the value in conducting cases exhibit a lower critical Rayleigh 
number, Rac.  

 

 
Fig. 3. Marginal stability curves for 
Insulating case with different 𝐵 

 
Table 3 
The comparisons of critical values of Rayleigh number, 𝑅𝑎c for 
different values of temperature dependent viscosity, 𝐵  
Lower-upper  
boundaries 

Conducting Insulating 

𝐵 = 0.1 𝐵 = 0.5 𝐵 = 0.9 𝐵 = 0.1 𝐵 = 0.5 𝐵 = 0.9 

Free-free  120.43 112.06 82.12 117.17 111.07 93.06 
Rigid-free  242.11 223.16 176.55 246.84 234.62 203.78 
Rigid-rigid  461.28 442.95 383.72 572.07 554.95 514.37 
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4. Conclusions 

 
A comprehensive study of the temperature dependence of Rayleigh-Benard convection in a 

binary fluid-saturated anisotropic porous layer has been conducted. The present of double-diffusive 
convection is greatly influenced by the existence of temperature-dependent viscosity, or 𝐵 where an 
increase of B will progress the onset of double-diffusive convection. From the analysis, it can be seen 
that the rigid-rigid system is the most stable boundary condition when compared to the free-free and 
rigid-free borders. This result emphasizes how important viscosity variations and boundary 
conditions are in controlling the stability and behavior of convective patterns in these kinds of 
systems. 
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