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The rapid expansion of publicly available data and the growing complexity of deep 
learning models have highlighted the need for more effective data representation 
and analysis methods. Tensorization provides a revolutionary solution, aligning the 
multidimensional nature of data with compressed deep learning models to yield 
more interpretable results. This paper provides an in-depth, tutorial-style review of 
tensorization, multi-way analysis methods, and their integration with deep neural 
network models, illustrated through various case studies. A Blind Source Separation 
experiment compares the performance of 2-dimensional algorithms with multi-way 
algorithms. Experiments were conducted on multiple datasets under different noise 
and compression conditions. Results indicate that while traditional 2D methods 
achieve lower Root Mean Square Error, tensor-based methods preserve essential 
structural and frequency characteristics, making them valuable for applications when 
accurate signal reconstruction is required. Contrary to the expected difficulties of 
high dimensionality, utilising multidimensional datasets in their original form and 
applying multi-way analysis methods based on multilinear algebra can uncover 
complex relationships among dimensions while reducing model parameters and 
accelerating processing.  

 
1. Introduction 
 

In modern machine learning, data are often simplified to 2-dimensional matrices for ease of 
application in linear algebra-based algorithms, despite being inherently high-dimensional. However, 
applying multiway analysis through multilinear algebra to these multidimensional datasets provides 
more expressive models, reduces the number of parameters, and accelerates processing, thereby 
defying the expected dimensionality curse. This paper surveys the theoretical background necessary for 
understanding these methods, outlines the process of tensorizing matrix-form datasets, and reviews current 
methods and applications of multiway analysis in compressing deep learning models. It includes a framework 
for tensorization, an experiment on Blind Source Separation, and a comprehensive review of 
tensorized machine learning and deep learning applications, concluding with key insights and future 
research directions. 
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2. Fundamentals of Tensorization 
 

Traditional machine learning (ML) models, including support vector machines (SVMs), 
regression models, decision trees, and various deep neural network (DNN) architectures like fully 
connected layers (FCNs), convolutional layers (CNNs), LSTMs, and transformers, are predominantly 
grounded in linear algebra. This typically necessitates representing data in a 2-dimensional matrix 
form, a simplified view of inherently high-dimensional data. For instance, image data are often 
described with two spatial dimensions (width and height), with additional colour channels forming a 
third dimension and video data introducing a fourth temporal dimension. While standard ML and 
DNN algorithms manage these dimensions within their design constraints, such as using 1D-CNNs for 
sequential data and 2D-CNNs for spatial data, they often limit the potential to capture higher-order 
interactions within the data due to their reliance on lower-dimensional representations. 

Tensorization offers a more sophisticated approach by leveraging multilinear algebra to 
handle data in its full multidimensional form, thereby enabling more expressive models that can 
capture complex interactions among data dimensions. For instance, while traditional linear methods, 
such as PCA, project high-dimensional data onto a lower-dimensional space and SVD compress the 
least dominant factors, tensor methods maintain the intrinsic multi-way structure of the data. This is 
particularly useful in deep learning, where tensor decomposition techniques can be employed to 
optimise model performance, reduce the number of parameters, and enhance computational 
efficiency, as seen in applications like Blind Source Separation. 

The mathematical foundation of tensorization is rooted in spaces that extend beyond basic 
Euclidean geometry, such as Riemannian and Hilbert spaces, which facilitate advanced geometric 
and algebraic operations on data.  

Table 1 summarises the foundation of multilinear geometric spaces, ML applications, and 
metrics for analysis. These concepts are crucial for developing and applying manifold learning 
algorithms, such as t-SNE and UMAP, as well as for understanding the underlying structures of 
complex datasets. Moreover, tensor methods are pivotal in modern machine learning applications, 
including graph neural networks, variational autoencoders, and generative models like Wasserstein 
GANs. They enable more accurate and efficient data processing by preserving the inherent 
multidimensional relationships within the data. 
 
Table 1 
Multilinear Algebra & Tensors 

Mathematical 
Space 

Geometric Space 
Description 

ML Applications Similarity or Distance Measure 

Euclidean Space Standard Cartesian 
coordinates define flat 
space. 

Feature space for various 
algorithms, including k-NN, 
SVM, and linear models. 

Euclidean distance: 𝑑(𝑥, 𝑦) =
(∑(𝑥! − 𝑦!)"		 
 

Manifolds Generalised spaces that 
locally resemble Euclidean 
space but can have 
complex global structures. 

Manifold learning, t-SNE, 
UMAP, LLE. 

Geodesic distance (shortest path on the 
manifold). 

Hilbert Space Complete, infinite-
dimensional inner product 
space. 

Kernel methods in SVM, PCA 
in high-dimensional spaces, 
and quantum computing. 

Inner product: ⟨𝑥, 𝑦⟩ = ∑𝑥!𝑦!. 

Curves using 
Hyperbolic and 
Elliptic 
Geometry 

Hyperbolic: negatively 
curved space. Elliptic: 
positively curved space. 

Hyperbolic embeddings for 
hierarchical data, elliptic 
geometry for spherical data. 

Hyperbolic 2d distance using the 
Poincaré disk model: 𝑑(𝑢, 𝑣) =
2	𝑎𝑟𝑠𝑖𝑛ℎ( ‖$%&‖

"√(!("
) where Euclidean 



Journal of Advanced Research Design 
Volume 42, Issue 1 (2026) 261-276 

263 
 

distance ‖𝑣 − 𝑢‖ =
((𝑥" − 𝑥))" +	(𝑦" − 𝑦))"		or for 3D 
𝑑(𝑢, 𝑣) = 2	𝑎𝑟𝑠𝑖𝑛ℎ(‖$%&‖

"√*!*"
), or Elliptic 

distance on a sphere of radius R such as 
𝑑+(𝑢, 𝑣) = 𝑅 ⋅ cos%) >&⋅$

-"
?. 

Riemannian 
Geometry 

Study of smooth 
manifolds with 
Riemannian metrics, 
describing how distances 
and angles are measured. 

Riemannian manifold 
optimisation, GCNs. 

Riemannian distance: involves integrating 
the metric tensor along a curve between 
points u, v on Manifold M with g 
Riemannian metric as the infimum of the 
lengths of all smooth curves connecting u 
and v along parameter t as γ(0)=u, 
γ(1)=v, and γ̇(𝑡) is the tangent vector to 
the curve γ at t: 𝑑.(𝑢, 𝑣) = 
∫ (g/(1)(γ̇(t). γ̇(t))	𝑑𝑡
$
&  

Differential 
Geometry on 
Manifolds 

Study of curves, surfaces, 
and their higher-
dimensional analogues 
using calculus. 

Advanced manifold learning, 
optimisation on curved 
spaces. 

Geodesic distance, curvature-based 
measures. 

 
 
3. Survey of Existing Approaches 
 

This section explores various methodologies for multi-way analysis and their applicability to 
tensorized datasets. The first subsection provides an overview of multiway analysis methods, 
drawing from foundational research and notable surveys, including [1] and chapter four in [2]. 
Following this, we explore tensorization techniques for both 2-dimensional and multiway datasets. 
 
3.1 Multiway Analysis Methods 
 

Multiway analysis methods encompass a variety of tensor-based algorithms, such as 
factorisation, regression, clustering, and completion, that analyse data across multiple dimensions 
(modes). These algorithms provide insights similar to those offered by conventional machine learning 
methods, such as PCA and SVD. Still, they can also serve as a pre-processing step for tensorized or 
non-tensorized machine learning (ML) and deep learning (DL) models. 

Tensor decompositions are essential in reducing the dimensionality of tensors and identifying 
dominant factors within them. While methods such as SVD and PCA are widely used, they often fail 
to capture the nonlinear structure of the data. In contrast, techniques such as Multidimensional 
Scaling (MDS), Isomap, Locally Linear Embedding, and Spectral Clustering preserve or learn the 
nonlinear manifold of the dataset. The following tensor decomposition methods excel at capturing 
complex interactions within high-dimensional datasets: 
 

Tensor decomposition method Illustration 
Candecomp/Parafac (CP) Decomposition: As 
a multiway extension of SVD, CP 
decomposition factorises a tensor into a sum 
of rank-one tensors, enabling the 
reconstruction of the original tensor from its 
dominant components. This method 
generalises the SVD approach to N-

(a) 

 
𝑋 = 𝑈S𝑉! = σ"u"v"! + σ#u#v#! +⋯+ σ$u$v$!  
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dimensional tensors, capturing the essential 
structure of the data. 

(b) 

  

𝜒̂ 		= .σ%u%v%!
$

%&"

 

Fig. 1  : (a) 2-D SVD, (b) 3-D SVD / CP generalises to the 
higher dimension [1] 

Tucker Decomposition: Known as a higher-
order PCA, Tucker decomposition 
decomposes a tensor into a core tensor, 
which is then multiplied by factor matrices 
along each mode. Unlike CP decomposition, 
Tucker retains a richer structure within the 
core tensor, allowing for more nuanced data 
representation. 

 
𝜒̂ ≈ 0𝒢; 𝐴("), 	𝐴(#), … . , 𝐴())7 

Fig. 2: 3D Tucker Decomposition  
 

Tensor Networks: Tensor networks 
hierarchically represent large-scale tensors 
using lower-rank core tensors. Common 
approaches include Tensor Train (TT), Tensor 
Ring (TR), and Matrix Product States (MPS), 
among others. These methods are particularly 
effective for handling large-scale data by 
reducing the computational complexity 
associated with high-dimensional tensors. 

(a) 

 
𝜒̂ = 𝒜" ×*,"𝒜#…	×) 𝒜) 

(b) 

 
𝜒̂ = ℜ(𝒜", 𝒜#, …	𝒜)) 

 
Fig. 3: (a) TT decomposition, (b) TR decomposition 

 
Tensor Completion: Tensor completion extends matrix completion techniques to multi-dimensional 
data, aiming to interpolate missing values within a tensor. Methods like Tensor Decomposition with 
Relational Constraints (TDRC) enhance traditional tensor decomposition by incorporating auxiliary 
data, such as similarity matrices, to improve prediction accuracy in applications like miRNA-disease 
association studies. 
Tensor Regression: Tensor regression models generalise linear regression to Nth-order tensors as 
𝒴 = 𝑓(𝒳) + 𝜖, allowing for the mapping of high-dimensional predictors to target variables. 
Techniques like CP and Tucker regression reduce the number of parameters required, making it 
feasible to work with large, multidimensional datasets, such as MRI scans, while preserving the 
inherent structure of the data. 
Tensor Clustering: Tensor clustering is an unsupervised learning approach that identifies clusters 
within tensor data 𝑋  by factorising the data matrix into a canonical basis vector A, in which each row 
selects a row in B, which contains the clustering vectors, 𝑋 ≈ 𝐴𝐵!. Methods exist to estimate the 
two unknowns (A and B) from X, such as Independent Component Analysis (ICA) and dictionary 
learning algorithms adapted to handle tensor data. These algorithms facilitate the discovery of 
underlying patterns within high-dimensional datasets. 
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3.2 Multiway (Tensorized) Dataset Sources 
 

This section explores sources of tensorized data, including traditional datasets that can be 
transformed into tensor form and naturally occurring multiway datasets. 
Traditional Datasets: Public datasets from platforms such as Kaggle and UCI can be tensorized using 
data fusion techniques. Understanding the different modes within these datasets allows for the 
integration or segmentation of data to meet specific application requirements, such as combining 
outcomes from different hospital trials. 
Graphs and Networks Datasets: High-dimensional datasets such as Wireless Sensor Networks (WSN) 
and Knowledge Graphs are naturally suited for tensor representation. For example, WSN data can be 
represented as a tensor capturing sensors, base stations, clusters, and messages. At the same time, 
Knowledge Graphs can be modelled as tensors with modes representing entities and relationships. 
Image and Video Datasets: Image and video datasets, such as MNIST and video files, benefit 
significantly from a tensor representation. Tensorizing these datasets preserves spatial and temporal 
information, enabling more efficient processing in convolutional neural networks (CNNs) and other 
tensor-based models.  

 
 
 

 
 
 

Fig. 4: (a) pair-wise approaches flatten datasets vs 
(b) tensorised data approaches compression 

example [3] 
 

 
Fig. 5: (a) 4D pair-wise approaches flatten datasets 

vs (b) tensorised data approaches compression 
example 
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Fig. 4 presents an example of a 3D grey-shade video with an image size of 128 x 88 and 20 frames. 
Multiplying the shape vector for pair-wise Linear Subspace Learning (LSL) vectorisation in (a) 
produced a massive 189 GB large covariance matrix in memory and the required computational time. 
Applying a tensorial  Multi-linear Subspace Learning (MSL) in (b) required summing three smaller 
covariance matrices, producing 95.8KB of memory and is both memory and computational-time 
efficient [3]. Fig. 5 Illustrates that as dimensionality increases in a higher-resolution 4D colour video 
tensor with a colour channel of shape 256×256×3×50, resulting in a 73-fold savings. 

Health and Biomedical Datasets: Biomedical datasets, such as EEG signals and MRI scans, are 
inherently multidimensional. These datasets can be effectively analysed using multiway data analysis 
techniques, which capture the complex interactions between modes, such as time, subjects, and 
experimental conditions. 
3.3 Tensorization Methods 
 

Tensorization is the process of transforming traditional matrix-form datasets into multi-
dimensional tensors. This section discusses various deterministic and stochastic methods for 
tensorizing data, depending on the analysis objectives and the nature of the original data. 
Reshaping a dataset involves converting its structure, often from a matrix form to a tensor, to capture 
the underlying relationships among its variables more effectively. This process can include multiple 
indexing, pivot table transformations, or tensorization, which involves mapping data from lower to 
higher dimensions. For instance, student grades across various subjects, years, and exams can be 
transformed from a matrix into a 4th-order tensor, enabling more sophisticated analysis of 
trajectories across students, subjects, or time periods. The fusion of multiple data sources is another 
method for reshaping data. The process integrates data from multiple sources/modalities to create 
a comprehensive representation, leveraging the multi-way nature of tensors. 
Sparse Representation: Not all data fills every possible combination of indices in a tensor. Sparse 
tensors, where most elements are zero, are crucial for efficiently handling high-dimensional data. 
Consider a 4th-order tensor where modes represent users, items, interaction types (e.g., view, click, 
purchase), and timestamps. In this tensor, most entries are likely to be zeros or nulls because most 
users interact with only a small subset of the available items, engage in a limited number of 
interaction types, and only at specific times. Compared to dense representations, sparse tensor 
structures can drastically reduce memory usage and computational requirements. Sparsity can be 
addressed by incorporating regularisation techniques like dropouts, using sparse tensor 
representations from scratch, and building ML packages that accept these representations. Various 
libraries, such as the 2-dimensional scipy.sparse Python package does not scale to sparse nd-arrays. 
A dictionary data structure can capture the n-dimensional indices tuple as key and values as a list of 
all aggregated features. 
Quantisation: Quantisation reduces the precision of continuous variables, which can simplify tensor 
computations without significantly affecting accuracy. For instance, instead of using precise dates, 
temperature data might be aggregated by year or month to reduce the tensor size, making processing 
faster and less memory-intensive. 
Parallelisation: When tensors become large, parallelisation techniques are employed to distribute 
the computational load across multiple processors. By partitioning tensors and distributing these 
partitions across a cluster of nodes, large datasets can be processed more efficiently. Each node 
works on a specific partition, enabling simultaneous computation, which is crucial in large-scale 
tensor operations. For example, parallelisation that is invariant of shape and dimension is applied for 
distributed processing on a cluster of computing nodes using a high-dimensional wavefront, which 
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was applied to the Multiple  Sequence Alignment problem [4], [5], [6]. Tensors were dynamically 
created for various sequences in a linear memory array. Each computing node accesses its assigned 
dense partitions from a specific index up to the partition size, applying wave-front parallelism with 
the dependency-aware distribution. 
Deterministic tensorisation refers to systematic methods that convert data into higher dimensions 
in a predictable manner, facilitating the application of reverse processes, like detensorisation, to 
reduce dimensions when needed. Techniques such as Hankelization and Löwnerization are examples, 
practical in fields like signal processing and telecommunication for harmonic retrieval and direction-
of-arrival estimation [7]. 
Statistical tensorisation leverages statistical measures, such as covariance matrices, to structure data 
along specific modes. Higher-order statistics, such as cumulants and moments, offer a more 
comprehensive analysis of non-Gaussian datasets with independent variables. These methods are 
beneficial in applications such as Blind Source Separation (BSS), where they aid in identifying and 
separating latent variables within the data. Tensor-based methods for BSS, such as TenSOFO and 
TCBSS, offer a novel approach to solving BSS problems through tensor decomposition [8]. 
Domain-specific tensorisation techniques apply transformations tailored to particular types of data. 
For instance, a 3rd-order tensor might be used in signal processing to represent time-frequency data 
across multiple channels. Transformations like the Short-Time Fourier Transform (STFT) or wavelet 
transforms enable multi-scale, multi-orientation data representation, which is crucial for detailed 
signal analysis. Additionally, advanced methods, such as those involving Generalised Characteristic 
Functions (GCFs), can further enrich tensorisation by incorporating higher-order statistics, leading to 
more compact and expressive tensor representations [9], [10]Using tensor network representations, 
it is possible to super-compress datasets with as many as 1050 entries down to 107 or even lower.  
These tensorisation techniques are vital for developing efficient machine learning algorithms and 
deep neural networks that handle complex, high-dimensional datasets with reduced computational 
and memory requirements. 
 
3.4 Literature Review 
 

Integrating tensorization techniques into machine learning and deep learning models has led 
to significant advancements across various applications. This section examines key case studies that 
demonstrate the benefits of tensorization in enhancing model performance, reducing complexity, 
and improving generalisation across multiple domains. 
Tensorization in Artificial Neural Networks (ANNs) has been recognised to reduce the models’ 
complexity as it increases with the addition of layers and neurons, often leading to over-
parameterisation [11]. Tensorization offers a solution by compressing neural networks, thus reducing 
the number of parameters while maintaining or even improving model performance. For instance, 
tensorized activation functions, such as recursive neurons, can be used to compute weighted sums 
recursively within tree structures, effectively managing the hierarchical complexity of data [12]. 
Techniques such as CP decomposition or Tensor Train (TT) decomposition further refine this process 
by breaking down tensor aggregations, enabling a more efficient and structured approach to model 
learning. This compression is particularly evident when tensor decomposition algorithms, such as 
tensor networks, are applied to the weight tensors of an ANN, leading to shallower networks with 
fewer layers yet retaining high performance. Replacing specific layers in a model with tensor 
decomposition layers, such as TT layers, enables the model to capture latent variables effectively, 
optimising the learning process [13], [14], [15]. 
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Tensorization in Machine Learning Models is outlined in a range of studies. In data warehousing and 
business intelligence, tensor decomposition methods have been utilised for processing large data 
cubes, significantly enhancing the efficiency of online analytical processing (OLAP) systems [16]. In 
signal processing, tensor methods have enhanced blind source separation (BSS) by improving the 
reconstruction of signals through techniques such as Hankelization [7] and Bayesian Tucker 
decomposition [17]. These tensor-based approaches outperform traditional methods, particularly in 
capturing the complex relationships inherent in multidimensional data. A bioinformatics application 
of tensorization advanced binary classification tasks, such as predicting miRNA-disease associations, 
by converting 2D datasets into multi-way tensors through the association with other available 
datasets and the application of tensor completion techniques [18]. Similarly, in social network 
analysis and semantic data mining, tensor models have been used to analyse the evolution of user 
interactions over time, allowing for identifying patterns and relationships that are not easily captured 
by conventional methods [19], [20]. For instance, tensor-based methods like Tucker decomposition 
and CP decomposition have been employed to analyse temporal knowledge graphs, predicting new 
links and proposing ontological terms more accurately than traditional approaches [21], [22]. 
Tensorization in Deep Learning Models, particularly in convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs), has significantly advanced model compression and performance. 
For example, TensorNet, a CNN model utilising TT layers, substantially reduced the number of 
parameters, compressing the network size by a factor of 7 without sacrificing accuracy [14]. Similarly, 
hierarchical Tucker (HT) tensor formats have been used to compress CNNs, maintaining high accuracy 
while significantly reducing model size [23]. In RNNs and LSTM networks, tensorization techniques 
such as TT and HT have been demonstrated to compress models, although with varying impacts on 
accuracy. For instance, TT-LSTM models have shown better suitability for CNN compression, while 
HT formats offer higher compression ratios for RNNs, albeit with some loss in accuracy [24]. In natural 
language processing (NLP), tensor-based models have outperformed traditional deep learning 
models in tasks such as sentiment analysis and event prediction. Recursive Neural Tensor Networks 
(RNTNs) and tensor-based attention mechanisms have effectively modelled semantic relationships 
and context within language data [25]. Moreover, tensorization in transformers, mainly through 
block-term decomposition (BTD), has enhanced language modelling and neural translation tasks, 
achieving higher compression and performance than standard transformer models [26]. Multi-modal 
Visual Question Answering (VQA) used tensors to fuse visual and textual representations, 
outperforming the bilinear models based on the outer product and its massive parameters [27]. Also, 
for graph transformation, graph tensors learn embeddings of time-varying graphs based on a tensor 
framework [28]. A recent survey bridges the connections between tensor networks, neural networks, 
and quantum circuits [29]. Recent work includes a novel variational DMRG-inspired training 
algorithm for TNNs, a significant methodological advancement [30], Deep Tree Tensor Network 
(DTTN) leveraging parameter sharing for image recognition [31]. More case studies are summarised 
in Supplement A.  
Tensorized Neural Networks (TNNs) are an underexplored territory that encompasses not only 
compressing neural networks but also enhancing their interpretability and exploring the role of 
"bond indices," which reveal new degrees of freedom within the tensorized neural network layer, 
thereby providing a novel latent space and a richer hyper-parameter space not found in conventional 
networks. The benefits of adopting this class of neural networks include the incorporation of 
inductive bias, benefiting from symmetry, as seen in convolutional neural networks that employ 
translation equivariance, stacking views to aid interpretation, and acceleration in both the forward 
and backwards passes. The challenges of adopting TNNs include the limited hardware and software 
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supporting them, the incomplete physics-aware packages that can guide the inductive bias 
intuitively, and the fine-tuning of the complex hyper-parameter space [32]. 
Python Packages for Tensorization have been developed to facilitate the implementation of tensor-
based methods in machine learning and deep learning. These packages offer various functionalities, 
from tensor decomposition and regression to neural network layers optimised for tensor operations. 
Notable examples include Tensorly [33], which supports multiple tensor decomposition techniques 
such as CP and Tucker, and TensorNetwork, a package developed by Google for advanced tensor 
algebra operations. Other packages like scikit-tt [34], scikit-tensor [35], and TensorNet-TF  [36] 
provide specialised tools for implementing tensor methods in different domains, enabling 
researchers and practitioners to leverage the power of tensorisation in their models. Supplement B 
lists more packages. 

In conclusion, tensorization has proven to be a powerful tool in both machine learning and 
deep learning, offering significant benefits in terms of model compression, performance 
enhancement, and the ability to capture complex relationships within data. The successful 
application of tensorization across various case studies underscores its potential to transform 
traditional approaches, yielding more efficient and effective models in diverse applications.  
 
3.5 Proposed Framework 
 

To address the complexity of implementing tensorization in deep learning applications, we 
propose a comprehensive six-step framework that provides systematic guidance from data 
assessment to performance evaluation, as illustrated in Fig. 6. This framework integrates recent 
advances in tensor networks and provides clear decision criteria for method selection at each stage. 
The framework begins with Data Assessment, where the natural tensor structure of the dataset is 
analysed. For instance, MNIST images (28×28×1) exhibit clear spatial structure, colour videos 
(256×256×3×50) contain spatial, spectral, and temporal dimensions, while EEG signals present multi-
channel temporal patterns. The assessment phase establishes decision criteria that guide subsequent 
tensorization choices based on data characteristics such as sparsity, dimensionality, and inherent 
structure. 

The Tensorization Strategy selection follows a decision-tree approach: sparse data structures 
benefit from sparse representation techniques, and temporal data leverages statistical tensorization 
methods using higher-order statistics. In contrast, spatial data typically employs reshaping strategies 
that preserve geometric relationships. This systematic approach ensures that the chosen 
tensorization method aligns with the underlying properties of the data. Decomposition Selection 
involves choosing among established tensor factorisation methods based on application 
requirements. CP decomposition (𝒳 ≈ Σᵢ λᵢ aᵢ ∘ bᵢ ∘ cᵢ) provides interpretable factors suitable for 
applications requiring clear component separation. Tucker decomposition (𝒳 ≈ 𝒢 ×₁ A ×₂ B ×₃ C) offers 
richer representations through its core tensor, while Tensor Train decomposition (𝒳 = G₁ ×₁ G₂ ×₂ ... 
×ₙ Gₙ) enables extreme compression for high-dimensional data. The selection depends on the trade-
off between compression efficiency, computational complexity, and interpretability requirements. 
The Model Architecture phase integrates the selected tensor decomposition into neural network 
structures, whether through the replacement of tensor layers. These hybrid architectures combine 
tensor and conventional layers, or end-to-end tensorization. The Training Protocol encompasses 
optimisation algorithms, rank adaptation strategies, and convergence criteria designed explicitly for 
tensorized models. Finally, Performance Evaluation provides a comprehensive assessment across 
multiple dimensions, including compression ratio, accuracy, memory usage, and interpretability 
scores, with feedback loops enabling iterative refinement of the entire process. This framework 
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addresses the practical challenges of tensorization implementation while incorporating recent 
theoretical advances, providing researchers and practitioners with a systematic approach to leverage 
the benefits of tensor methods in deep learning applications. 

 
Fig. 6. Tensor Computing Framework 

 
4. Experimental Setup and Results 
 

To evaluate the proposed tensorization framework, various datasets from different domains 
were selected, including four synthetic signals of small lengths (101 time steps), four audio signals of 
varying lengths (117601), and MNIST images of 784 flat pixels, to ensure robust and comprehensive 
testing. The datasets underwent standardised preprocessing steps, including normalisation, 
denoising, and segmentation, to maintain consistency across experiments. The framework's 
effectiveness was tested under various conditions, including noise robustness, signal types, real-time 
processing, and parameter sensitivity. Controlled noise was introduced at varying levels and different 
types to assess the framework's robustness in signal reconstruction. Parameter sensitivity analysis 
included testing for other ranks. However, further fine-tuning of all involved parameters may 
enhance the results. Baseline comparisons with fundamental blind source separation approaches, 
including Independent Component Analysis (ICA), Principal Component Analysis (PCA), Discrete 
Wavelet Transform (DWT), and Non-negative Matrix Factorisation (NMF), provided a comprehensive 
evaluation. The evaluation of the Parafac multi-way decomposition methods employed the 
Hankelization of the signals. Given an exponential signal 𝑓(𝑘) = 𝑎𝑧"Hankelization constructs a 
Hankel matrix H, where each descending diagonal is constant, leading to a matrix of rank one for 
simple exponentials. This framework generalises to exponential polynomials for applications such as 
harmonic retrieval and function approximation, analogous to Taylor series expansions. Then, after 
the reconstruction of the Parafac weights, dehankelisation was applied to retrieve the separated 
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sources in their original form. Experiments were carefully structured to include multiple repetitions, 
with the results averaged to account for variability. Tailored adjustments were made for specific 
problem requirements. In quantitative evaluation metrics, such as root mean square error (RMSE), 
lower values indicate better reconstruction accuracy; however, they do not directly measure the 
quality of the reconstruction. We evaluated the reconstruction using other metrics, such as the 
Structural Similarity Index (SSIM), correlation coefficients, and Frequency Domain Analysis, where 
higher values indicate a better structural quality of the reconstruction.  

The results illustrated in  

Fig. 7 shows the shape of the observed mixtures in (a), and the authentic sources are in (b). 
The ICA is structurally the most distant (c), the PCA is closer (e), and the tensor-based is the nearest 
(d) in reverse order of the reconstruction error. This may be due to the different scaling and signal 
permutations of each method. Further tests for three noise levels and reduced rank vs full rank 
revealed more insights. All methods suffered from performance degradation as noise levels 
increased, and increasing the rank did not consistently improve performance, particularly for PCA 
and NMF. ICA was the most effective technique, yielding the lowest Root Mean Square Error (RMSE) 
of 2.93 on synthetic data and 0.088 for audio files, while maintaining structural integrity in low-noise 
environments. NMF showed promise in retaining structural features, with an SSIM of 0.68 in 
synthetic data and -0.00029 for sound files. However, it struggled with accuracy in high-noise 
conditions, yielding higher RMSE values compared to the other methods. DWT demonstrated poor 
performance in high noise levels, particularly in terms of frequency similarity and SSIM, highlighting 
its limitations in noisy environments. Conversely, despite achieving the highest RMSE reconstruction 
errors, the Hankel and multiway methods attained the highest frequency similarity of 196168 in 
synthetic data and 6271.8 for sound files, leading to an overall positive correlation of 0.94 in synthetic 
data and -0.2 for audio files, suggesting that it preserves frequency characteristics well, which is 
crucial for specific applications like audio analysis. When structurally similar but with a negative 
correlation (e.g. -0.50), this suggests that while the method captures frequency features, it may not 
accurately reflect the overall trends of the original signal. This could indicate potential phase shifts 
or distortions in the reconstructed signal. All results metrics are available in Supplement C.  
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Fig. 7. (a) Observed Mixed Signals, (b) True Signals, (c) BSS reconstructed signals from ICA, (d) multiway 
compared, (e) PCA, (f) NMF, (g) DWT (h) RMSE, SSIM, Correlation and Frequency Similarity Metrics of all 

methods 
 

Despite the high RMSE, the Hankel method achieved reasonable SSIM and correlation scores, 
particularly in audio data under low-noise conditions. This indicates its potential usefulness in specific 
scenarios, particularly where frequency retention is prioritised. Accurately capturing frequency 
content can be more important than perfectly reconstructing the time-domain signal if a specific task 
or analysis emphasises frequency preservation, such as in signal processing system identification in 
vibration analysis or fault detection. The multi-way methods could be precious despite their lower 
scores in other performance metrics.  
 
5. Conclusion 
 

This manuscript presents a comprehensive, tutorial-style survey that contrasts traditional 
Linear Subspace Learning (LSL) with Multi-linear Subspace Learning (MSL), tracing the journey from 
the mathematical foundations of multilinear algebra to their concrete applications in modern deep 
learning. We have elucidated how the inherent multi-dimensionality of data, often flattened into 2D 
matrices for conventional algorithms, can be more naturally and effectively processed using tensor 
decompositions (e.g., CP, Tucker, Tensor Train). This multi-way approach offers a fundamental shift 
in perspective, moving beyond the limitations of vector-space methods to capture the rich, complex 
interactions between data modes. 

A central contribution of this work is the empirical perspective on model interpretability, 
demonstrated through a Blind Source Separation (BSS) case study. Our experiments revealed a 
critical and nuanced trade-off: while traditional 2D methods, such as ICA and PCA, achieved superior 
Root Mean Square Error (RMSE), tensor-based approaches, particularly those employing 
Hankelization and PARAFAC decomposition, excelled in preserving the essential structural (SSIM) and 
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frequency characteristics of the original signals. This finding underscores that RMSE alone is an 
insufficient metric for evaluating signal reconstruction quality. It highlights the value of tensor-based 
methods in applications where the integrity of the signal's structural and spectral properties is 
paramount, such as in audio analysis, vibrational system identification, and biomedical signal 
processing. The ability of multi-way analysis to maintain these characteristics, even under noisy 
conditions, points towards more interpretable and physically meaningful models. 
 
5.1 Limitations of this Work 
 

While this study establishes the foundational benefits of tensorization, it is not without 
limitations. The scope of the BSS experiment, although illustrative, was limited to a specific set of 
algorithms and datasets. A more comprehensive benchmark incorporating a broader range of tensor 
decompositions (e.g., Block-Term Decomposition) and contemporary deep learning baselines (e.g., 
transformer-based sequence models) would provide a more rigorous comparison. Furthermore, the 
computational complexity of tensor operations, especially for very high-order or large-scale tensors, 
remains a practical challenge that was not exhaustively analysed. Finally, the current implementation 
relied on stitching together various Python libraries, highlighting the lack of a standardised, end-to-
end framework for tensorized deep learning, which can hinder reproducibility and adoption. 
 
5.2 Future Work 
 

Building on the insights and limitations of this work, several promising avenues for future 
research emerge: 
Development Environments and Optimisation: Future work must focus on the seamless integration 
of tensor operations into mainstream deep learning frameworks (e.g., PyTorch, TensorFlow). This 
includes developing optimised Tensorised Layer types, tensorised activation functions, and efficient 
backpropagation algorithms, such as SGD with DMRG algorithms, AutoDiff [37] and DDSP 
(differentiable digital signal processing) [38] compatible with automatic differentiation. Leveraging 
and extending low-level libraries (e.g., tensor-aware BLAS operations) for variable-order tensors is 
crucial for achieving optimal performance on parallel hardware, such as GPUs and TPUs. 
Advanced Hybrid Architectures: The integration of tensorized models with other advanced neural 
architectures presents a fertile ground for innovation. Exploring tensorized Graph Neural Networks 
(GNNs) for relational data, tensorized transformers for long-range dependencies, and Physics-
Informed Tensor Networks (PITNs) for embedding domain knowledge directly into the model 
structure are compelling directions. These hybrids could unlock new levels of efficiency and 
interpretability in scientific machine learning [39]. 
Quantum-Tensor Synergy: As quantum computing advances, the synergy between tensor networks 
and quantum algorithms will become increasingly important. This is seen in recent studies, such as a 
variational quantum algorithm for singular value decomposition (VQSVD) and the generalisation of 
quantum ML algorithms that can be tensorized on quantum platforms [40]. Hybrid Tree Tensor 
Networks (HTTNs) offer a pathway to simulate quantum systems beyond the limits of current 
hardware  [41]. Research into tensor network-inspired quantum machine learning models and 
quantum-enhanced tensor decomposition algorithms represents a frontier at the intersection of 
these two transformative fields. This field is considered so pivotal that a recent landmark review in 
Nature Reviews Physics, co-authored by researchers from NVIDIA, Google, NASA, and others, outlines 
a strategic roadmap. It positions tensor networks as the backbone for progress in key areas such as 
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quantum error correction, quantum circuit design, and enhancing quantum machine learning models 
by making them more efficient and interpretable [42]. 
Standardised Benchmarking: To accelerate progress, the community would benefit greatly from 
establishing standardised challenges and benchmarks with clear, multi-faceted metrics that go 
beyond RMSE to assess expressiveness, structural fidelity, computational efficiency, and parameter 
compression. This will enable meaningful and fair comparisons across different tensorization 
methodologies. 

In conclusion, this survey has articulated the transformative potential of tensorization for 
machine learning. By bridging the gap between the theoretical elegance of multi-linear algebra and 
the practical demands of deep understanding, we pave the way for a new generation of machine 
learning systems that are not only more efficient and scalable but also more expressive and 
interpretable. This is particularly critical for deploying advanced models in resource-constrained 
environments (e.g., IoT devices) and in scientific domains where model trust and physical plausibility 
are as crucial as predictive accuracy. The journey from matrices to multi-way arrays is an essential 
step in mastering the complexity of modern data. 
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