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ABSTRACT 

This study develops a mathematical model to address solute dispersion in arterial blood flow, particularly considering the effects of 
temperature and electric fields using the Casson fluid model. Given the physiological importance of drug delivery within the human 
vascular system, understanding these dynamics is crucial, especially in the presence of cardiovascular diseases (CVD). The 
Generalized Dispersion Model (GDM) is employed to simulate the dispersion function. Results demonstrate that elevated 
temperatures and electric fields enhance drug uptake and distribution by increasing blood flow. The model accurately predicts drug 
behavior in narrowed arteries, optimizing dosage regimens and improving therapeutic outcomes. Visual representations and 
detailed discussions of these findings are presented in the subsequent sections. The results are validated against a previous study 
that did not consider the effects of stenosis height, temperature and electric field. The findings suggest a strong agreement between 
the two studies. Additionally, an increase in mean absorption leads to an increase in velocity. When mean absorption increases, the 
functions of steady dispersion and overall dispersion decrease, while the function of unsteady dispersion increases. The reverse 
behavior is observed for the electric field. The study concludes that integrating temperature and electric field effects into drug 
delivery systems can significantly enhance treatment efficacy and reduce side effects, providing a valuable tool for advanced 
targeted therapies in CVD and cancer management. 
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1. Introduction 
 

The circulatory system, comprising the heart, blood vessels, and blood, is fundamental in 
maintaining the body's homeostasis by ensuring the continuous flow of blood, which delivers oxygen 
and nutrients to tissues while removing waste products is taken from [1]. However, the presence of 
stenosis, or the narrowing of blood vessels, can significantly impede this flow. Stenosis often results 
from the buildup of plaque in the arteries, a condition known as atherosclerosis is taken from [2]. 
This reduced blood flow can lead to CVD, such as coronary artery disease, heart attacks, and strokes 
is taken from [3]. Additionally, chronic cardiovascular conditions may create an environment that 
promotes cancer development. For instance, the hypoxic (low oxygen) conditions due to impaired 
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blood flow can contribute to tumor growth and metastasis. The interplay between CVD and cancer 
underscores the complexity of these diseases and highlights the importance of maintaining vascular 
health to prevent a cascade of adverse health outcomes. 

Temperature is one of the effects that causes the development of cancer. The relationship 
between temperature, blood flow, and cancer is intricate and impactful. The body maintains its core 
temperature around 37°C (98.6°F) through mechanisms such as vasodilation and vasoconstriction, 
which regulate blood flow to either dissipate or retain heat is taken from [4]. Blood flow regulates 
body temperature, distributing heat throughout the body via circulation, which in turn affects cellular 
metabolism and overall physiological functions is taken from [5]. In cancer, abnormal blood vessel 
formation and altered flow patterns can cause localized temperature variations within tumors, 
known as tumor thermal heterogeneity, influencing diagnosis and treatment monitoring using 
thermal imaging and thermography. Furthermore, blood flow is crucial for drug delivery in cancer 
therapy, where adequate perfusion is essential for transporting therapeutic agents to tumor sites. 
Challenges arise from irregular blood flow, limiting drug penetration and efficacy, prompting 
research into strategies like enhancing vascular perfusion or employing hyperthermia to optimize 
drug uptake and treatment outcomes. Understanding these interdependencies is critical for 
advancing targeted therapies and improving cancer management strategies. 

Besides, the relationship between electric fields and cancer involves various mechanisms, 
including their potential use in drug delivery and their influence on blood flow. Electric fields can be 
applied externally or internally to modulate cellular functions, such as enhancing drug uptake into 
cancer cells through electroporation or triggering apoptosis. In drug delivery, electric fields can help 
nanoparticles or drugs traverse cellular barriers more efficiently, targeting specific cancerous tissues 
while minimizing systemic side effects. Additionally, electric fields can affect blood flow by 
influencing vascular permeability and altering blood vessel functions, potentially impacting tumor 
growth and metastasis. The interaction between electric field and blood's biological components has 
the potential to be critical from a variety of perspectives, including understanding the biophysics 
under sick situations and rapid illness diagnoses is taken from [6]. Research into the therapeutic and 
physiological effects of electric fields continues to explore their role in cancer treatment strategies 
and their interaction with the circulatory system to improve therapeutic outcomes.  

This research is differed in that it models solute dispersion within blood flow through stenosed 
arteries by combining influences of temperature and electric field. Temperature and electric fields 
significantly impact drug delivery, particularly in the context of CVD and blood flow dynamics. 
Elevated temperatures can increase blood flow and vessel permeability, enhancing drug dispersion 
and uptake by tissues. Electric fields, similarly, can facilitate targeted drug delivery by altering cell 
membrane permeability and aiding in the precise placement of therapeutic agents. In the presence 
of CVD, the behavior of blood, often modeled as a Casson fluid, changes due to altered viscosity and 
shear rates in narrowed or obstructed arteries. These changes affect the way drugs are dispersed and 
interact with the vascular walls. Shear rates, which describe the deformation of blood flow, are 
particularly important in CVD, as they influence the adhesion of drugs to vessel walls and their 
subsequent absorption. Understanding the interplay between temperature and electric fields in 
blood flow is crucial in medical research and bioengineering for optimizing drug delivery systems, 
ensuring effective treatment, and minimizing side effects in patients with cardiovascular conditions. 

A non-Newtonian fluid with yield stress, such as the Casson fluid model, is valuable for simulating 
blood flow in narrow arteries. The Casson fluid model is particularly effective due to its shear-thinning 
behavior at infinite shear rates, infinite yield stress, and zero viscosity. Blair [7] demonstrated that 
blood's fundamental shear behavior in small arteries aligns well with the Casson fluid model. Casson 
[8] further assessed this model's suitability, finding that blood exhibits a nonzero yield stress at low 
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shear rates. According to Merrill et al., [9], the Casson fluid model accurately predicts blood flow 
characteristics in tubes with varying diameters of 130 − 1000𝜇𝑚. Murugan et al., [10] analyzed the 
unsteady dispersion of solute in pulsatile flow of electro-magneto-hydrodynamic fluid in a tube 
packed with a porous medium using the Casson fluid model. An unsteady convective-diffusion 
equation was applied in their study. Noranuar et al., [11] investigated the analytical simulation of 
magnetohydrodynamic Casson blood flow with CNTs in a channel under atherosclerotic conditions. 
Azmi et al., [12] analyzed the effects of porosity and slip velocity on MHD pulsatile Casson fluid flow 
in a cylinder. 

Understanding drug delivery is crucial for developing effective treatments, minimizing side 
effects, and ensuring that therapeutic agents reach their intended targets within the body. This is 
especially important for treating illnesses like cancer, when it's crucial to precisely target 
chemotherapy medications to the tumor cells in order to maximize treatment effectiveness and 
reduce harm to healthy organs. Obstacles like the blood-brain barrier, which restricts medication 
distribution to the brain, highlight the need for creative delivery techniques that can get beyond 
biological barriers and distribute therapeutic agents to the precise locations where they are most 
required. Improving patient outcomes like side effects and reducing pain for a variety of diseases and 
developing new medical treatments depend on addressing these issues through sophisticated 
mathematical modeling and customized medication delivery technology. Mathematical modeling 
plays a pivotal role in this process by applying the GDM and the convective diffusion equation to 
predict drug dispersion and interactions within tissues.  

The GDM accounts for the spread of drug particles considering molecular diffusion and blood 
flow, while the convective diffusion equation describes drug transport due to diffusion and blood 
convection. These models are particularly relevant in CVD, where blood behaves as a Casson fluid 
with altered viscosity and shear rates in narrowed arteries, affecting drug dispersion and absorption. 
By simulating various physiological conditions, mathematical models help optimize dosage regimens, 
improve drug targeting, and enhance therapeutic outcomes. This predictive capability is vital for 
refining drug delivery systems to ensure medications effectively reach diseased tissues, thereby 
improving treatment efficacy and reducing adverse effects. 

GDM plays a crucial role in describing the mechanisms of dispersion in microvascular blood flow. 
Early work by Taylor [13] and Aris [14] pioneered the understanding of solvent dispersion 
phenomena. Taylor [13] specifically examined solute dispersion in a straight tube with consistent 
laminar flow, considering variations in cross-sectional velocity and molecular diffusion. Concurrently, 
Gill and Sankarasubramanian [15] applied the moment approach to quantify effective dispersion 
coefficients under pulsatile flow conditions. They later proposed the GDM is taken from [16] to study 
solute dispersion, exploring factors like exchange, convection, and scattering in the presence of wall 
reactions. Zaperi and Jaafar [17] examined dispersion of solute in blood flow under the influence of 
an electric field through an artery, employing the Casson fluid model in conjunction with the GDM. 
Zaperi and Jaafar [18] also analyzed the dispersion of solute in blood flow under the influence of a 
magnetic field through a stenosed artery, using the Casson fluid model in conjunction with the GDM.  

The literature review highlights the limited research on the dispersion of solutes in arterial blood 
flow, particularly regarding the effects of temperature and electric fields using the Casson fluid 
model. This gap is critical due to its physiological importance for drug delivery within the human 
vascular system. Consequently, this study aims to develop a mathematical model for the dispersion 
of solutes in arterial blood flow, incorporating the effects of temperature and electric fields. The 
research employs the Casson fluid model in conjunction with the GDM to address this gap. In order 
to improve patient medical treatment and advance biomedical engineering, mathematical modeling 
is essential for interpreting the complex dynamics of blood flow in artery stenosis. This study aims to 
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address a critical gap in existing models, which frequently oversimplify or ignore the complex 
interactions between temperature and electric fields. This study aims to provide new computational 
methodologies in biomedical research and to improve the understanding of physiological fluid 
dynamics among academics by providing new mathematical insights into these processes. The 
following sections present visual representations of the findings and related discussions. 
 
2. Methodology  
2.1 Mathematical Formulation 

 

The blood flow is measured using the system of polar cylindrical coordinates ( ), ,r z , where the 

radial and axial coordinates designated by �̅� and 𝑧̅ respectively and the azimuthal angle denoted by 
 . Figure 1 shows the geometry of pipe flow with the influence of electric field for Casson fluid model 

where �̅�𝑧 is electric field, �̅� is the velocity of fluid flow, 𝛿̅ is height of stenosis, �̅�𝑝 is the radius of the 

plug region in circular pipe, 𝑅0 is the radius of artery and �̅� is the length of conduit. 
 

 
Fig. 1. The geometry of pipe flow with the influence of electric field 
for Casson fluid model  

 
2.2 Governing Equations 

 
The improved model incorporates complex multiphysics interactions brought about by applied 

temperature and electric fields in addition to fluid dynamics. By examining the way of temperature 
and electric fields alter blood flow behavior within stenosed arteries, this novel approach goes 
beyond traditional fluid mechanics investigations. Thus, the momentum equation with temperature 
and electric field for steady flow by Tiwari et al., [19] is given as follows 

 
�̅��̅�

𝑟

𝑑

𝑑�̅�
(�̅�𝜏̅) + �̅��̅��̅�(�̅� − �̅�∞) − 𝜎�̅�𝜌𝑒�̅�𝑧 −

𝑑�̅�∗

𝑑�̅�
= 0,         (1) 

 
where �̅�∗, �̅�, �̅�, �̅�, �̅�, �̅�, �̅�∞, 𝜎, 𝜌𝑒 and �̅�𝑧 represent the fluid pressure, fluid density, temperature-
dependent viscosity, acceleration due to gravity, absorption ratio, temperature, equilibrium 
temperature, electrical conductivity, and fluid density in an electric field and electric field, 
respectively. The boundary condition for momentum equation in Eq. (1) is given as 
 
𝜏̅ = finite at �̅� = 0.             (2) 

 

Casson fluid model 

Outer flow 

region Plug flow 

Outer flow 

region 
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According to Tiwari et al., [19], the following is the energy equation that affect the flow 
 

�̅� (
𝜕2�̅�

𝜕�̅�2 +
1

�̅�

𝜕�̅�

𝜕�̅�
) + �̅� = 0,            (3) 

 
where �̅� is the thermal conductivity and �̅� is the constant heat absorption. According to Tiwari et al., 
[19], the boundary condition of temperature in Eq. (3) is given as follows 
 
𝑑�̅�

𝑑�̅�
= 0 at �̅� = �̅�(𝑧̅)             (4) 

 
and  
 
�̅� = �̅�𝑤 at �̅� = �̅�(𝑧̅).             (5) 
 

In this study, new development in Casson blood flow mathematical modeling is presented by 
including more advanced temperature-dependent viscosity profiles in the constitutive of Casson 
fluid as defined as follows 

 

−
𝑑𝑢

𝑑�̅�
= {

1

�̅�(�̅�)
(√𝜏̅ − √𝜏�̅�)

2
 if 𝜏̅ > 𝜏�̅�,

0                                  if 𝜏̅ < 𝜏�̅�,
          (6) 

 
where 
 

�̅�(�̅�) = �̅�𝑒
−𝛼(

�̅�−�̅�∞

�̅�𝑤−�̅�∞
̅̅ ̅̅ ̅)

,             (7) 
 
where �̅�, 𝛼(≪ 1), 𝜏�̅�, �̅� and �̅�𝑤 are the viscosity coefficient of Casson fluid model, viscosity parameter 

index, yield stress, axial velocity of the fluid flow, and temperature of vessel wall. According to Verma 
et al., [20], the slip boundary condition of constitutive equation is given as 
 
�̅� = �̅�𝑠 at �̅�(𝑧̅),             (8) 
 
where 
 

�̅�(𝑧̅) = 𝑅0 (1 −
�̅�

𝑅0
𝑒

(−
�̅�2�̅�2�̅�2

𝑅0
2 )

),           (9) 

 

where �̅�(𝑧̅) is the radius of the stenosed segment, 𝛿̅ is the height of stenosis at the middle point and 

�̅� is the parametric constant and radius, 𝜀̅ = 𝑅0 �̅�0.⁄  Consider the geometry of stenosis in Eq. (9) as 
follows 
 
�̅�(�̅�)

𝑅0
= 1 − 𝑎𝑒−𝑏𝑧2

,                       (10) 

 

where 𝑎 = 𝛿̅ 𝑅0⁄  and 𝑏 = �̅�2𝜀̅2 𝑅0
2⁄ . Non-dimensional for Eq. (10) as below 

𝑅(𝑧) = 1 − 𝑎1𝑒(−𝑏1𝑧2),                      (11) 
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where 𝑎1 = 𝛿 and 𝑏1 = 𝑏𝑅0
2. The mean velocity is stated as follows 

 

�̅�𝑚 =
2

�̅�2(𝑧)
(∫ �̅�(�̅�𝑝)�̅�𝑑�̅� +

�̅�𝑝

0
∫ �̅�(�̅�)�̅�𝑑�̅�

�̅�(�̅�)

�̅�𝑝
).                    (12) 

 
The general of unsteady convective-diffusion equation in cylindrical coordinate systems is given 

by 
 

𝜕�̅�

𝜕�̅�
= −�̅�𝑧

𝜕�̅�

𝜕�̅�∗ + �̅�𝑚 (
1

�̅�

𝜕

𝜕�̅�
(�̅�

𝜕�̅�

𝜕�̅�
) +

𝜕2�̅�

𝜕�̅�∗2),                    (13) 

 
where 𝐶̅ is the concentration of the solute as a function of �̅� (radial coordinate for circular pipe), 𝑡̅ is 
the time, �̅�𝑧 is the velocity in 𝑧̅ direction and �̅�𝑚 is the molecular diffusivity. Simplify Eq. (13), it yields 
 
𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�∗ = �̅�𝑚 (ℓ2 +
𝜕2

𝜕�̅�∗2) 𝐶̅,                     (14) 

 
where 
 

ℓ2 =
1

�̅�

𝜕

𝜕�̅�
(�̅�

𝜕

𝜕�̅�
).                       (15) 

 
The initial condition of convective diffusion coefficient is given by Gill and Sankarasubramanian [16] 
 

𝐶̅(�̅�, 𝑧̅, 0) = {
𝐶0 if |𝑧̅| ≤

�̅�𝑠

2
,

0 if |𝑧̅| >
�̅�𝑠

2
,
                      (16) 

 
where 𝐶0 is the concentration referenced and 𝑧�̅� is the length of solute. The boundary condition 
following Gill and Sankarasubramanian [16] is 
 
𝐶̅(�̅�, ∞, 𝑡̅) = 0,                       (17) 
 
the boundary condition of symmetry at the central circular pipe �̅� = 0 is 
 
𝜕�̅�

𝜕�̅�
(0, 𝑧̅, 𝑡)̅ = 0                        (18) 

 
and the boundary condition of the solute concentration gradient at the wall �̅� = �̅�(�̅�) is given by 
 
𝜕�̅�

𝜕�̅�
(�̅�(𝑧̅), 𝑧̅, 𝑡̅) = 0.                       (19) 

 
2.3 Non-Dimensional Variables 
 

𝑟 =
�̅�

𝑅0
, 𝜏 =

𝜏̅𝑅0

�̅�𝑢0
, 𝑝 =

�̅��̅�𝑢0

𝑅0
, 𝑧 =

𝑧̅

𝑅0
, 𝑢 =

�̅�

𝑢0

, 𝜏𝑦 =
𝜏�̅�𝑅0

�̅�𝑢0
, 𝑢𝑠 =

�̅�𝑠

𝑢0
, 𝑅(𝑧) =

�̅�(�̅�)

𝑅0
, 𝑟𝑝 =

�̅�𝑝

𝑅0
, 

𝛾 =
�̅�𝑅0

2

�̅�(�̅�𝑤 − �̅�∞)
, 𝑧𝑠 =

�̅�𝑚𝑧�̅�

�̅�2𝑢0
, 𝑡 =

�̅�𝑚�̅�

�̅�2
, 𝜃 =

�̅� − �̅�∞

�̅�𝑤 − �̅�∞

, 𝐺𝑟 =
�̅��̅�𝛾𝑅0

2(�̅�𝑤 − �̅�∞)

𝑢0�̅�
, 𝐶 =

𝐶̅

𝐶0
, 
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𝑧∗ =
�̅�𝑚�̅�∗

�̅�2𝑢0
, 𝐻 =

�̅�

𝐻0
,                       (20) 

 
where 𝜏, 𝑝, 𝑢0, 𝑟, 𝑧∗, 𝑢, 𝑅0, 𝑧, 𝐶, 𝑧𝑠, 𝜏𝑦, 𝑢𝑠 , 𝑅(𝑧), 𝑟𝑝, 𝛾, 𝜃, 𝑡 and 𝐺𝑟 are shear stress, pressure gradient, 

fluid characteristic velocity, radial coordinate, radial direction for convective diffusion equation, 
velocity, the radius of artery in outer region, radial direction, concentration of solute, solute length, 
yield stress, slip velocity, stenosed radius respectively in non-dimensional variables, radius of artery 
in plug flow region, mean absorption coefficients, temperature in outer flow region, time and Grashof 
number. 
 
2.4 Method of Solution 

 
By using non-dimensional variables of Eq. (20) into Eq. (1), the momentum equation with 

temperature and electric field with respect to 𝑟 is given as follows 
 

𝐴1

𝑟

𝑑

𝑑𝑟
(𝑟𝜏) + 𝐺𝑟𝜃 + 𝜎𝜌𝜌𝑒𝜀𝐸𝑧 + 𝑃 = 0,                    (21) 

 
where 𝐴1 = 𝜌𝜇2𝑢0 𝑅0

2.⁄  By substituting Eq. (20) into Eq. (3), non-dimensional of energy equation in 
Eq. (3) is given as follows 
 
𝑑2𝜃

𝑑𝑟2 +
1

𝑟

𝑑𝜃

𝑑𝑟
+ 𝛾 = 0                       (22) 

 
and by substituting Eq. (20) into Eq. (6), non-dimensional for constitutive equation of Casson fluid in 
Eq. (6) is given as follows 
 

−
𝑑𝑢

𝑑𝑟
= 𝜏 + 𝜏𝑦 − 2√𝜏√𝜏𝑦.                      (23) 

 
Substitute Eq. (20) into boundary conditions in Eq. (4) and (5). It shown as follows 
 
𝑑𝜃

𝑑𝑟
= 0 at 𝑟 = 𝑅(𝑧)                       (24) 

 
and 
 
𝜃 = 1 at 𝑟 = 𝑅(𝑧).                       (25) 
 
Ordinary differential equation (ODE) in Eq. (22) is solved using linear differential equation. Apply Eq. 
(24) and (25) into Eq. (22). It is given as follows 
 

𝜃 =
𝛾𝑟2

4
+ 1 −

𝛾𝑅𝑧
2

4
.                       (26) 

 
Substituting Eq. (26) into Eq. (21) is given as follows 
 
𝐴1

𝑟

𝑑

𝑑𝑟
(𝑟𝜏) + 𝐺𝑟 (

𝛾𝑟2

4
+ 1 −

𝛾𝑅𝑧
2

4
) + 𝜎𝜌𝜌𝑒𝜀𝐸𝑧 + 𝑃 = 0.                  (27) 

 
Integrating Eq. (27) with respect to r , it yields 
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𝜏 = −
𝐺𝑟𝛾𝑟3

16𝐴1
−

𝑟𝐺𝑟

2𝐴1
+

𝑟𝐺𝑟𝛾𝑅𝑧
2

8𝐴1
−

𝜎𝜌𝜌𝑒𝜀𝐸𝑧𝑟

2𝐴1
−

𝑟𝑃

2𝐴1
+ 𝐶.                   (28) 

 
By substituting Eq. (20) into Eq. (2), the non-dimensional boundary condition of momentum equation 
yield 
 
𝜏 = finite at 𝑟 = 0.                       (29) 
 
Substituting Eq. (29) into Eq. (28), it yields 
 

𝜏 = −
𝐺𝑟𝛾𝑟3

16𝐴1
−

𝑟𝐺𝑟

2𝐴1
+

𝑟𝐺𝑟𝛾𝑅𝑧
2

8𝐴1
−

𝜎𝜌𝜌𝑒𝜀𝐸𝑧𝑟

2𝐴1
−

𝑟𝑃

2𝐴1
.                    (30) 

 
Substituting 𝑟 = 𝑟𝑝 and 𝜏 = 𝜏𝑦 into Eq. (30). The expression for the yield stress is given as follows: 

 

𝜏𝑦 = −
𝐺𝑟𝛾𝑟𝑝

3

16𝐴1
−

𝑟𝑝𝐺𝑟

2𝐴1
+

𝑟𝑝𝐺𝑟𝛾𝑅𝑧
2

8𝐴1
−

𝜎𝜌𝜌𝑒𝜀𝐸𝑧𝑟𝑝

2𝐴1
−

𝑟𝑝𝑃

2𝐴1
.                   (31) 

 
Substituting Eq. (30) and (31) into Eq. (23), it forms 
 

−
𝑑𝑢

𝑑𝑟
= (−

𝐺𝑟𝛾𝑟3

16𝐴1
−

𝑟𝐺𝑟

2𝐴1
+

𝑟𝐺𝑟𝛾𝑅𝑧
2

8𝐴1
−

𝜎𝜌𝜌𝑒𝜀𝐸𝑧𝑟

2𝐴1
−

𝑟𝑃

2𝐴1
) + (−

𝐺𝑟𝛾𝑟𝑝
3

16𝐴1
−

𝑟𝑝𝐺𝑟

2𝐴1
+

𝑟𝑝𝐺𝑟𝛾𝑅𝑧
2

8𝐴1
−

𝜎𝜌𝜌𝑒𝜀𝐸𝑧𝑟𝑝

2𝐴1
−

𝑟𝑝𝑃

2𝐴1
) −

2√−
𝐺𝑟𝛾𝑟3

16𝐴1
−

𝑟𝐺𝑟

2𝐴1
+

𝑟𝐺𝑟𝛾𝑅𝑧
2

8𝐴1
−

𝜎𝜌𝜌𝑒𝜀𝐸𝑧𝑟

2𝐴1
−

𝑟𝑃

2𝐴1
√−

𝐺𝑟𝛾𝑟𝑝
3

16𝐴1
−

𝑟𝑝𝐺𝑟

2𝐴1
+

𝑟𝑝𝐺𝑟𝛾𝑅𝑧
2

8𝐴1
−

𝜎𝜌𝜌𝑒𝜀𝐸𝑧𝑟𝑝

2𝐴1
−

𝑟𝑝𝑃

2𝐴1
.              (32) 

 
Simplify Eq. (32), it becomes 
 

−
𝑑𝑢

𝑑𝑟
= (

𝑟

2
+

𝑟𝑝

2
) (−

𝐺𝑟

𝐴1
+

𝐺𝑟𝛾𝑅𝑧
2

4𝐴1
−

𝜎𝜌𝜌𝑒𝜀𝐸𝑧

𝐴1
−

𝑃

𝐴1
) + (

𝑟3

2
+

𝑟𝑝
3

2
) (−

𝐺𝑟𝛾

8𝐴1
) 

−2√
𝑟

2
(−

𝐺𝑟

𝐴1
+

𝐺𝑟𝛾𝑅𝑧
2

4𝐴1
−

𝜎𝜌𝜌𝑒𝜀𝐸𝑧

𝐴1
−

𝑃

𝐴1
) +

𝑟3

2
(−

𝐺𝑟𝛾

8𝐴1
) 

√
𝑟𝑝

2
(−

𝐺𝑟

𝐴1
+

𝐺𝑟𝛾𝑅𝑧
2

4𝐴1
−

𝜎𝜌𝜌𝑒𝜀𝐸𝑧

𝐴1
−

𝑃

𝐴1
) +

𝑟𝑝
3

2
(−

𝐺𝑟𝛾

8𝐴1
).                                   (33) 

 
Understanding the complexity of Casson models in explaining non-Newtonian blood flow via 
stenosed arteries and the influence of temperature and electric fields, this work employs the 
binomial expansion technique. The Casson equation's complex nonlinear terms can be approximated 
with this method, which improves computational feasibility and speeds up integration without 
compromising accuracy. Thus, applying binomial equation in Eq. (33) and integrate Eq. (33) with 
respect to 𝑟, it forms 
 

𝑢(𝑟) =
𝐴𝑟2

4
+

𝐵𝑟4

8
+

𝐴𝑟𝑟𝑝

2
+

𝐵𝑟𝑟𝑝
3

2
−

2𝑟√𝐴𝑟√𝑟𝑝(𝐴 + 𝐵𝑟𝑝
2)

3
−

𝐵𝑟3√𝐴𝑟√𝑟𝑝(𝐴 + 𝐵𝑟𝑝
2)

7𝐴
 

+
𝐵2𝑟5√𝐴𝑟√𝑟𝑝(𝐴 + 𝐵𝑟𝑝

2)

44𝐴2
−

𝐴𝑟𝑝𝑅𝑧

2
−

𝐵𝑟𝑝
3𝑅𝑧

2
−

𝐴𝑅𝑧
2

4
−

𝐵𝑅𝑧
4

8
+

2√𝑟𝑝(𝐴 + 𝐵𝑟𝑝
2)𝑅𝑧√𝐴𝑅𝑧

3
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+
𝐵√𝑟𝑝(𝐴+𝐵𝑟𝑝

2)𝑅𝑧
3√𝐴𝑅𝑧

7𝐴
−

𝐵2√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)𝑅𝑧

5√𝐴𝑅𝑧

44𝐴2 .                                (34) 

 

where 𝐴 = −
𝐺𝑟

𝐴1
+

𝐺𝑟𝛾𝑅𝑧
2

4𝐴1
−

𝜎𝜌𝜌𝑒𝜀𝐸𝑧

𝐴1
−

𝑃

𝐴1
 and 𝐵 = −

𝐺𝑟𝛾

8𝐴1
. By evaluating 𝑟 = 𝑟𝑝 into Eq. (34), the non-

dimensional of velocity of fluid in the plug flow region yield 
 

𝑢(𝑟𝑝) =
𝐴𝑟𝑝

2

4
+

𝐵𝑟𝑝
4

8
+

𝐴𝑟𝑝
2

2
+

𝐵𝑟𝑝
4

2
−

2𝑟𝑝√𝐴𝑟𝑝√𝑟𝑝(𝐴 + 𝐵𝑟𝑝
2)

3
−

𝐵𝑟𝑝
3√𝐴𝑟𝑝√𝑟𝑝(𝐴 + 𝐵𝑟𝑝

2)

7𝐴
 

+
𝐵2𝑟𝑝

5√𝐴𝑟𝑝√𝑟𝑝(𝐴 + 𝐵𝑟𝑝
2)

44𝐴2
−

𝐴𝑟𝑝𝑅𝑧

2
−

𝐵𝑟𝑝
3𝑅𝑧

2
−

𝐴𝑅𝑧
2

4
−

𝐵𝑅𝑧
4

8
+

2√𝑟𝑝(𝐴 + 𝐵𝑟𝑝
2)𝑅𝑧√𝐴𝑅𝑧

3
 

+
𝐵√𝑟𝑝(𝐴+𝐵𝑟𝑝

2)𝑅𝑧
3√𝐴𝑅𝑧

7𝐴
−

𝐵2√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)𝑅𝑧

5√𝐴𝑅𝑧

44𝐴2 .                                (35)  

 
Substituting Eq. (20) into Eq. (12), the non-dimensional of mean velocity in Eq. (12) yield 
 

𝑢𝑚 =
2

𝑅𝑧
2 (∫ 𝑢(𝑟𝑝)𝑟𝑑𝑟 +

𝑟𝑝

0
∫ 𝑢(𝑟)𝑟𝑑𝑟

𝑅𝑧

𝑟𝑝
)                                (36) 

 
and Eq. (36) has been obtained by using integral method. It yields 
 

𝑢𝑚 =
2

𝑅𝑧
2 [−

𝐵√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)𝑅𝑧

6

22√𝐴𝑅𝑧
+

𝐵2√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)𝑅𝑧

7√𝐴𝑅𝑧

120𝐴2
+

𝐴𝑅𝑧
3(4𝑟𝑝+3𝑅𝑧)

48
+

𝑟𝑝

2
(−

3𝐴𝑟𝑝
2

4
−

5𝐵𝑟𝑝
4

8
+

2𝑟𝑝√𝐴𝑟𝑝√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)

3
+

𝐵𝑟𝑝
3

√𝐴𝑟𝑝√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)

7𝐴
−

𝐵2𝑟𝑝
5

√𝐴𝑟𝑝√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)

44𝐴2 +
𝐴𝑟𝑝𝑅𝑧

2
+

𝐵𝑟𝑝
3𝑅𝑧

2
+

𝐴𝑅𝑧
2

4
+

𝐵𝑅𝑧
4

8
−

2√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)𝑅𝑧√𝐴𝑅𝑧

3
+ 𝑅𝑧√𝐴𝑅𝑧 −

𝐵√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)𝑅𝑧

3√𝐴𝑅𝑧

7𝐴
+

𝐵2√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)𝑅𝑧

5√𝐴𝑅𝑧

44𝐴2 + 𝑢𝑠) +

𝑅𝑧
2

168
[−24√𝑟𝑝(𝐴 + 𝐵𝑟𝑝

2)𝑅𝑧√𝐴𝑅𝑧 + 7𝐵(2𝑟𝑝
3𝑅𝑧 + 𝑅𝑧

4) + 84𝑢𝑠] +
𝑟𝑝

2

18480𝐴2
(385𝐴3[11𝑟𝑝

2 − 12𝑟𝑝𝑅𝑧 −

6𝑅𝑧
2] − 120𝐴𝐵√𝑟𝑝(𝐴 + 𝐵𝑟𝑝

2)[4𝑟𝑝
3√𝐴𝑟𝑝 − 11𝑅𝑧

3√𝐴𝑅𝑧] + 14𝐵2√𝑟𝑝(𝐴 + 𝐵𝑟𝑝
2)(4𝑟𝑝

5√𝐴𝑟𝑝 −

15𝑅𝑧
5√𝐴𝑅𝑧) − 55𝐴2 [21𝐵(−3𝑟𝑝

4 + 4𝑟𝑝
3𝑅𝑧 + 𝑅𝑧

4) + 8 (8𝑟𝑝√𝐴𝑟𝑝√𝑟𝑝(𝐴 + 𝐵𝑟𝑝
2) −

14√𝑟𝑝(𝐴 + 𝐵𝑟𝑝
2)𝑅𝑧√𝐴𝑅𝑧 + 21𝑢𝑠)])]                    (37) 

 
By applying Eq. (20) into Eq. (14), it is simplified as follows 
 
𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑧∗ = (ℓ2 +
1

𝑃𝑒2

𝜕2

𝜕𝑧∗2) 𝐶,                     (38) 

 
where  
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𝑃𝑒 =
𝑅0𝑢0

𝐷𝑚
.                        (39) 

 
The Peclet number, 𝑃𝑒 for the flow in a circular pipe is provided by Dash et al., [21]. The method 
proposed by Gill and Sankarasubramanian [16] is used, and the solution of Eq. (38) is assumed to be 

a derivative series expansion involving 𝜕𝑖𝐶𝑚 𝜕𝑧𝑧
𝑖 .⁄  The following is the demonstration 

 

𝐶(𝑟, 𝑧, 𝑡) = 𝐶𝑚(𝑧1, 𝑡) + ∑ 𝑓𝑖(𝑟, 𝑡)
𝜕𝑖𝐶𝑚(𝑧1,𝑡)

𝜕𝑧1
𝑖 ,∞

𝑖=1                    (40) 

 
where 𝐶𝑚 and 𝑓𝑖(𝑟, 𝑡) are the mean concentration of the solute over a cross-sectional area of the 

geometry, is the dispersion function associated with 𝜕𝑖𝐶𝑚 𝜕𝑧𝑧
𝑖 .⁄  By substituting Eq. (20) into Eq. (16) 

– (19), the non-dimensional of initial and boundary conditions of convective-diffusion equation are 
obtained as 
 

𝐶(𝑟, 𝑧, 0) = {
1 if |𝑧| ≤

𝑧𝑠

2
,

0 if |𝑧| >
𝑧𝑠

2
,
                      (41) 

 
𝐶(𝑟, ∞, 𝑡) = 0,                       (42) 
 
𝜕𝐶

𝜕𝑟
(0, 𝑧, 𝑡) = 0,                       (43) 

 
and 
 
𝜕𝐶

𝜕𝑟
(𝑅(𝑧), 𝑧, 𝑡) = 0.                       (44) 

 
GDM is a derivative series expansion the approach of Gill and Sankarasubramanian [16] which given 
as  
 
𝜕𝐶𝑚

𝜕𝑡
(𝑧1, 𝑡) = ∑ 𝐾𝑖(𝑡)

𝜕𝑖𝐶𝑚

𝜕𝑧𝑧
𝑖 (𝑧1, 𝑡).∞

𝑖=1                      (45) 

 
where 𝐾𝑖(𝑡) is the transport coefficient given by 
 

𝐾𝑖(𝑡) =
𝛿𝑖2

𝜕𝑡
+ 2

𝜕𝑓𝑖

𝜕𝑟
(1, 𝑡) − 2 ∫ 𝑓𝑖−1(𝑟, 𝑡)𝑢(𝑟)𝑟𝑑𝑟, 𝑖 = 1,2,3, … .

𝑅(𝑧)

0
                 (46) 

 
The effective axial diffusivity. 𝛿𝑖𝑗 is given by 

 

𝛿𝑖𝑗 = {
0 if 𝑖 ≠ 𝑗,
1 if 𝑖 = 𝑗.

                       (47) 

Using the initial condition Eq. (41) into Eq. (45), it yields 𝑓0(𝑟, 0) = 1. Multiplying the solution in Eq. 
(45) with 𝑟 and integrating it from 0 to 𝑅(𝑧) with the respect to 𝑟, it yields 
 

𝐶𝑚(𝑧1, 𝑡) = 2 ∫ 𝐶(𝑟, 𝑧1, 𝑡)𝑟𝑑𝑟.
𝑅(𝑧)

0
                     (48) 
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In calculating the mean concentration, 𝐶𝑚(𝑧1, 𝑡), the dispersion function of 𝑓1(𝑟, 𝑡) plays an 
important role Thus, the dispersion function is shown as follows 
 
𝑓1(𝑟, 𝑡) = 𝑓1𝑠(𝑟) + 𝑓1𝑡(𝑟, 𝑡),                      (49) 
 
where 𝑓1𝑠(𝑟) and 𝑓1𝑡(𝑟, 𝑡) are the dispersion functions in the steady and unsteady state that 
describes the time dependent nature of the dispersion of the solute. Therefore, the dispersion 
function at steady state is given by 

 
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑓1𝑠_

𝜕𝑟
) − (𝑢(𝑟𝑝) − 𝑢𝑚) = 0 if 0 ≤ 𝑟 ≤ 𝑟𝑝                   (50) 

 
and the dispersion function in outer region is given as follows 
 
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑓1𝑠_

𝜕𝑟
) − (𝑢(𝑟) − 𝑢𝑚) = 0 if 𝑟𝑝 ≤ 𝑟 ≤ 𝑅(𝑧).                   (51) 

 
Eq. (50) and Eq. (51) are solved using Eq. (50) to get 𝑓1𝑠_ and 𝑓1𝑠+

 

 
𝑑𝑓1𝑠

𝑑𝑡
(0) = 0.                        (52) 

 
and 
 
𝑑𝑓1𝑠

𝑑𝑟
𝑅(𝑧) = 0.                         (53) 

 
The steady dispersion function in the plug flow region, 𝑓1𝑠_ and outer flow region, 𝑓1𝑠+

. Thus, it yields 

 

𝑓1𝑠_ = 𝐶𝐼 −
3𝐴𝑟𝑝

4

16
−

5𝐵𝑟𝑝
6

32
+

𝑟𝑝
3

√𝐴𝑟𝑝√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)

6
+

𝐵𝑟𝑝
5

√𝐴𝑟𝑝√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)

28𝐴
−

𝐵2𝑟𝑝
7

√𝐴𝑟𝑝√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)

176𝐴2 +
𝐴𝑟𝑝

3𝑅𝑧

12
+

𝐵𝑟𝑝
5𝑅𝑧

12
+

𝐵𝑟𝑝
2𝑅𝑧

2

32
+

𝐵𝑟𝑝
2𝑅𝑧

4

96
−

2𝑟𝑝
2√𝑟𝑝(𝐴+𝐵𝑟𝑝

2)𝑅𝑧√𝐴𝑅𝑧

21
−

𝐵𝑟𝑝
2√𝑟𝑝(𝐴+𝐵𝑟𝑝

2)𝑅𝑧
3√𝐴𝑅𝑧

77𝐴
+

𝐵2𝑟𝑝
2√𝑟𝑝(𝐴+𝐵𝑟𝑝

2)𝑅𝑧
5√𝐴𝑅𝑧

660𝐴2
            (54) 

 
and 
 

𝑓1𝑠+
= 𝐶𝐼 −

𝐴𝑟4

64
−

𝐵𝑟6

288
−

𝐵𝑟3𝑟𝑝
3

18
−

67𝐴𝑟𝑝
4

576
−

7𝐵𝑟𝑝
6

72
+

8𝑟3
√𝐴𝑟𝑝√𝑟𝑝(𝐴+𝐵𝑟𝑝

2)

147
+

4𝐵𝑟5
√𝐴𝑟𝑝√𝑟𝑝(𝐴+𝐵𝑟𝑝

2)

847𝐴
−

𝐵2𝑟7
√𝐴𝑟𝑝√𝑟𝑝(𝐴+𝐵𝑟𝑝

2)

2475𝐴2
+

11𝑟𝑝
3

√𝐴𝑟𝑝√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)

98
+

15𝐵𝑟𝑝
5

√𝐴𝑟𝑝√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)

484𝐴
−

19𝐵2𝑟𝑝
7

√𝐴𝑟𝑝√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)

3600𝐴2
+

𝐴𝑟2𝑟𝑝𝑅𝑧

12
+

𝐵𝑟2𝑟𝑝
3𝑅𝑧

12
+

𝐴𝑟2𝑅𝑧
2

32
+

𝐵𝑟2𝑅𝑧
4

96
−

2𝑟2√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)𝑅𝑧√𝐴𝑅𝑧

21
−

𝐵𝑟2√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)𝑅𝑧

3√𝐴𝑅𝑧

77𝐴
+

𝐵2𝑟2√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)𝑅𝑧

5√𝐴𝑅𝑧

660𝐴2 ,     (55) 

 
where 
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𝐶𝐼 =
67𝐴𝑟𝑝

4

576
+

7𝐵𝑟𝑝
6

72
−

11𝑟𝑝
3

√𝐴𝑟𝑝√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)

98
−

15𝐵𝑟𝑝
5

√𝐴𝑟𝑝√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)

484𝐴
+

19𝐵2𝑟𝑝
7

√𝐴𝑟𝑝√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)

3600𝐴2 −
𝐴𝑟𝑝

6

20𝑅𝑧
2 −

27𝐵𝑟𝑝
8

640𝑅𝑧
2 +

15𝑟𝑝
5

√𝐴𝑟𝑝√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)

484𝐴
+

19𝐵2𝑟𝑝
7

√𝐴𝑟𝑝√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)

1320𝐴𝑅𝑧
2 −

23𝐵2𝑟𝑝
9

√𝐴𝑟𝑝√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)

9120𝐴2𝑅𝑧
2 −

7𝐴𝑟𝑝𝑅𝑧
3

360
−

7𝐵𝑟𝑝
3𝑅𝑧

3

360
−

𝐴𝑅𝑧
4

96
−

5𝐵𝑅𝑧
6

1152
+

15√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)𝑅𝑧

3√𝐴𝑅𝑧

539
+

19𝐵√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)𝑅𝑧

5√𝐴𝑅𝑧

3630𝐴
−

23𝐵√𝑟𝑝(𝐴+𝐵𝑟𝑝
2)𝑅𝑧

7√𝐴𝑅𝑧

34200𝐴2 .                (56) 

 
The general solution of 𝑓1𝑡(𝑟, 𝑡) is given as  
 

𝑓1𝑡(𝑟, 𝑡) = ∑ 𝐴𝑚𝑒−𝜆𝑚
2 𝑡𝐽0(𝜆𝑚𝑟),∞

𝑚=1                      (57) 
 
where 
 

𝐴𝑚 = −
2

𝐽0
2(𝜆𝑚)

∫ 𝐽0(𝜆𝑚𝑟)𝑓1𝑠(𝑟)𝑟𝑑𝑟.
𝑅(𝑧)

0
                    (58) 

 
Due to the complexity of the expressions involved, the dispersion function is not explicitly detailed 
here due to its very large expressions. Therefore, the complete mathematical expression for the 
dispersion function has not been included in the manuscript. 
 
3. Results  
 

This study examined the impact of temperature and electric field in Casson blood flow on the 
solute dispersion in blood as it flows through a stenosed artery, using GDM for analysis. By including 
temperature and electric field measurements into the research, a more comprehensive 
comprehension of the advancements in treatment for medical conditions may be achieved. The 
effect of temperature and electric field on velocity, 𝑢, function of steady dispersion, 𝑓1𝑠, function of 
unsteady dispersion, 𝑓1𝑡 and function of dispersion, 𝑓1 which is the combination of steady and 
unsteady dispersion functions have been analyzed. These analyzes helps researchers, engineers, and 
mathematicians improve mathematical methods in the biomedical sciences and improve modeling 
methodologies. A visual comparison between present result with Dash et al., [21] has been shown 
for validation with previous study. This rigorous validation procedure not only confirms the accuracy 
of mathematical model but also highlights the applicable it is to actual biomedical situations. The 
fluid's impact on the solute dispersion mechanism has been further examined in the mean 
absorption, 𝛾, electric field, 𝐸𝑧 and height of stenosis, .a  
 
3.1 Velocity 

 
This section presents graphical computations of the impact of mean absorption, 𝛾, electric field, 

𝐸𝑧 and height of stenosis, 𝑎. Upon solving the equation of momentum and determining the yield 
stress, the velocity data is acquired and interpreted by manipulating various components within the 
flow analytical expression. 

Figure 2 illustrates the relationship between Casson fluid velocity, temperature, and electric field, 
as confirmed by Dash et al., [21]. Apart from temperature and electric field influences, previous 
research demonstrates favorable Casson fluid velocity outcomes. The velocity observed in this 
investigation is consistent with the velocity reported in Dash et al., [21]. This study assumes 𝛾 =
0, 𝐸𝑧 = 0 and 𝑎 = 0 with Grashof number 𝐺𝑟 = 1 and stenosis radius, 𝑅(𝑧) = 1. The validated 
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Casson fluid velocity's implications are significant in bioengineering and biomedical engineering, 
especially in enhancing microfluidic device precision for drug delivery and lab-on-a-chip systems. 
Controlling temperature and electric fields improves drug delivery accuracy, advancing biomedical 
applications. 
 

 
Fig. 2. Validation between the velocity of the Casson fluid and its 
temperature and electric field 

 
Figure 3 depicts the fluctuations in velocity, 𝑢 differencing in blood flow with different mean 

absorption, 𝛾 for dp dz⁄ = −4, a = 0.02, Gr = 1, z = 0.5, b = 0, us = 0, rp = 0.01, σ = 1,   ρ =

1 , ρe = 1, Ez = 1,and 𝐴1 = 1 for different mean absorption, 𝛾 = 0, 0.2, 0.4, 0.6, 0.8. Changes in 
mean absorption impact blood flow velocity, where higher mean absorption levels correspond to 
reduced temperature and increased velocity. An increase in mean absorption in arterial blood flow 
signifies greater energy absorption by the blood, potentially attributed to heightened metabolic 
activity or absorption from surrounding tissues. This elevated energy absorption reduces the 
available resources for maintaining blood temperature, leading to a decrease in temperature as a 
result.  
 

 
Fig. 3. The fluctuations in velocity, 𝒖 differencing in blood 
flow with different mean absorption, 𝜸 for 𝐝𝐩 𝐝𝐳⁄ =
−𝟒, 𝐚 = 𝟎. 𝟎𝟐, 𝐆𝐫 = 𝟏, 𝐳 = 𝟎. 𝟓, 𝐛 = 𝟎, 𝐮𝐬 = 𝟎, 𝐫𝐩 =

𝟎. 𝟎𝟏, 𝛔 = 𝟏, 𝛒 = 𝟏 , 𝛒𝐞 = 𝟏, 𝐄𝐳 = 𝟏,and 𝑨𝟏 = 𝟏 

 
Figure 4 depicts the variations of velocity, 𝑢 for different values of electric field, 𝐸𝑧 in the blood 

flow with 𝑑𝑝 𝑑𝑧⁄ = −4, 𝑎 = 0.02, 𝐺𝑟 = 1, 𝑧 = 0.5, 𝑏 = 0, 𝑢𝑠 = 0, 𝑟𝑝 = 0.01, 𝜎 = 1, 𝜌 = 1, 𝜌𝑒 =

1, 𝛾 = 1, and 𝐴1 = 1 for different mean absorption, 𝐸𝑧 = 0, 0.2, 0.4, 0.6, 0.8. As the electric field 
increases, the velocity decreases. The electric field's impact on blood flow velocity in arteries depends 
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on various factors, including the field's characteristics and blood properties. Electrokinetic forces, like 
electrophoresis and electroosmosis, induced by the field, can influence charged particle movement 
in blood. This movement may alter the flow velocity profile, potentially leading to velocity decreases 
with stronger electric fields. 
 

 
Fig. 4. The variations of velocity, 𝒖 for different values of 
electric field, 𝑬𝒛 in the blood flow with 𝒅𝒑 𝒅𝒛⁄ = −𝟒, 𝒂 =
𝟎. 𝟎𝟐, 𝑮𝒓 = 𝟏, 𝒛 = 𝟎. 𝟓, 𝒃 = 𝟎, 𝒖𝒔 = 𝟎, 𝒓𝒑 = 𝟎. 𝟎𝟏, 𝝈 =

𝟏, 𝝆 = 𝟏, 𝝆𝒆 = 𝟏, 𝜸 = 𝟏, and 𝑨𝟏 = 𝟏 

 
In conclusion, the ability to manipulate the velocity of Casson fluid through temperature and 

electric field adjustments has significant potential in advancing bioengineering and biomedical 
applications. It allows for more precise and effective medical device designs and treatment methods, 
ultimately improving patient care and treatment outcomes. 
 
3.2 Steady Dispersion Function 
 

Figure 5 depicts the validation between the steady dispersion function of the Casson fluid and its 
temperature and electric field, this outcome has been verified by Dash et al., [21]. The outcome of 
the Casson fluid, disregarding the influence of temperature and electric field, demonstrates a 
favorable outcome in terms of the steady dispersion function of the Casson fluid as shown in the 
previous research. The steady dispersion function observed in this investigation is consistent with 
the steady dispersion function reported in Dash et al., [21] in relation to temperature and electric 
field. In this research, when the mean absorption coefficient, electric field and height of stenosis have 
not been determined (𝛾 = 0, 𝐸𝑧 = 0, 𝑎 = 0), the Grashof number, 𝐺𝑟 and radius of stenosis, 𝑅(𝑧) 
are denoted as 𝐺𝑟 = 1 and 𝑅(𝑧) = 1, respectively. 

Figure 6 depicts the variations of steady dispersion function, 𝑓1𝑠 for different mean absorption, 𝛾 
for dp dz⁄ = −4, a = 0.02, Gr = 1, z = 0.5, b = 0, rp = 0.01, σ = 1, ρ = 1, ρe = 1, Ez = 1, and 

𝐴1 = 1 for different mean absorption, 𝛾 = 0, 0.2, 0.4, 0.6, 0.8. In this case, the mean absorption 
affects the body temperature and hinders the dispersion function, resulting in a reduction in the 
dispersion function. As the temperature lowers towards the center of the artery, there is a 
simultaneous rise in the steady dispersion at the outside area near the wall. 
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Fig. 5. The validation between the steady dispersion function 

 

 
Fig. 6. The variations of steady dispersion function, 𝒇𝟏𝒔 for 
different mean absorption, 𝜸 for 𝐝𝐩 𝐝𝐳⁄ = −𝟒, 𝐚 =
𝟎. 𝟎𝟐, 𝐆𝐫 = 𝟏, 𝐳 = 𝟎. 𝟓, 𝐛 = 𝟎, 𝐫𝐩 = 𝟎. 𝟎𝟏, 𝛔 = 𝟏, 𝛒 =

𝟏, 𝛒𝐞 = 𝟏, 𝐄𝐳 = 𝟏, and 𝑨𝟏 = 𝟏 

 
Figure 7 depicts the variations of steady dispersion function, 𝑓1𝑠 for different values of electric 

field, 𝐸𝑧 in the blood flow with 𝑑𝑝 𝑑𝑧⁄ = −4, 𝑎 = 0.02, 𝐺𝑟 = 1, 𝑧 = 0.5, 𝑏 = 0, 𝑟𝑝 = 0.01, 𝜎 = 1, 𝜌 =

1, 𝜌𝑒 = 1, 𝛾 = 1, and 𝐴1 = 1 for different mean absorption, 𝐸𝑧 = 0, 0.2, 0.4, 0.6, 0.8. When electric 
field increases, the steady dispersion function decreases. However, in this case, the height of the 
stenosis influences the dispersion function, resulting in a decrease. Conversely, electrical effects in 
vascular stenosis cause the dispersion function to steadily increase. This is significant because 
enhanced dispersion near the artery wall facilitates faster and more effective migration of solutes, 
suggesting the importance of reducing dispersion in the center while increasing it near the wall for 
improved medical outcomes. 

In conclusion, the implications of steady dispersion function influenced by temperature and 
electric field are significant in bioengineering and biomedical engineering, particularly in medical 
device design and treatment strategies. Understanding the way dispersion function behaves under 
different conditions enhances the precision of biomedical device design reliant on accurate 
dispersion dynamics. This knowledge is critical for optimizing drug delivery systems, where 
temperature control and electric fields can effectively target therapeutic agents within the body, 
enhancing treatment efficacy and minimizing side effects.  
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Fig. 7. The variations of steady dispersion function, 𝒇𝟏𝒔 for 
different values of electric field, 𝑬𝒛 in the blood flow with 
𝒅𝒑 𝒅𝒛⁄ = −𝟒, 𝒂 = 𝟎. 𝟎𝟐, 𝑮𝒓 = 𝟏, 𝒛 = 𝟎. 𝟓, 𝒃 = 𝟎, 𝒓𝒑 =

𝟎. 𝟎𝟏, 𝝈 = 𝟏, 𝝆 = 𝟏, 𝝆𝒆 = 𝟏, 𝜸 = 𝟏, and 𝑨𝟏 = 𝟏 

 
3.3 Unsteady Dispersion Function 

 

Figure 8 depicts the validation between the unsteady dispersion function of the Casson fluid and 
its temperature and electric field, this outcome has been verified by Dash et al., [21]. The outcome 
of the Casson fluid, disregarding the influence of temperature and electric field, demonstrates a 
favorable outcome in terms of the unsteady dispersion function of the Casson fluid as shown in the 
previous research. The unsteady dispersion function observed in this investigation is consistent with 
the unsteady dispersion function reported in Dash et al., [21] in relation to temperature and electric 
field. In this research, when the mean absorption coefficient, electric field and height of stenosis have 
not been determined (𝛾 = 0, 𝐸𝑧 = 0, 𝑎 = 0), the Grashof number, 𝐺𝑟 and radius of stenosis, 𝑅(𝑧) 
are denoted as 𝐺𝑟 = 1 and 𝑅(𝑧) = 1, respectively. 
 

 
Fig. 8. The validation between the unsteady dispersion function 

 
Figure 9 depicts the variations of unsteady dispersion function, 𝑓1𝑡 for different values of mean 

absorption, 𝛾 for 𝑑𝑝 𝑑𝑧⁄ = −4, 𝑎 = 0.02, 𝐺𝑟 = 1, 𝑧 = 0.5, 𝑡 = 0.1, 𝑏 = 0, 𝑟𝑝 = 0.01, 𝜎 = 1, 𝜌 =

1, 𝜌𝑒 = 1, 𝐸𝑧 = 1, and 𝐴1 = 1 for different mean absorption, 𝛾 = 0, 0.2, 0.4, 0.6, 0.8. In this case, the 
mean absorption affects the body temperature and disrupts the dispersion function, resulting in an 
increase in dispersion function. The heat transfer factor has a considerable impact on the longitudinal 
propagation in the flow through tubes with walls that are moderately or minimally reactive. Tiwari 
et al., [19] stated that the transportation of nutrients to physiological systems or the administration 
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of medications to tissues during medical treatments requiring elevated temperatures might be 
somewhat impaired, resulting in potential delays, owing to the slightly elevated temperatures caused 
by certain medical procedures. 
 

 
Fig. 9. The variations of unsteady dispersion function, 𝒇𝟏𝒕 for 
different values of mean absorption, 𝜸 for 𝒅𝒑 𝒅𝒛⁄ = −𝟒, 𝒂 =
𝟎. 𝟎𝟐, 𝑮𝒓 = 𝟏, 𝒛 = 𝟎. 𝟓, 𝒕 = 𝟎. 𝟏, 𝒃 = 𝟎, 𝒓𝒑 = 𝟎. 𝟎𝟏, 𝝈 =

𝟏, 𝝆 = 𝟏, 𝝆𝒆 = 𝟏, 𝑬𝒛 = 𝟏, and 𝑨𝟏 = 𝟏 

 
Figure 10 depicts the variations of unsteady dispersion function, 𝑓1𝑡 for different values of electric 

field, 𝐸𝑧 in the blood flow with 𝑑𝑝 𝑑𝑧⁄ = −4, 𝑎 = 0.02, 𝑡 = 0.1, 𝐺𝑟 = 1, 𝑧 = 0.5, 𝑏 = 0, 𝑟𝑝 =

0.01, 𝜎 = 1, 𝜌 = 1, 𝜌𝑒 = 1, 𝛾 = 1, and 𝐴1 = 1 for different mean absorption, 𝐸𝑧 =
0, 0.2, 0.4, 0.6, 0.8. When electric field inclined, the unsteady dispersion function inclined. As time 
progresses, there is a decrease in the unsteady dispersion function. At the initial time (time zero), the 
unsteady dispersion function reaches its peak. However, as time elapses, the unsteady dispersion 
function gradually diminishes, approaching zero. 
 

 
Fig. 10. The variations of unsteady dispersion function, 𝒇𝟏𝒕 for 
different values of electric field, 𝑬𝒛 in the blood flow with 
𝒅𝒑 𝒅𝒛⁄ = −𝟒, 𝒂 = 𝟎. 𝟎𝟐, 𝒕 = 𝟎. 𝟏, 𝑮𝒓 = 𝟏, 𝒛 = 𝟎. 𝟓, 𝒃 =
𝟎, 𝒓𝒑 = 𝟎. 𝟎𝟏, 𝝈 = 𝟏, 𝝆 = 𝟏, 𝝆𝒆 = 𝟏, 𝜸 = 𝟏, and 𝑨𝟏 = 𝟏 

 
In conclusion, in bioengineering, the ability to control unsteady dispersion function opens 

avenues for developing advanced diagnostic tools and therapeutic approaches that respond 
dynamically to physiological changes. For instance, microfluidic devices can be designed to adapt and 
optimize dispersion patterns in real-time, enhancing their utility in personalized medicine and point-
of-care diagnostics. Moreover, in medical device design, understanding and harnessing unsteady 



Journal of Advanced Research in Experimental Fluid Mechanics and Heat Transfer 

Volume 17, Issue 1 (2024) 14-34 

31 
 

dispersion can ensure the reliability and effectiveness of devices used for continuous monitoring and 
precise delivery of treatments. Thus, integrating the understanding of unsteady dispersion function 
under temperature and electric field influences promises significant advancements in bioengineering 
and biomedical applications. It empowers the development of more responsive and effective medical 
devices and treatment strategies tailored to individual patient needs, ultimately enhancing 
healthcare outcomes and patient well-being. 
 
3.4 Dispersion Function 
 

Figure 11 depicts the validation between the dispersion function of the Casson fluid and its 
temperature and electric field, this outcome has been verified by Dash et al., [21]. The outcome of 
the Casson fluid, disregarding the influence of temperature and electric field, demonstrates a 
favorable outcome in terms of the dispersion function of the Casson fluid as shown in the previous 
research. The dispersion function observed in this investigation is consistent with the dispersion 
function reported in Dash et al., [21] in relation to temperature and electric field. In this research, 
when the mean absorption coefficient, electric field and height of stenosis have not been determined 
(𝛾 = 0, 𝐸𝑧 = 0, 𝑎 = 0), the Grashof number, 𝐺𝑟 and radius of stenosis, 𝑅(𝑧) are denoted as 𝐺𝑟 = 1 
and 𝑅(𝑧) = 1, respectively. 
 

 
Fig. 11. The validation between the dispersion function 

 
Figure 12 depicts the variations of dispersion function, 𝑓1 for different values of mean absorption, 

𝛾 for 𝑑𝑝 𝑑𝑧⁄ = −4, 𝑎 = 0.02, 𝐺𝑟 = 1, 𝑧 = 0.5, 𝑏 = 0, 𝑟𝑝 = 0.01, 𝜎 = 1, 𝜌 = 1, 𝜌𝑒 = 1, 𝑡 = 0.1, 𝐸𝑧 =

1, and 𝐴1 = 1 for different mean absorption, 𝛾 = 0, 0.2, 0.4, 0.6, 0.8. As the mean absorption value 
increases, the dispersion function tends to decrease. As mean absorption rises in blood flow within 
an artery, the dispersion function decreases due to heightened substance uptake, resulting in 
reduced dispersion. This elevated absorption facilitates more efficient removal of substances from 
the bloodstream, thereby decreasing their dispersion and ultimately lowering the dispersion 
function. 

Figure 13 depicts the variations of dispersion function, 𝑓1 for different values of electric field, 𝐸𝑧 
in the blood flow with 𝑑𝑝 𝑑𝑧⁄ = −4, 𝑎 = 0.02, 𝐺𝑟 = 1, 𝑧 = 0.5, 𝑏 = 0, 𝑡 = 0.1, 𝑟𝑝 = 0.01, 𝜎 = 1, 𝜌 =

1, 𝜌𝑒 = 1, 𝛾 = 1, and 𝐴1 = 1 for different mean absorption, 𝐸𝑧 = 0, 0.2, 0.4, 0.6, 0.8. When electric 
field increases, the dispersion function decreases. An increase in the electric field leads to stronger 
forces exerted on charged particles within the flow. This enhances electrophoretic motion, causing 
charged particles to migrate towards specific regions rather than dispersing throughout the flow. 
Consequently, this concentration of particles reduces dispersion function. 
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Fig. 12. The variations of dispersion function, 𝒇𝟏 for different 
values of mean absorption, 𝜸 for 𝒅𝒑 𝒅𝒛⁄ = −𝟒, 𝒂 =
𝟎. 𝟎𝟐, 𝑮𝒓 = 𝟏, 𝒛 = 𝟎. 𝟓, 𝒃 = 𝟎, 𝒓𝒑 = 𝟎. 𝟎𝟏, 𝝈 = 𝟏, 𝝆 =

𝟏, 𝝆𝒆 = 𝟏, 𝒕 = 𝟎. 𝟏, 𝑬𝒛 = 𝟏, and 𝑨𝟏 = 𝟏 

 

 
Fig. 13. The variations of dispersion function, 𝒇𝟏 for different 
values of electric field, 𝑬𝒛 in the blood flow with 𝒅𝒑 𝒅𝒛⁄ =
−𝟒, 𝒂 = 𝟎. 𝟎𝟐, 𝑮𝒓 = 𝟏, 𝒛 = 𝟎. 𝟓, 𝒃 = 𝟎, 𝒕 = 𝟎. 𝟏, 𝒓𝒑 =

𝟎. 𝟎𝟏, 𝝈 = 𝟏, 𝝆 = 𝟏, 𝝆𝒆 = 𝟏, 𝜸 = 𝟏, and 𝑨𝟏 = 𝟏 

 
In conclusion, the modulation of dispersion function by temperature and electric field has 

significant implications in bioengineering and biomedical engineering, especially in the development 
of innovative medical devices and treatments. This understanding enables the creation of advanced 
diagnostic tools and therapeutic approaches that can adapt to biological conditions. For instance, 
microfluidic devices can be engineered to dynamically adjust dispersion patterns, enhancing accuracy 
in disease diagnostics and personalized treatment strategies. This knowledge also ensures the 
reliability and efficiency of medical devices used for continuous monitoring and precise drug delivery. 
Overall, leveraging dispersion function influenced by temperature and electric field promises to 
advance biomedical applications, leading to more effective healthcare solutions tailored to individual 
patient needs and improving overall treatment outcomes. 

 
4. Conclusions 
 

This work employs an innovative approach to examine the impact of temperature and electric 
field on the spread of solutes inside a stenosed artery in Casson blood flow. This approach is based 
on the physiological accuracy of the circulatory system and seeks to enhance our understanding of 
the process of mixing and the distribution of drugs to tissues via arterial blood vessels. An extensive 
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analysis has been conducted on the impact of temperature and electric field on velocity, as well as 
the steady and unsteady dispersion functions. It has been shown that these traits have a major 
impact on these amounts by providing new insights with important implications for biomedical 
engineering, fluid dynamics and medical pyhsics. The uniqueness and rigor of study’s approach are 
demonstrated by the application of the binomial series expansion to difficult integration problems, 
which offers important resources to the academic community of mathematicians, biomedical 
engineers, fluid dynamicists, and medical researchers. The dispersion function has been determined 
using GDM, resulting in an analytical solution. The current research focuses on the following crucial 
determinations 

i. Velocity and unsteady dispersion function increase with increasing mean absorption 
affecting the temperature. Under the prevalence of mean absorption, the duration for the 
diffusion process to finalize is notably reduced. 

ii. Steady dispersion function and overall dispersion function decrease with increasing mean 
absorption affecting the temperature. Casson fluid starts to reduce with the increase in 
mean absorption, which further decreases the dispersion function after a certain value. 

iii. Velocity decreases with increasing electric field. The dominance of the electric field 
inclines the peak of blood velocity. 

iv. Steady dispersion function and overall dispersion function increase with increasing 
electric field. The study takes into account the electric field, where solute dispersion 
exhibits varying behavior based on the value of this parameter. 

v. Unsteady dispersion function decreases with increasing electric field. The dispersion 
function falls as a result of insufficient solute particles diffusing effectively over the length 
of the artery. 

 
Therefore, this research on solute dispersion in Casson blood flow through stenosed arteries, 

influenced by temperature and electric fields, represents a significant advancement in understanding 
physiological fluid dynamics and its implications for biomedical applications. By meticulously 
analyzing velocity and dispersion functions under varying conditions, the study not only enhances 
theoretical models in fluid dynamics but also provides practical insights crucial for optimizing drug 
delivery strategies in cardiovascular medicine. The innovative use of binomial series expansions to 
tackle complex integration challenges underscores the methodological rigor of the study, offering 
valuable tools for mathematicians and engineers involved in biomedical research. These findings not 
only contribute to advancing medical physics but also hold promise for guiding the development of 
more effective medical devices. Future research directions focusing on the impact of catheter radius 
and stenosis size on blood flow within stenosed arteries will further enrich our understanding and 
facilitate more targeted therapeutic interventions in cardiovascular care. 
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