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The paper will present a framework for management in energy and operational 
optimization of smart grid integrated data centers (DCs) under the operation of wind 
power generation, with diesel generators as a backup source. The generated wind 
power is not reliable due to its desirable intermittent nature, and it will require 
energy to be drawn from the grid so that the DC could operate without interruption. 
This paper considers the nature of mix to be supplied, where the total maximum 
peak loading of 35% of the total consumption of the DC may be made out of the 
wind and when in normal operation while in grid outage it is required to work in an 
islanded mode and it would use diesel to generate power for the fulfillment of this 
demand. The paper provides an elaborate analysis of DC workload and service delay 
including penalties for delay under Amazon Elastic Compute Cloud (EC2) Service 
Level Agreements (SLA). It further relates to power consumption modeling that 
incorporates server utilization and Power Usage Effectiveness (PUE), which 
indicates variations in power consumptions during the day concerning workload 
demands. This work proposes strategies to balance the trade-offs between energy 
costs, service reliability, and delay penalties to optimize DC operations in both grid-
connected and islanded modes.  
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1. Introduction 
 

Play a major role in ensuring the integration of wind-driven industrial establishments, such as 
data centers with other modern technologies and also ensuring reliable service. The paper further 
posits that the share of wind power among renewable sources of electricity will be increasing so 
information about its integration in data centers is crucial. Hybrid power systems for continuous 
operation are then briefly described. Diesel generators are essentially employed for backup power 
solution in almost all cases with hybrid systems including wind energy, as recommended by most 
wind energy installation guides. However, where wind is a standalone option, as the only input or 
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the other sources are not enough to sustain the load, diesel generator plays a vital role in maintaining 
the continuous supply of power. Diesels are widely used in DCs for their fast response times and 
ability to ensure uninterrupted operations during periods of insufficient renewable power or grid 
outages [1-7]. 

This paper gives an energy management framework of DC operating within a smart grid with wind 
power as the main renewable resource in conjunction with diesel generators as backup. The model 
tackles the unpredictability of wind power by mandating a minimum power supply from the main 
grid so as to run consistently, with 35% of the peak load of the DC which is attainable through wind 
generation. In addition, a DC workload and service delay model are proposed that are correlated with 
the EC2 SLA that imposes penalties on the DC for service delays beyond certain predefined 
thresholds. Such constraints keep the DC activity within bearable limits as far as energy costing is 
concerned and optimum performance is realized. 

The study also comprises a power consumption model that modestly accounts for the energy 
consumed by the DC in terms of server workloads, cooling, and lighting. It’s evident that the energy 
consumption model fluctuates with varying workloads during different times of the day since it’s 
directly related to the power demand imposed by the workloads on the data center. The paper has 
reviewed various strategies that help in optimizing this energy mix with a particular concentration on 
wind power with ancillary support from grid supply and diesel generators under varying degrees of 
workload delays and penalties[9-11]. 

This paper has presented the main components of the system under investigation and introduced 
the need for investigating effective energy management techniques for data centers in smart grid 
environments. Subsequent sections in the paper are going to include an extensive literature review, 
explanation of the model of the DC-SG system, and analysis of the outcomes coming out of the 
simulations to be performed. 

 
2. Literature Review 

 
In the last few years, considerable research has been dedicated to improving energy management 

for data centers in smart grid environments, with much attention paid to making service reliable 
while integrating renewable sources as well as cutting operational costs. This section presents a 
review and comparison of recent studies that have investigated identical frameworks to that 
proposed in this paper, outlining the contributions, limitations, and gaps in existing literature. 

i. Renewable energy and DC operations are an area of focus for a large volume of research 
studies, which include the use of wind and solar power in DC operation. For instance, [12] 
came up with a solar-based hybrid energy system for DCs, which was dependent on 
conventional grid energy but stressed the need for accurate forecasting of renewable energy 
generation to optimize the energy mix. Their model reduced operation costs by 20% through 
efficient selection between solar and grid energy. However, it is always indeterminate for 
solar energy to be operational just as wind does for the cloudy or night conditions. The 
framework proposed in this paper is based on wind energy and does not suffer in the same 
way; it takes cognizance of this shortcoming by using diesel generators as well as grid 
electricity for uninterrupted power supply. End of additional sample 

ii. [13] concentrated on the integration of wind energy in data centers, modeling how the 
variability of wind energy would affect DC performance. Their research introduced advanced 
forecasting techniques for wind energy and recommended a battery storage system to 
alleviate the variability. This approach enhances wind energy’s reliability, but the study did 
not adequately address cost optimization during grid-connected operations in terms of, for 
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example, selling a surplus of renewable energy to the grid. Our paper extends this by including 
energy transactions between the DC and the main grid, making it possible to save on costs 
through power trading out from that grid. 

iii. Typical backup generator systems, providing higher availability, include the systems that 
automatically synchronize a standby unit with the operations of the normal power supply. 
These may be integrated into the building’s electrical system for an automatic transfer to 
auxiliary power in case there is a need or when the primary power has failed. This kind of 
operation will involve automatic making and breaking of connections, fault detection, etc, and 
therefore assumes certain importance in deciding reliability from backup generators[14]. 

iv. [15]have optimized the dispatch of diesel generators for backup power in DCs. These mostly 
consider the associated costs with environmental effects. They demonstrate that scheduling 
diesel generator use in the event of grid outages can allow DCs to enjoy high levels of 
reliability without emitting much pollution. Their work, however, does not address the 
solution’s dependence on diesel fuel since it did not integrate renewable sources that may 
further cut the demand for these fuels. On the contrary, our study deals with modeling a 
hybrid system in which diesel generators are used only as a backup when there is no supply 
either from wind energy or the grid, thereby reducing further fuel consumption and pollution 
output. 

v. [16] proposed a framework for the integration of renewable energy and diesel backup 
generators in data centers in an attempt to strike a balance between energy costs and 
reliability. Their study had been on the combination of wind and solar loads with diesel 
gensets in an attempt to reduce the carbon footprint. They concluded that data centers could 
accrue huge savings by optimizing the use of renewable energy and cutting down reliance on 
diesel generators. However, they did not take into consideration penalties for service delays, 
which can have a substantial impact on the profitability of the operations of data centers. This 
paper builds on their work by developing an in-depth model of data center’s service delays 
and penalties that will add real-life penalties brought about by Service Level Agreements 
(SLAs). 

 
2.1 Service Delay and Energy-Aware Scheduling  

 
The required data arrangement and merging similar services could result in a reduction to service 

delay in energy consumption by reducing the time a component spends in a running state. The 
proposed energy-aware scheduling involves switching off selected cores that correspond to a power-
gated sleep mode. In cases when the running environment shows no improvement over recently 
proposed schedules, the system then sleeps all but one viable service choice and trots down to 
sleeping mode applies super-reduced power consumption: CASCADE strategy [1,17-18]. 

This is usually the kind of impact on the enterprise stipulated with cloud-based data centers, and 
sometimes, even the slightest breach of the specified performance metrics results in enforced 
payments. Referring to [14], an energy-aware workload scheduling algorithm was built for cloud DCs 
in goal to minimize the energy costs and service delay penalties. For this purpose, they optimized 
server usage by dynamically adjusting the number of active servers based on workload, cutting down 
power consumption as well as delays. Although they focused on minimizing the penalties, their 
energy model did not consider the practical aspects of how renewable energy sources like wind 
would then be used and their variability. We carry out similar models in terms of workload and service 
delay except that we expand it to take into consideration renewable energy and particularly wind 
and how this will relate to total energy usage as well as service delays. 
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Researcher [19] examined the impact of renewable energy integration on service reliability in 
cloud DCs. They proposed a scheduling algorithm for balancing energy consumption with delay 
penalties based on real-time energy available within a predictive capability and workload for a 
particular day. Their model reduced delay penalties by up to 15%, though they considered solar 
energy exclusively. The current study expands on this by including the modeling of wind energy, 
which is less predictable yet more often available, and the provision of strategies for handling service 
delays and penalties in cases when wind energy is unavailable. 
 
2.2 Research Gap 

 
Current literature on energy management of data centers has shown many improvements in 

renewable energy incorporation, backup generator scheduling, and service delay optimization. 
However, there are still several gaps that this paper addresses: 

1. Renewable Energy Integration: Most studies have concentrated on solar energy or hybrid 
solar-wind models, and the feasibility of wind energy as the main renewable source has not been 
thoroughly explored in isolation. Our work concentrates on wind energy as the primary renewable 
source for the DC, with diesel backup and grid transactions to alleviate the problems victimizing the 
sector: this paper presents the case of intermittency. 

2. Optimization of Cost through Grid Transactions: In few recent studies, the cost optimization 
mechanism has not been considered together with energy management models for grid-connected 
DCs with the selling of surplus renewable energy. These have been exemplified by [20] and [21], 
among others. Contrary to this, the proposed model embeds this component for cost minimization 
by the DC  

3. Service Delay Penalties: Few studies consider the real-world implications of service delay 
penalties on DC operations. Our paper incorporates a service delay and penalty model based on 
Amazon EC2 SLAs, providing a more comprehensive framework for understanding the financial 
impacts of delays on DC profitability. 

4. Energy-Aware Scheduling: While existing work has proposed energy-aware scheduling 
algorithms, many fail to account for renewable energy variability or the full complexity of power 
consumption across DC subsystems (e.g., cooling, lighting, and server usage). Our model addresses 
this by integrating a detailed power consumption model that considers both server utilization and 
the varying availability of wind energy. 
 
2.3 Dataset 
 

i. Wind Power Generation Data: The NREL WIND Toolkit provides North America wind 
resource data, with a time span from 2007 to 2014. The data made available includes the 
real-time wind speed, directions, temperature, and air pressure at several heights above 
the surface. Having access to the dataset with a 5-minute time resolution may be useful 
in simulating the variability of the wind. Where can I find this data on NREL's site? 

ii. Grid Energy Prices: For grid energy prices, some of the platforms from which to draw 
datasets are the ENTSO-E Transparency Platform, from which real-time and historical 
electricity price data from all European markets are obtained. This is necessary to 
streamline energy purchase decisions with market-driven considerations. 

iii. Workload Data: The data center workloads can extract historical workload traces for CPU 
usage and job scheduling from the Google Cluster Data. This will help in simulating cloud 
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computing loads in real-time dynamics, which is very important for workload 
management as well as SLA penalty modeling. 

iv. Battery Storage Data: In respect of battery storage, details of the performance 
characteristics of the charge/discharge rates, storage capacity, and efficiency of battery 
storage may be accessed from the Global Energy Storage Database of DOE, which would 
help in simulating energy storage in your model. 

v. Diesel Fuel Costs: The data source for diesel generator fuel costs can be obtained from 
market trend datasets, which are also commonly provided by energy industry reports, or 
national fuel price databases such as the U.S. Energy Information Administration. 

vi. Service Delay Penalties: Such penalties can be modeled using SLA frameworks that define 
the penalties related to delays in completing a job in cloud computing environments. 
Provided models by cloud service providers or research datasets can be used to quantify 
these penalties based on the delay time[22-25]. 

 
3. Methodology 

  
The methodology of this paper presents the development of an energy management framework 

of a Data Center within a Smart Grid. The paper develops an energy management framework that 
integrates all sources of energy to optimize the use of energy for the maintenance of reliability with 
service delay penalties minimization and operating cost reduction. Key Components: 

i. Energy Sources: Wind Power Generation: As a primary source of renewable energy, the 
most common one, caution must be used to ensure there is enough back-up power for 
variability. 

ii. Diesel Generators: In the absence of grid supply and during low wind power, diesel 
generators act as a backup source for the DC. Main Grid Supply: surplus power can be 
sold, and at times when the wind powers are insufficient, power is purchased.  

iii. Battery Storage: Excess energy is stored as well, which can be supplied during outages or 
at peak demand. 

iv. Grid-Connected Mode: In this mode, the DC system interacts with the main grid through 
power exchanges (buying and selling). Wind power has the first priority, and diesel 
generators have to operate in standby mode. Islanded Mode: If there is a grid outage, 
then the DC system has to switch off from the main grid and operate only with the 
available local power sources (wind, diesel, battery) Workload and Service Delay 
Management 

v. Service Level Agreement (SLA) is being modeled wherein penalties related to cloud 
computing job executions beyond a certain threshold will be defined. 

vi. Optimization Model: The objective function minimizes the total energy cost of 
maintaining service quality. The model incorporates energy costs from the grid, diesel fuel 
costs, and service delay penalties. Power consumption is calculated dynamically in 
relation to workload, server utilization, and power-usage effectiveness in the data center. 
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Flow Chart: 
Below is a flowchart outlining the methodology. 

 
Fig. 1. Flow chart of the algorithm showing the step of implementation 

 

Energy Cost Calculation (Python) 

i. def calculate_energy_cost(wind_power, grid_power, diesel_power, grid_cost, 
diesel_cost): 

ii.  Total_cost = (grid_power * grid_cost) + (diesel_power * diesel_cost) 
iii.  Return total_cost 
iv. # Example usage 
v. Wind_power = 100  # kW 

vi. Grid_power = 50  # kW 
vii. Diesel_power = 30  # kW 

viii. Grid_cost = 0.10  # $/kW 
ix. Diesel_cost = 0.15  # $/kW 
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x. Total_cost = calculate_energy_cost 
xi. Print(f"Total energy cost: ${total_cost}") 

 
4. Results  

 
This methodology defines the major steps in the integration of wind power, diesel backup, and 

grid energy for cost and reliability optimization of data center operations. A flowchart and code 
samples to help visualize and implement the scheduling, energy usage, and penalty calculations 
required for the proposed system 
Wind Power Generation Sample Data Table 

Date & Time (UTC) Wind Speed (m/s) Wind Direction (°) Temperature (°C) Air Pressure (Pa) 
2020-01-01 00:00:00 6.45 180 10.5 101325 
2020-01-01 00:05:00 7.20 185 10.6 101300 
2020-01-01 00:10:00 8.10 190 10.8 101280 
2020-01-01 00:15:00 7.60 175 11.0 101265 
2020-01-01 00:20:00 6.90 170 11.2 101250 

Data Variables: 

• Wind Speed: The speed of the wind at various heights (e.g., 10m, 40m, 100m, 200m) in meters 
per second (m/s). 

• Wind Direction: The direction of the wind in degrees (°). 
• Temperature: Ambient temperature at different heights (°C). 
• Air Pressure: Atmospheric pressure in Pascals (Pa). 

 

Fig. 2. Temperature Curve over Time for Data Centres 

 

 

 



Journal of Advanced Research Design 
Volume 138, Issue 1 (2026) 162-174 

169 
 

Sample Table of Google Cluster Workload Data: 

Timestamp Job ID Task 
Index 

CPU Usage 
(Cores) 

Memory Usage 
(GB) Priority Job Scheduling 

Class 
Job Scheduling 
Event 

100000 12345 1 0.45 1.2 3 Batch Job Submitted 
100500 12345 1 0.50 1.3 3 Batch Task Started 
101000 54321 2 0.65 1.5 2 Service Task Scheduled 
101500 98765 1 0.40 1.0 1 Monitoring Task Evicted 

Key Variables: 

• Timestamp: Time in milliseconds since the trace start. 
• Job ID: Unique identifier for a particular job. 
• Task Index: Identifies the individual task within a job. 
• CPU Usage (Cores): The fraction of CPU cores used by a task at a given time. 
• Memory Usage (GB): Amount of memory consumed by a task in gigabytes. 
• Priority: Priority level of the job (1=highest, 3=lowest). 
• Job Scheduling Class: Whether the job is a batch or service task. 
• Job Scheduling Event: Description of the event (e.g., job submitted, task started, task evicted). 

 

 

Fig. 3. CPU Curve over Time for Data Centres 

The DOE Global Energy Storage Database provides extensive information on battery systems. This 
may include technical specifications such as: 

• • Storage Capacity (kWh): Total energy content that can be accommodated by the system. 
• • Round-trip efficiency (%): This is an indication of how well the battery system manages energy. 
• • Charge/Discharge Rates (kW): Peak power that can be stored into or delivered out of the battery 

within a cycle. 
• • Depth of discharge (%): The level up to which energy capacity of a battery can be utilized without 

affecting the lifecycle of the battery. 
• • Operating Temperature Range: Environmental conditions under which the system can operate. 
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For example, the database contains entries on several projects, such including the power rating 
and how many hours the energy is stored, and system efficiency. They can be extracted via interactive 
data tools or downloaded for further assessment to enable simulating the behavior of batteries in 
data centers. 

 
Diesel Fuel Cost Data Table (Sample): 

Data — For data on diesel fuel costs, the U.S. Energy Information Administration offers a look at 
the most up-to-date figures on diesel prices. This can be useful for your data center energy 
management project. As of October 2024, the U.S. retail price average for a gallon of diesel holds at 
about $4.52. It can be quite variable regionally, and historical data is available to greater granularity. 
This includes detailed data on the reasons for the price trend — that is, how crude oil prices and 
refining margins lead to the current cost of diesel fuel. This diesel fuel cost information can be used 
in your model when simulating the operating costs of running backup generators in the energy 
management system. 

 

Date Region Price ($ per 
Gallon) Price Change (Weekly) (%) Crude Oil Price ($ per Barrel) 

2024-10-01 U.S. National Avg. 4.52 +1.2% 85.10 
2024-09-24 Midwest 4.39 -0.5% 83.90 
2024-09-17 West Coast 4.87 +0.8% 86.00 
2024-09-10 East Coast 4.59 +0.4% 85.50 
2024-09-03 Gulf Coast 4.25 -0.3% 84.00 

 

 

Fig. 4. Energy Cost Curve over Time for Data Centres 

 

Key Variables: 

• Date: The date of the recorded diesel fuel price. 
• Region: Geographic region where the diesel price was recorded. 
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• Price ($ per Gallon): The average price of diesel in that region. 
• Price Change (Weekly) (%): The percentage change in diesel price compared to the previous week. 
• Crude Oil Price ($ per Barrel): The price of crude oil, which influences diesel fuel costs. 

Service Delay Penalties table based on common Service Level Agreement (SLA) penalty 
frameworks. These penalties are typically defined in contracts between cloud service providers and 
customers, outlining fees incurred for failing to meet performance benchmarks such as job 
completion within the agreed-upon time limits. 

 
Sample Service Delay Penalties Data Table 

Delay Time (Minutes) Penalty per Job ($) Penalty Rate (% of Job Cost) Penalty Multiplier for Recurring Delays 
0-5 0 0% 1x 
6-10 10 5% 1.1x 
11-20 25 10% 1.2x 
21-30 50 15% 1.5x 
31+ 100 25% 2x 

Key Elements: 

• Delay Time (Minutes): The amount of time beyond the scheduled job completion time. 
• Penalty per Job ($): The flat fee imposed for delay beyond the SLA agreement. 
• Penalty Rate (% of Job Cost): Percentage of the total job cost that will be charged as a penalty. 
• Penalty Multiplier for Recurring Delays: A multiplier applied if delays occur frequently within a 

short period, increasing penalty severity. 
• Explanation: 
• 0-5 minutes of delay generally incurs no penalty as it’s considered a grace period. 
• 6-10 minutes introduces a minimal penalty ($10 per job or 5% of the job cost). 

As the delay increases, so does the financial penalty, with 31+ minutes potentially incurring 
significant costs ($100 per job or 25% of job cost). For recurring delays, multipliers further increase 
the penalty. 

The T-curve for service delay penalties illustrates the increasing penalties incurred as job 
completion delays grow. 

Sample Data Table 
Using the provided service delay penalties: 

Delay Time (Minutes) Penalty per Job ($) 
0-5 0 
6-10 10 
11-20 25 
21-30 50 
31+ 100 
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Delay Time (Minutes) Penalty per Job ($) 

 

 

Fig. 5. Penalty per Job Curve over Time for Data Centres  

 
T-Curve 
On the x-axis, use Delay Time (Minutes) and on the y-axis, plot Penalty per Job ($). This curve will 

highlight the steep increase in penalties as delays extend. To create the T-curves, you can use 
software tools like Excel, Python (with libraries like Matplotlib or Seaborn), or any data visualization 
software that supports plotting. Each curve visually represents how various parameters interact over 
time and under specific conditions, crucial for energy management optimization in a smart grid 
context. 

 
4. Conclusions 
 

It also gives proper attention to integrating wind power generation in parallel to conventional 
diesel generators. Identifying intrinsic bottlenecks because of variability in wind energy sources, it 
again strongly underpins the need for reliable backup power sources to sustain operations against 
data center downtime. The developed bi-level model demonstrates that, under the condition of 
minimized power supply from the main grid to reduce uncertainties associated with wind power 
generation, not less than 35% of the peak load of a data center can be supplied by renewable sources. 

Its work scope concentrates on detailing the DC workload and service delay management with 
special reference to SLA of Amazon Elastic Compute Cloud EC2. They prove how important these SLAs 
are to be adhered to in order to keep away the penalties for service delays, which can really cost an 
arm and a leg in terms of operational costs with an effect on service reliability. Adopting server 
utilization and Power Usage Effectiveness as parameters for power usage modeling enables it to offer 
granular details about the pace at which energy is consumed for workloads of varying nature on a 
day to day basis. 

Additionally, it puts forward a set of strategies to coordinate energy cost, service reliability, and 
delay penalties, thereby operating data centers efficiently in grid-connected and islanded modes. 
These have to be developed to improve performance and economical consideration under conditions 
of wind power dominance as the primary renewable resource. This work highlights the very 
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important role that diesel generators play in enabling a fast-response backup solution to keep the 
lights on, even when the renewables are not making power or the grid goes down. 

To conclude, this study addresses a key need to understand the impact of integrating wind power 
into data centers and evolving the role of renewable energy sources as part of the sustainable 
management of energy. That way, with strategic planning and optimization, data centers will be able 
to fully exploit wind power and reduce the share of traditional energy sources while advancing the 
development of smart grids with sustainable orientations. 
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